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FOREWORD 
 

We are pleased to publish the proceedings of the Agent 2004 conference, co-sponsored 
by Argonne National Laboratory and The University of Chicago. This proceedings is the fifth in 
a series; each of the documents in this series provides a window into the rapidly advancing 
subfield of social agent simulation. 
 

The Agent 2004 conference, like previous Agent conferences, was organized around 
three topical areas: (1) methods, toolkits, and techniques; (2) computational social theory; and 
(3) simulation applications. The first theme emphasizes the way in which substantive social 
science modeling and computational modeling must co-evolve in order to progress. The second 
stresses the theoretical and conceptual advances that, given computational breakthroughs, can be 
explored and assessed. The third theme focuses on the fact that in order for these advances to 
ultimately contribute to society, they must support the understanding of application domains or 
the assessment of policy alternatives. These three topical areas, which summarize recurring 
priorities within this emergent subfield, are now also Special Interest Groups within the North 
American Association for Computational Social and Organizational Science (NAACSOS), the 
professional organization with which Agent 2004 staff coordinated. 
 

One way to assess the progression of the subfield is to consider the diversity of topics and 
application areas it covers. At Agent 2004, methodological topics included generative models, 
ontological design, life-cycle methods, data farming, and GIS. Theoretical topics included 
balance theory, intimate interaction, prototype inference and microinteraction, ethnic preferences 
and segregation, technological trajectories, and threshold models of collective behavior. 
Application areas included archeology, land use, logistics, supply networks, national security, 
open-source software development, and the prospects for a hydrogen transportation 
infrastructure. While none of the lists are exhaustive, each is sufficient to show that as the 
subfield of computational social science addresses new domains, novel insights into the 
modeling process are gained, and vice versa. 
 

We hope you enjoy the richness of the proceedings as much as we benefited from the 
depth of the conference. We also hope that the work reported here inspires you to undertake 
original investigations, the results of which can be shared with our research community at future 
Agent conferences. 
 
 
 

Charles Macal, Director 
Michael North, Deputy Director 

David Sallach, Associate Director 
 

Center for Complex Adaptive Agent Systems Simulation (CAS2) 
Decision and Information Sciences Division 

Argonne National Laboratory 
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WELCOME 
 

T. WOLSKO, Argonne National Laboratory 
 
 
 I’d like to welcome you to the Agent 2004 conference. As most of you are aware, this 
conference is the fifth in a series of meetings that began in 1999. A conference followed the next 
year in 2000. The 2001 conference was skipped because of some conflicts with other 
conferences, and the conferences have proceeded annually since then. We have the proceedings 
of the previous conferences available here on CDs. One CD has the proceedings from 1999, 
2000, and 2002; the other contains last year’s proceedings. 
 
 The purpose of these conferences is to advance the state of the computational social 
sciences and to integrate the social sciences with the decision sciences and something that is 
traditionally known as the management sciences. Those of you in the operations/research area 
are familiar with the traditional school of modeling simulation that emerged from that scientific 
area. This conference will bring together a different group of people to talk about the topic of 
agent-based theories and simulations. 
 
 This fifth agent conference is one of a group of conferences held annually around the 
country. Most of you are probably aware of the CASOS Conference held at Carnegie Mellon 
University, usually in July. UCLA holds the Arrowhead Conference, generally around May. The 
University of Michigan is now holding a conference as well. Of course everyone is aware of 
SwarmFest, which has been held annually for about a decade. The Swarm seems to “swarm” in 
different locations each year. 
 
 As you’re well aware, this conference is organized into a three-day program. This is the 
first time we’ve used three days for the full conference setting. Last year, we held simultaneous 
sessions, and that didn’t work well for most of those who attended. We had complaints from 
people who missed sessions and papers because of scheduling, so we decided to extend this 
year’s conference by one day. As a result, we now have a program designed to present the papers 
in a serial sequence rather than in a parallel manner.  
 
 Today, we’ll focus on toolkits. Tomorrow we’ll look at computational social theory, and 
Saturday is application day. We’ll talk about how we’re taking some of the theories and toolkits 
to look at real-world problems in order to understand how our very complex world works and 
maybe even to predict how it might work in the future. 
 
 In addition to the content of the papers themselves, one of the more important things 
about this conference is the discussion that is inspired by these papers. I invite you to ask 
penetrating questions, offer insightful comments, share your experiences with toolkits or your 
ideas on theories, and help to create an atmosphere that will help this field move along and grow. 
It’s a fairly new science — it is just emerging — but it seems to have been gaining momentum in 
the last couple of years. This is a conference to get your energy going and perhaps foster your 
creativity. With that, I welcome you to Agent 2004; have a great time at the conference.  
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DISCUSSION: 
 

METHODS, TOOLKITS, AND TECHNIQUES 
 

(Invited Speaker, Thursday, October 7, 2004, 9:15 to 10:15 a.m.) 
 

Chair and Discussant:  Kathy Lee Simunich, Argonne National Laboratory 
 
 
Standardizing an Agent Life-cycle Model 
 

Kathy Lee Simunich:  Good morning. I’m Kathy Simunich from Argonne National 
Laboratory. I would like to introduce our keynote speaker, Roger Burkhart, who is a technical 
staff member at John Deere & Company in Moline, Illinois. He was one of the original members 
of the Swarm team and has been working in agent-based modeling for many years. His keynote 
talk is titled, “Standardizing an Agent Life-cycle Model.” Roger has promised to leave about five 
minutes at the end of his presentation for questions and discussion. 

 
Roger Burkhart:  I think that toolkit developers are a special breed, so this is a very 

self-selected group. We’ve had very important and productive discussions at each of the 
preceding agent conferences, with a pre-conference workshop of agent toolkit developers. So I’m 
pleased to see a lot of the same people here. I think this is a good time to look at basic directions 
for where we’re headed in agent modeling and agent toolkits. 

 
At the agent developers’ meeting at Agent 2002 in the pre-conference workshop, several 

of us speculated whether we were reaching a plateau or local optimum on toolkits. Many of the 
toolkits have actually reached a fairly impressive level of maturity. You could argue that some 
are getting fairly ‘long in the tooth.’ So if we are on some great plane of incremental evolution, 
I think it’s time to puncture that equilibrium and look at some fundamentally new directions we 
might go toward. 

 
[Presentation] 

 
Simunich:  Roger, I have a question to start off the discussion. You said agent modeling 

is mature and that it’s ready to adopt software engineering tools and techniques. You gave good 
examples of the trends and directions of the software engineering field, which is my field at 
Argonne. I think that this would be a good way to bring agents into the traditional software 
engineering field. How do you see agents bringing something in? You’re trying to adopt and 
adapt to traditional software engineering tools and UML and so on. Is there something in agent 
modeling that can enhance traditional software engineering?  

 
Burkhart:  Yes, and that’s actually what motivated me. I probably spent more time on 

the counter side of the non-agent systems, and so I should give equal time to the agents. Before I 
got into Swarm, I wrote a paper saying that I thought that in effect, complex systems simulations 
needed to be an important part of our classic information system models because there are too 
many complex, messy things that go on that we can’t even express or define in our fairly 
impoverished, for example, information modeling or even dynamic modeling framework. So 
I think agent models and the entire class of systems that we apply them to are important to show 
the gaps and fissures than what our classic business models can even talk about. 
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I view this very much as a synergy — a way of getting a bigger picture together. 
However, in the classic IT [information technology] world, there’s enough frustration even 
getting basic capabilities in place that doing crazy things they don’t know how to do yet isn’t 
their most near-term priority. 

 
Simunich:  You had a slide on code generation techniques. Can you see smart agents 

helping to create and generate the code? 
 
Burkhart:  That is an additional application area where there’s been work, for example, 

by Ivar Jacobson, who did the Use-Case framework, and UML has formed a company to look at 
agents — sort of assistance agents, not fine-grained agents — that help and do different tasks in a 
software development process. They do it automatically for code generation; it’s a hard 
application domain because there is a lot of creative design, and that’s, I think, where some 
generation and transformation logic oversimplifies the creative tasks performed by a good 
programmer. On the other hand, there’s a lot of routine, repeated coding that probably could be 
implemented. Whether it concerns agents or non-agent techniques is one of these questions of 
the boundaries between agent problem-solving techniques and more classical, traditional 
techniques. 

 
Simunich:  Maybe we’ll finally get to the point where the computer will do what we 

intend, not what we actually said it should. 
 
Burkhart:  Right. 
 
Rod Sipe:  Rod Sipe, New Science Partners. You and John Deere are justifiably famous 

in our little corner of the world for the work you’ve done. In my own humble experiences, once 
an executive suite gets a working understanding of the application of complexity science in 
general to their business, it transforms their way of thinking and their sense of what’s possible 
and therefore gives them a new vocabulary to express what they might want. How have you seen 
that evidenced in John Deere, which has to be one of the longest cases of people having thought 
that way? 

 
Burkhart:  We’ve had perhaps one of the longest continuous involvements, but I would 

not say the deepest in terms of internal applications of agent models because of the reasons that 
I went through, which is why I’ve started to switch into these other more visible direct product 
applications to raise that visibility. For example, recently, we’ve been making headway talking to 
the business people, so our next step is to get ownership by the business people, including some 
of these internal operational roles, supply chains, and customer distribution. And so the research 
has been very interesting. The crossover into the mainline business is still in progress. 

 
Claudio Cioffi-Revilla:  Roger, much of what you said resonates with many of us, 

including those of us that teach graduate courses in computational social science. Jackie Barker 
and I will be co-teaching a new course next spring on object-oriented modeling in social science; 
it hinges fundamentally in a very important way on the use of UML in the construction of social 
science simulation models. 

 
So while the need for this is acknowledged and felt by many of us, there’s a certain 

frustration because we have an implementation problem. I wonder whether you have ideas about 
how in practice one can disseminate the importance and the use of UML in, for example, 
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professional venues such as this one, to encourage its use, and, as I said, you expressed the need. 
How in practice is this implemented? Perhaps papers that present and express the UML design of 
models should be given slight preference so that things are equal in the interest of 
communication and dissemination of this approach. 

 
Burkhart:  I think that papers and actual concrete examples that use particular sections 

of UML and specific roles are the most productive way to move forward. UML, as we found in 
our systems engineering use, really sprawls all over the place, and now that I’ve been inside the 
sausage factory where it gets made, UML still needs a lot of fundamental clean-up and 
conceptual clarification. I think UML should be used selectively and judiciously; examples of 
how that’s actually been done will be the most effective way to get broader use and 
understanding. 

 
Pam Sydelko:  My question is more specific to when you’re talking about 

operationalizing agent models and putting them into systems like this. One of the challenges that 
we’ve had with our customers [like for homeland defense and logistics modeling] — I’m curious 
about what your thoughts are on this. A series of events happens, real-time events, and sets off a 
simulation. So now we want to know, what will emerge given these sets of things? 

 
Then they [our customers] want to say, “Well, we don’t know a lot of real-time data, but 

we’ll have little points in time that we might be able to say, ‘Well, actually, this is where this 
vehicle is.’” They want to come back in the simulation, and they want the entire simulation to 
basically readjust itself to real-time data and then move forward. That’s really challenging 
because you don’t know all the agents of change. You know one or two, and you have to 
interpret that, “Well, if those things are not where we thought they are, then the simulation’s 
probably off by this much,” and adjust the whole thing. I thought maybe you might have some 
thoughts on that. 

 
Burkhart:  Yes, it’s definitely part of this idea of operational use of simulation and effect 

as part of a control system or decision-making system. You’ve got a feedback control if you’re 
trying to get desirable results, and running simulations is part of how you test the state that you 
can observe. I think scaling and distributed execution apply to a whole family of models — 
many different levels of refinement, detail, and synchronization with the real state of the world. 

 
Los Alamos had a transportation simulation that actually ran a bunch of fine-grain micro-

simulations of individual cars going through intersections just to calibrate the state that was fed 
into the mainline simulation. But you couldn’t afford to do that on the entire big network, so it 
was very selective just to calibrate the model at the next level up. In principle, there should be, in 
effect, a vessel to run all sorts of models at different levels of detail fidelity and synchronization, 
all of which could affect the accuracy as a result.  

 
Scott Christley:  Roger, you put forward a declarative approach for these agent-based 

models and in the artificial intelligence community. There’s been discussion against declarative 
models because of their efficiency in implementation. Can you give your thoughts on how these 
declarative models can be made efficient, or if there has been any progress in that area? 

 
Burkhart:  Yes, I mentioned that even in a declarative world you have to limit the form 

in which you express things. In some cases, the range of what you can express in order to be 
tractable for execution purposes, but the real question of efficient implementation, if you do have 
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a solvable model, is this whole approach of transformation or generation. A declarative says 
what you’re going to do, but not necessarily how you do it. It’s just the launching point to 
generate something that is driven by it. But the pure functional programming subsets with all the 
garbage collection and one-time assignment and everything that’s part of those evaluations are 
actually surprisingly efficient, even measured against traditional programming. I think that’s an 
entire front that, in the practical world of applied programming, there have been functional 
programming contests, and they consistently outperform what the imperative programmers can 
possibly hope to express in solving these problems. Yet, it’s hardly crossed over out of academic 
circles into applied practice. 

 
Simunich:  Thank you, Roger.  

 
 



 

 
 



 

 

 
 



25 

 

OVERVIEW OF METHODS, TOOLKITS, AND TECHNIQUES 
 

M.J. NORTH,∗ Argonne National Laboratory, Argonne, IL 
 
 

ABSTRACT 
 

This paper considers future development directions for agent-based modeling and 
simulation methods and toolkits. Several major areas are identified for possible work, 
including methodologies and toolkit features for elucidating model runs; exposing model 
designs and implementations; extending models to better support theory-grounded 
modeling; exploring and exploiting social theories; and extracting commonality. 
 
Keywords: Agent-based modeling and simulation, agent-based toolkits, agent-based 
methods, narrative simulation 

 
 

INTRODUCTION 
 

This overview considers future development directions for agent-based modeling and 
simulation (ABMS) methods and toolkits. Along the way, it identifies several major areas for 
possible future work. It should be noted that there are example methodologies and toolkit 
implementations that address the issues raised in some of these areas. Many of these examples 
are cited in the detailed discussions in this paper. However, these areas are classified as future 
work rather than as past accomplishments since at least one of the following questions currently 
must be answered “no:”1 
 

• Are they expected practices?  
 

• Are they widely used practices?  
 

• Are they supported by, or even possible with, today’s ABMS methods and 
tools?  

 
 

ELUCIDATE RUNS 
 

Most models produce “final” results in the form of graphs, reports, and so forth.2 
However, this output rarely captures the individual behavior and rich interactions found in many 
agent models. What is needed for today’s models are automated “narrative simulation” or 
automated “story-and-simulation” capabilities (Hutto, 1997; EEA, 2004) in which the narratives 
are automatically constructed by the simulation itself. 

                                                 
∗ Corresponding author address: Michael J. North, Decision and Information Sciences Division, Argonne 

National Laboratory, 9700 South Cass Ave., Argonne, IL 60439; e-mail: north@anl.gov. 

1  The “no” answers are not a criticism of current efforts in these areas. Rather, they simply indicate the need for 
further research, development, or wider education. 

2  Obtaining these outputs often requires significant manual intervention. 
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Aspect-oriented programming, combined with logging tools, such as JUnit or NUnit, can 
be used to provide this capability in a gross way (Table 1) (North and Hood, 2004). A more 
smoothly integrated methodology would incorporate convenient mechanisms built into toolkits. 
A hypothetical example is provided in Table 2. Of course, the hypothetical results in Table 2 
might be significantly improved with careful consideration of the model’s domain. 
 
 

TABLE 1 Example automated narrative 
simulation using logging tools (JUnit or 
NUnit) 

 
Time 

 
Message 

  
1781 MyrinetNIC 4.send(Message 103) 
1781 MyrinetNIC 4.getNetwork() 
1796 MyrinetNIC 4.sendInterrupt() 

 
 

TABLE 2 Hypothetical automated narrative 
simulation output 

 
Time 

 
Event 

  
81.3 Jim offered Jane $25,000 for the car. 
83.4 Jane immediately accepted. 
88.6 Jim regrets offering so much. 

 
 

EXPOSE MODELS 
 

Today’s models are at best translucent and are often opaque to their users. Specifications 
may be available for opaque or translucent models. However, software experts are often needed 
to determine what a model really does. 
 

Models written with scripting languages, such as Mathematica, may be less opaque to 
some users. Models built using “round trip” diagramming tools, such as general UML or agent 
UML tools, may also be less opaque. However, significant technical expertise is still needed to 
understand these systems. Figure 1 shows a diagram that compares opaque, translucent, and 
transparent models. 
 

In the future, models need to be transparent to their users. We need either models or fused 
specifications that can be understood without deep technological expertise: 
 

• Easily read models are ideal.  
 

• Fused specifications can also work. With this approach, models are 
automatically generated from easily read specifications and vice versa.  
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FIGURE 1  Opaque (top), translucent (middle), and transparent (bottom) models 
 
 

EXTEND TOOLS 
 

Many, but certainly not all, of today’s models use theories that were chosen because of 
ease of modeling rather than appropriateness. This choice often is not the fault of modelers 
because of the difficulty of implementing almost any complex model. The resulting mixture 
might be called “model-based theories,” as opposed to “theory-based models.” The situation can 
also be viewed as a “chicken and egg” modeling tools issue: 
 

• Modelers (the chickens) select theories that are in one way or another easier to 
model than other theories.  

 
• These theories yield models and tools (the eggs) that make modeling the 

chosen theories even easier.  
 

Theories that are outside of this loop tend to be disregarded and thus become increasingly 
difficult to model as compared to the chosen theories. Clearly, we need to extend current 
modeling tools to better represent a wider range of substantial theories. What is needed is 
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evolution of both the chickens and the eggs, so that theory selection depends less on ease of 
modeling and vice versa. 
 
 

EXPLORE AND EXPLOIT THEORIES 
 

Any one model can only be run a finite number of times. How much can we get out of 
these runs? If the underlying theories contain an unbounded number of special cases, the results 
may only be valid for special cases. If the underlying theories can be advanced to provide 
bounded equivalence classes, more general conclusions can be reached.  
 

An example from another domain, namely, the four-color theorem from mathematics, 
illustrates how bounding can be used to advance science: 

 
• In 1853, Guthrie conjectured that a standard map can be covered with only 

four colors. 
 

• The theory remained unproven until 1976, when Appel and Haken bounded 
the problem to 1,476 special cases.  

 
• Appel and Haken then used computers to show that all 1,476 cases can be 

covered with four colors each.3 
 

Can this approach be used for ABMS? If so, the results might be called theory-bounded 
models. It may be possible to achieve theory-bounded agent models, but it is unlikely the bounds 
will ever be as tight as with the four-color theorem. However, the tighter the theoretical bounds, 
the clearer the modeling results can become. Faster model construction will likely be needed to 
allow social scientists to bound processes through efficient “experimentation with alternate 
ontologies” (Sallach, 2003). It is important to note that even with tight bounds the number of 
cases to be studied is likely to be huge.  
 

Often, even the best modeling situations have a huge number of potential input 
combinations, not to mention the need for stochastic replications. ABMS tools need to leverage 
new technologies to address the growing need for computational power: 

 
• Computational grids and utility computing software, such as Argonne’s 

Globus (www.globus.org) and the Global Grid Forum technologies 
(www.gridforum.org) might be used.  

 
• Large-scale computing clusters, such as Beowulf systems and other networks-

of-workstations (NOWs), might be used.  
 

Support for these new high-performance computing platforms needs to be built into 
toolkits to lower the barriers for modelers. Drone for Swarm is a pioneering example of this kind 
of work. 
 
 
                                                 
3  There have been some questions about the use of computers in the proof, but overall it has been accepted. 
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EXTRACT COMMONALITY 
 

Running simulations on large-scale open computational grids suggests the need for 
standards. However, Tanenbaum (1988) has noted that the “nice thing about standards is that 
there are so many to choose from.” Among the current choices are the Foundation for Intelligent 
Physical Agents’ (FIPA) specifications, the Knowledgeable Agent-oriented System architecture 
(KAoS), and the High Level Architecture (HLA), to name just a few. It may be that we do not 
need one rigid standard but a set of reasonable conventions that allow modelers to:  
 

• Take advantage of shared resources, such as computational grids, without 
excessive duplication of effort and  

 
• More directly discuss what their models really do rather than what their 

models are supposed to do.4  
 

Of course, there must be some commonality to extract, which may not always be the 
case. Docking, or rigorously showing the equivalence of both models and tools, is needed. 
Certainly, docking does not prove that models or tools are “correct”; it may in fact prove that two 
models are equally wrong! Nonetheless, docking can be useful in two ways: 

 
• As a form of verification, docking can increase our confidence that models 

and tools are properly implemented.  
 

• Docking can provide a rigorous foundation for standards or widely shared 
conventions, in whatever form the standards eventually take.  

 
 

OTHER GOALS 
 

A few other long-term goals bear mentioning. For example, it would be good if more 
models could be made available publicly. Numerous agent models have been developed, but few 
of these models are available to the public. Obstacles to the public release of models include the 
following: 

 
1. Extra work is needed to make a model ready for public release (e.g., much 

more documentation is needed). 
 

2. There are reasonable concerns about support costs (e.g., it is difficult to 
determine who pays for answering e-mail questions).5 

 

                                                 
4  This is consistent with the goal of increasing model transparency. 

5  Concluding that support will not be provided for publicly released software is more difficult than many realize. 
On a practical basis, users often (1) ask for help even when they are not supposed to and (2) brand software as 
“buggy” when help is not provided, even if the software itself is not actually at fault. This is not to say that 
publicly releasing software is prohibitive, only that successful public releases usually involve much more than 
simply posting files on a Web site. 
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3. Developers need to protect their proprietary advantage and intellectual 
property.6  

 
The published research needs to do a better job of referencing previous work. Originality 

is clearly important, but there should be less focus on novelty and more on building upon 
existing work. A related goal is to encourage more independent replication of results, where 
feasible. 

 
Fully endogenous emergence should be the long-term goal of ABMS, as long as we do 

not fall into the trap of equating “not emergent” with “not good.” Many results from ABMS are 
not emergent but are useful. We should expect fully endogenous emergence to take some time to 
achieve. 
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6  It is difficult to balance the scientific community’s need for independent replication of results with an individual 

researcher’s need to maintain proprietary advantage. This balance can become ever more difficult as research 
becomes increasingly applied due to many factors, including the potential use of proprietary data and the 
potentially greater immediacy of the results. Striking a fair balance among reporting results, describing methods, 
and repaying research investments has few easy solutions and will likely remain a long-term topic of debate. 
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DISCUSSION: 
 

OVERVIEW OF METHODS, TOOLKITS, AND TECHNIQUES 
 

(Thursday, October 7, 2004, 10:30 to 11:00 a.m.) 
 

Michael J. North, Argonne National Laboratory 
 
 
Overview of Methods, Toolkits, and Techniques 

 
Unidentified Speaker:  Regarding having enough models, you still might not know what 

a model is doing because the implications of the equations are not obvious. 
 
Michael North:  I want to make things clear; I’m not saying that analytical modeling is 

perfect. In fact, you have to understand quite a bit of math to comprehend those models, and 
that’s a barrier for many people. I’m not saying that the modeling approach is perfect. There is a 
valid criticism that you need to see the source in order to understand the model, but you also 
need to understand the details. The source is a barrier for many people. But that’s a problem with 
many systems. Clearly, anything that involves any type of what we call technology or advance 
representation has some sort of barrier. So if you’re in optimization, you’re not sure what the 
optimization did. If it’s just pure math, just analytical proof, you still need to understand that — 
whatever level of math is necessary. So it’s not a perfect solution, but the idea is to move toward 
models that are more transparent in this regard. Writing everything in Java, for instance, creates a 
barrier and some problems; writing in C++ or anything like that does the same thing. I’m not 
claiming to have a perfect answer for all these things. I’m merely saying these are long-term 
needs that are present in a community. 

 
Zhen Lei:  That’s a very interesting perspective from the traditional understanding of the 

agent-based model at the aggregated level. The question is: How competent are we for those 
when we see this is the person who’s making this decision? How much confidence can we have 
that it was expected? 

 
North:  Oh, you’re talking about, in terms of elucidating runs or … 
 
Lei:  Yes, you know, if we keep track, put that sensor … the agents and … 
 
Unidentified Speaker:  My understanding is that it’s a stochastic process or simulation. 

How do we interpret this kind of behavior? 
 
North:  That’s a good question. And one thing I’ll note here, this is intended to be 

somewhat controversial. The second thing I’ll say very quickly is that I’m talking about long-
term problems. Also, I’m not claiming I have a perfect answer for all of them.  

 
Let’s say, for instance, that the behavior was drawn from a random distribution. We’re 

basically saying either this is the most knowledge we have or the most we’re willing to invest in 
the modeling effort to understand the behavior. Let’s say the decision here in terms of whether 
you’re going to accept the offer is a random draw from a distribution, so it’s weighted toward 
saying no, but there’s a chance of saying yes. In that case, you’d say that the agent did a random 
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draw against this distribution. You’d probably try to translate that into higher levels. Those data 
are actually drawn from, say, known purchase histories. On the basis of previous purchase 
histories, there was an x percent chance of probability of purchase. Probably it drew a number 
indicating a purchase and there you are. And so the closer you can get to a domain, the better you 
are in terms of this output, but there will be natural limits. In some cases, you’ll simply say it was 
a draw, and that’s all you can infer. In many cases, though, we can go a lot further because when 
we get into the complex processing logic, we can say it went through this logic. It went into the 
area where it was either highly receptive to a purchaser or not very receptive. These types of 
things could be added to the system. There’s a lot then that we can do to track things. 

 
Now, I should be very cautious here and say that — well, I’m already not being cautious. 

I guess that’s a problem, but I’ll try to be cautious for a second. I’m not saying there’s anything 
wrong with aggregate outputs. It’s a perfectly valid thing. I am saying that we can go beyond. 
We should in a certain sense believe our own religion here, saying we talk about the importance 
of individual interactions. That is, we talk about the importance of individual interactions — why 
it matters so much that we’re tracing, or at least simulating, specific people, organizations, 
entities — and so why not actually do that? And watch what they’re doing to you? 

 
Unidentified Speaker:  Yes. I agree with you. I think it is very important not to have all 

the problems … a user. The aggregate … from the … population … the decision was made 
within the … organization … 

 
North:  Yes. And that’s part of that. And the key is to do the best you can. In some cases, 

you know you may just have to draw a line and say that all we know is that it was drawn from a 
distribution. Maybe we can talk a little about why the distribution was chosen. This represents 
the aggregate decisions of 1,000 customers or something like that, but then we do the best we 
can. In many cases, though, we can actually say quite a bit about what happened. 

 
Putting things in a narrative format, I could also have a potential value even if it is about 

distributions. Just being able to say that this is what happened in the simulation and not needing 
to trace through some binary file to figure this out is actually a step forward in a lot of cases. 
I think a lot can be done by embedding it in as toolkits in a way that’s so natural that it 
automatically tends to get done versus forcing people to add lots of logging at the last minute; 
this is important, too. 

 
Rod Sipe:  In billing and allocation for natural gas pipelines in which the scarce capacity 

of the pipeline has to be allocated among all those nominees, we purposely turned out of the 
model in the first place to justify one of the nominees — place in the ultimate allocation of the 
volume. You couldn’t do that just in the end result. You have to have the intermediate process 
for them to be able to see how they are being treated in relation to the rest of the candidates. 
A second example is when we work over asset optimization — when the probability of the use of 
a tool is taken into account as to whether or not to order one. In that instance, a 10% probability 
of use 10 times aggregated to the need for one tool is interpreted differently than a 50% 
probability of the need of the tool twice. 

 
Steven Guerin:  I want to make sure that you don’t finish your presentation and ask a 

question. 
 
North:  Okay. That’s right. Thank you. That’s helpful, actually.  
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Guerin:  At SIGGRAPH a couple of years ago, there was also a big move to do 
automated cinematography. 

 
North:  Yes. 
 
Guerin:  So out here you have a script that you’re producing, but now how do you move 

the camera and adjust to see the details of a scene? 
 
North:  That’s a really good point, and the idea is that this leads into all sorts of uses. 

Once something like this becomes available, then exactly as Steven is saying, you can start to 
generate other things; not only just what I said, which is kind of the Word document in which 
you present what happened and say read it. You could also do things like animating this in 
different ways that are completely separated from the x, y coordinates of a simulation, and all 
these types of things would be very possible. In fact, the entire story in a simulation step is in 
fact a design to take information from a simulation and take it out of the usual “just animating” 
— something moving around in a plane — and put it into a more visually pleasing context where 
you can actually see it in terms of a movie at a higher level. So that’s absolutely right, and that’s 
a very good point. These are some of the things we were trying to get to. We’re trying to do these 
individual-level simulations. Let’s get individual-level data that are actually intelligible at more 
than a binary level.  

 
In terms of exposing models, the idea is that we really want to move toward clarity. 

Every modeling approach requires some technical knowledge. You’re going to need technical 
knowledge of math, you’re going to need technical knowledge of optimization theory, and on 
and on. I think right now that we require too much technology and too much computer 
technology. Being an expert on Java should not be a requirement to be sure that the model really 
works, for example, and that’s something we should be able to move toward over time. 

 
[Presentation Continues] 

 
North:  Are there additional questions?  
 
Seth Tisue:  Can you give an example of what you mean by the results of an ABM being 

useful even though they’re not emergent?  
 
North:  Yes. First, it depends somewhat on what we’re talking about in terms of 

emergence. If you’re talking about emergence, for instance, having system-level results that 
depend on individual decisions, in that sense, you would want it to be emergent. I’d take 
emergence to be a little different where you’re seeing — fundamentally, Jim Crutchfield and 
other people have, or at least are starting to develop — a rigorous mathematical definition of 
emergence. I’ll talk about it on an intuitive level. If you talk about it as being a counterintuitive 
result, emergence is — what’s the right way to put it — quicksand. Why, because what’s 
counterintuitive to you may not be counterintuitive to me. And so, the word itself becomes a 
problem. 

 
But, for example, one of the models that we could talk about is a networkcentric warfare 

model for the Navy. Is it emergent? Well, the agents work together; they are able to keep the 
communications protocols running at the same time in a complex battlefield. They’re able to 
keep bandwidth going by staying close enough to one another to be able to hop messages over 
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radios. And maybe that’s emergence or maybe it’s not, but the people we’re working for don’t 
really care about that. What they care about is being able to quantify what the individuals are 
doing, seeing if they’re getting the bandwidth that they need, understanding what the barriers are 
in getting the bandwidth that they need, and deciding what protocols are needed to keep the 
bandwidth going. And so emergence isn’t even really a question. It’s just a matter of tying the 
overall system structure to the individual behavior. So that’s an example of a model where 
emergence isn’t really the issue. Does that make sense? To me there’s also a very serious 
question. Emergence is, aside from Crutchfield and others’ mathematical definition, a bit of a 
quicksand or tar pit, if you will, because your emergence and my emergence may be different. 

 
Charles Macal:  I think we have time for one more question or comment because we 

need to be moving on. 
 
North:  Is it okay if we get the non-Argonne question? Yes? 
 
Russ Abbott:  Russ Abbott, not from Argonne. It seems that the goal of complete 

transparency of models is basically unachievable because the problem is that if you have any 
kind of complexity in a model, it’s hard to understand, no matter how it’s expressed. 

 
North:  Sure, absolutely. 
 
Abbott:  The difficulty is in understanding the complexity in whatever it is you’re 

modeling. 
 
North:  Absolutely. Of course, the same thing could be said of modeling in general, and 

we can’t model everything in the world and understand it completely. Perfect or complete 
transparency goes deeper than modeling. Language can’t be perfectly or completely transparent. 
There’s always indexicality; there’s always some imperfection in terms of my understanding 
versus your understanding. But I think we could go a lot further than we have. I would not claim 
to ever be able to produce a perfectly transparent model. If there is one, it’s probably this: it’s 
like the real world, right? Everything else, we’re working downward from, but I think that we 
can do a lot to improve the transparency of models because if you really want to know what a 
model does, you end up digging into Java or C++ or something like that. I think that that could 
be improved, but we don’t have to go quite that far. But perfect transparency … 

 
Mark Fossett:  … expressed somehow. 
 
North:  Absolutely. That’s right. But that somehow doesn’t have to be pointers or class 

structures. What’s your background? Is it computer science? From a computer science 
perspective, it’s not so bad. But if you’re coming in as a sociologist, it’s horrible. And how many 
sociologists are here? What do you think? Do you think coding is good? 

 
[Unintelligible…] 
 
North:  Yes, but, no, and we’re not trying to get you to say anything is wrong with that. 

You have to rigorously specify things. If you end up in math, you need to know something about 
math. If you end up in other areas, you need to know things about those areas. But I think we can 
go much further than what we were doing right now, which is Java or something like that. That, 
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to me, is a very unclear way to specify things for nontechnical people. But I think we can 
improve. 

 
Macal:  I’d like to thank Mike for an excellent introduction to the methods, toolkits, and 

techniques-dedicated day. As you can see, the discussions are very stimulating, and they could 
go on for hours.  

 
North:  With me, even if you’re not here, I’ll go on actually, yes. 

 
Macal:  Yes, with Mike involved, yes. Mike is always happy to talk to you about 

methods and toolkits; any place and any time. 
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SIMSEG AND GENERATIVE MODELS: 
A TYPOLOGY OF MODEL-GENERATED SEGREGATION PATTERNS 

 
M. FOSSETT,* Texas A&M University, Department of Sociology, College Station, TX 

R. SENFT, Amber Waves Software, Lancaster, PA 
 
 

ABSTRACT 
 

SimSeg Learning Edition is a Windows-based computer program intended for use in 
undergraduate and graduate instruction focusing on agent-based models of residential 
segregation. Presently in beta distribution and review, SimSeg is the product of a multi-
year collaboration, funded by the National Institutes of Health, in which Amber Waves 
Software has transformed a research-oriented prototype program into a robust, user-
friendly program suitable for use by students and nonspecialists. SimSeg faithfully 
implements an agent-based model rooted in social scientific research on residential 
segregation dynamics and situates it in a program with ease-of-use features and 
performance expected of commercial-quality Windows software. 
 
Keywords: Residential segregation patterns, ethnic preferences, SimSeg, agent-based 
modeling 

 
 

INTRODUCTION 
 

SimSeg makes it possible for students to run simulation experiments dealing with 
residential segregation patterns without having to first learn specialized programming languages 
or skills. Students interact with the model via familiar Windows-style menus that present 
meaningful, substantive choices in non-technical terms. A graphical representation of the city 
landscape depicts household movements in real time and provides an easy-to-understand visual 
representation of segregation patterns as they emerge from agent behavior. Significantly, 
students can assess segregation patterns without having to master the technical literature on 
segregation measures. SimSeg also produces a wealth of reports summarizing model parameter 
settings and segregation patterns using standard measures found in the social scientific literature 
on residential segregation. These data are made available via formatted reports and predesigned 
figures that can be exported to other Windows programs (e.g., Word, PowerPoint) for 
incorporation into papers and presentations via the Windows’ “clipboard” or standard 
“cut-and-paste” operations. 
 

SimSeg is designed to be intuitive and easy to use so students need only minimal faculty 
guidance to be able to begin running experiments and observing how different simulation 
scenarios produce different patterns of residential segregation. Students select simulation 
scenarios, run experiments, and examine results via the simple point-and-click operations of the 
Windows graphical user interface (GUI). These features enable students to quickly perform 
“hands-on” analyses and consider the implications of simulation results for substantive issues. 
 

                                                 
* Corresponding author address: Mark Fossett, Department of Sociology, Texas A&M University, College 

Station, TX 77843-3368; e-mail: m-fossett@tamu.edu. 



40 

 

A variety of learning tools in SimSeg help faculty and students become familiar with 
agent-based models of residential segregation. For example, “Quick Start” scenarios gives users 
the ability to select from a library of predesigned simulation scenarios crafted to feature selected 
segregation dynamics, such as ethnic preferences, socioeconomic inequality, and housing 
discrimination, operating in various combinations. Other “Quick Start” scenarios give users the 
ability to load predesigned scenarios crafted to demonstrate “generative dynamics” that will 
produce particular residential segregation patterns, including integration, concentric zone 
patterns of status segregation, ethnic sectoring, ethnic checkerboarding, ethnic clustering, and 
even “hypersegregation.” Finally, an easy to use menu allows faculty and students to design their 
own simulation experiments by manipulating model parameters through menus that list 
meaningful choices described in intuitive language. A “scenario wizard” is available to guide 
novice users through the steps of designing an experiment. An “experiment wizard” (currently 
under development) will help students generate data needed to compare results obtained using 
alternative scenarios. 
 

This paper introduces SimSeg Learning Edition, a Windows-based computer program 
developed with the goal of making it easy and compelling to use agent-based models of 
residential segregation in undergraduate and graduate instruction. SimSeg has many noteworthy 
features. First and foremost, it implements the core elements of Schelling’s (1971) celebrated 
agent-based model of residential segregation. The Schelling model is the best known agent-based 
model of segregation and has generated important insights regarding how micro-level residential 
choice behavior can produce complex aggregate-level patterns of ethnic residential segregation. 
 

Schelling’s work on preferences and residential segregation has been influential in many 
disciplines, including sociology, economics, demography, political science, geography, and 
social psychology, and his agent-based simulation model is routinely cited as an exemplar of 
how seemingly simple, micro-level behavior can produce nonobvious emergent structure in 
spatial networks (Macy and Willer, 2002). Some thirty years after Schelling’s landmark paper, 
his work continues to inspire theory and research (e.g., Clark, 1991; Krugman, 1996; Epstein and 
Axtell, 1996; Young, 1998; Wasserman and Yohe, 2001; Fossett and Waren, 2004a,b; 
Fossett, 2004a; Fossett, 2005a,b) on segregation dynamics. Perhaps the most important insight to 
emerge from agent-based simulations of segregation is that spatial integration is a surprisingly 
fragile condition. Surprisingly high levels of segregation can emerge even when no individual in 
the population wishes to reside in the type of ethnically homogeneous neighborhoods found in 
highly segregated cities. SimSeg makes it possible for faculty to introduce this powerful insight 
to undergraduate and graduate students by running compelling simulations in real time in the 
classroom. In addition, because the program is easy to use and results are easy to understand, 
students can run simulations on their own to explore the model and its implications in more 
detail. 
 

SimSeg provides an attractive implementation of the Schelling model, but that is just part 
of its value for instruction that focuses on the dynamics of residential segregation. SimSeg 
refines the Schelling model by drawing on the broader theoretical and empirical literature on 
residential segregation to implement features that make it useful in exploring a wide variety of 
factors that shape residential segregation in urban areas. Specifically, SimSeg implements 
features that give users the capabilities to: 
 

• Specify ethnic demography in terms of number of groups and the relative 
sizes of each group, 
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• Specify ethnic preferences in more detail than in previous implementations of 
the Schelling model,  

 
• Specify the level of socioeconomic inequality within and between ethnic 

populations,  
 

• Specify a variety of housing discrimination dynamics,  
 

• Specify household-level preferences regarding neighborhood status and 
housing quality,  

 
• Implement urban spatial structure in the form of city-suburb differences in 

housing quality, and 
 

• Systematically evaluate segregation patterns by using measures that are 
widely used in empirical research on residential segregation.  

 
This rich set of features makes SimSeg the most sophisticated agent-based model of segregation 
in existence and gives its users the capability to explore many different perspectives regarding 
residential segregation in urban areas. 
 

Significantly, while SimSeg implements a sophisticated, science-based model, it is 
designed to be used by students with little background in agent-based modeling or the research 
literature on residential segregation. A user-friendly interface shields students and novice users 
from the technical details of agent-based modeling. Students interact with the model by using 
familiar Windows-style menus that allow them to make meaningful choices regarding model 
specification. They choose from a simplified palette of intuitive, easy-to-understand options. 
Context-sensitive Help screens provide further assistance in guiding students through choices 
and alerting them to relevant theoretical and empirical literatures. 
 

In similar fashion, SimSeg presents simulation results in ways that are engaging and easy 
to understand. It uses a graphical representation of the city landscape to depict the residential 
location of households from different ethnic groups and updates the movement of these 
households in real time. The result is a dynamic visual representation of emerging segregation 
patterns that is intuitive and nontechnical, yet very effective in communicating segregation 
patterns. 
 

The combination of ease of use and ease of interpretation of results means that students 
can be trained to run and interpret simulation experiments using SimSeg very quickly, usually 
after just one lecture period. Beta testing by approximately two dozen experts in the field of 
segregation research indicates that faculty and students find the program engaging and easy to 
use. With only minimal faculty guidance, students can learn the basics of using the program and 
begin running sophisticated simulation experiments to gain an appreciation of how different 
simulation scenarios can produce fundamentally different patterns of residential segregation. 
 

SimSeg can be used by a broad audience because it also incorporates features that appeal 
to advanced users. For example, it provides tools that allow faculty and students to craft user-
designed experiments. Significantly, the user does not need to learn specialized programming 
languages or develop special programming skills. SimSeg also gives users access to a 
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comprehensive database of settings for model parameters and state-of-the-art quantitative 
measures of segregation outcomes. At the same time, it permits students to manipulate model 
parameters and assess the resulting impact on segregation outcomes without requiring them to 
deal directly with the technical issues associated with setting model parameters and measuring 
segregation patterns. 
 

This paper provides a brief introduction to the SimSeg model. In the next section, we 
describe the features and capabilities of the SimSeg program and note the goals guiding its 
development. We then demonstrate the capabilities of the model by reviewing a typology of 
segregation patterns that the model produces under varying combinations of model parameters. 
We conclude by reviewing the standing of agent-based models in the literature on residential 
segregation and noting our assessment that SimSeg has good potential to serve as a tool for 
introducing students to agent-based models of residential segregation. 

 
 

SimSeg LEARNING EDITION 
 
 
Model Description 
 

SimSeg Learning Edition is an agent-based simulation geared to undergraduate and 
graduate education. The program is distributed by Amber Waves Software (AWS) of Lancaster, 
Pennsylvania. Dr. Richard Senft, principal of Amber Waves Software, directed the development 
effort, supported by funding from the National Institutes of Health. The effort involved 
transforming a research-oriented prototype into a robust, commercial-quality program suitable 
for use in undergraduate and graduate instruction. SimSeg implements the core elements of 
SimSeg Research Edition (SimSeg RE), an agent-based model developed by Mark Fossett of 
Texas A&M University for use in academic research investigating segregation dynamics 
(e.g., Fossett, 2004b, 2005; Fossett and Waren, 2004a,b).1 The key contribution of the AWS 
development effort is that in addition to faithfully implementing a sophisticated, science-based 
simulation model, AWS has produced a program that makes this model accessible to 
nontechnical audiences. They have embedded the model in an engaging, user-friendly program 
that is easy, and even fun, for nonspecialists to use. At the same time, it allows them to conduct 
sophisticated agent-based simulations to explore residential segregation dynamics.2 
 

SimSeg is geared to two primary audiences. The first is faculty, who can use the program 
as a teaching tool in the undergraduate classroom to illustrate different patterns of residential 
segregation and the dynamics that can contribute to their creation and/or maintenance. The 
second audience is undergraduate students, who can use the program to perform simulation 
experiments for out-of-class exercises and research projects. 
 

SimSeg has several notable features that make it especially attractive to its target 
audiences. Perhaps the most important is its refined user interface. That interface shields faculty 

                                                 
1 Unless noted otherwise, all references to SimSeg refer to SimSeg Learning Edition. SimSeg RE is a research and 

development tool used by Dr. Fossett and his graduate assistants. 

2 SimSeg implements all crucial elements of the full SimSeg RE model; however, it represents model parameter 
choices to users in simpler, less technical ways. 
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and students from the technical details of the model and gives them two convenient options for 
running sophisticated and substantively interesting simulation experiments. First, it provides 
users with a library of “Quick Start” scenarios  predesigned experiments crafted to illustrate a 
variety of teaching points. Quick Start scenarios make it possible for the user to select and run 
experiments quickly and easily with just a few mouse operations. These scenarios are geared for 
lecture presentations in the classroom. They also are ideal for giving students “hands on” 
experience running simulation experiments, with minimal investment in training and instruction. 
 

SimSeg also provides a powerful, easy-to-use, menu-driven experiment design option 
that permits faculty and students to change values of model parameters to craft their own user-
designed experiments. Faculty can use this capability to prepare specialized examples for 
lectures. Students can use this capability to perform out-of-class exercises and research projects. 
SimSeg guides the user through the basic choices in the model and makes it very easy to design 
and run agent-based simulation experiments focusing on segregation dynamics in ways never 
before possible. Model choices are scientifically grounded and substantively meaningful, but 
they are presented in intuitive, nontechnical terms. Careful attention has been given to ease of 
use. Accordingly, only a few mouse operations are needed to modify model parameters and run a 
new simulation experiment. 
 

Another hallmark of SimSeg is that it presents model results in a variety of forms that 
meet the needs of both novice and advanced users. For novice users, it presents segregation 
patterns via a graphical representation of the “city landscape” depicted in Figures 1 and 2. 
 

This graphical display conveys segregation patterns quickly and intuitively. Students can 
immediately “see” as many as four distinct dimensions of residential segregation within a matter 
of seconds by visually inspecting the city landscape. The dimensions of segregation that are 
evident include: 
 

• The uneven spatial distribution of ethnic groups; 
 

• Group “isolation” based on concentration in ethnically homogeneous areas; 
 

• Group clustering, or “ghettoization,” in large, ethnically homogeneous 
regions; and 

 
• Group differences in centrality.  

 
Materials distributed with SimSeg provide guidance on how to recognize these four 

dimensions of segregation in the city landscape and interpret their levels as high or low, both 
across simulation experiments and in relation to empirical patterns in real cities. For example, 
these materials include city landscapes for real cities prepared with census data and geographic 
information system (GIS) software. The color schemes and presentations are crafted to maximize 
the correspondence between SimSeg city landscapes and the patterns seen in real cities. 
 

Faculty can use the city landscape and other graphical displays to introduce students to 
complex, multi-dimensional patterns of ethnic segregation without requiring them to master the 
highly technical literature on quantitative measures of segregation patterns. SimSeg also 
computes a comprehensive set of quantitative measures of segregation outcomes and makes them  
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City Landscape 

 

 
 

Detail of Nine Neighborhoods 

Graphical Elements: The city landscape is a collection of neighborhoods arranged in a square neighborhood grid. Neighborhoods are collections 
of housing units arranged in a housing grid within the neighborhood. 

FIGURE 1  The SimSeg city landscape with nine area detail 
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Detail of Nine Neighborhoods 

 

 
 
 
 

Legend 

Graphical Elements: Housing units depicted as squares. Neighborhoods depicted as collections of housing units arranged in a square grid. Ethnic 
and socioeconomic status of occupied housing units signified by color and shading (see legend). Vacant housing units signified by gray square 
with “X.” 

FIGURE 2  Housing units, households, and neighborhoods 
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available in easily accessible, formatted reports. Instructional materials distributed with SimSeg 
explain the different measures and provide guidelines for interpreting their scores. In classroom 
use, however, the striking visual patterns in the graphical display of the city landscape provide a 
convenient means for quickly reviewing segregation patterns generated by a particular 
simulation experiment. 
 
 
Elements of the SimSeg Model 
 

The characteristics and capabilities of the SimSeg program have been outlined in 
considerable detail in Fossett (1998). In the context of the present paper, space permits only a 
brief overview of the selected aspects of the model. 
 
 
Agents and Their Characteristics 
 

The first concept is that of the agent. In this case, agents are virtual households that have 
the ability to search in a virtual housing market and make residential choices (possibly subject to 
certain constraints). Households possess ethnic status and belong to one of three ethnic groups 
that may be represented in the simulation — Whites, Blacks, and Hispanics. 
 

Households also possess socioeconomic status scored on a scale ranging from 1 to 99. 
This scale establishes their socioeconomic standing within the population. It also establishes 
their purchasing power in simulations where housing differs in quality and value, and access to 
housing is means-tested. 
 

Households hold ethnic preferences — preferences for levels of residential contact 
(co-residence) with members of different ethnic groups. Included are preferences for in-group 
contact, specified in terms of desired minimum levels of co-ethnic presence in neighborhoods. 
Also included are preferences for out-group contact, specified in terms of desired minimum 
levels of out-group presence in neighborhoods. The SimSeg model permits ethnic preferences to 
be specified separately by ethnic group. When ethnic preferences are active, a household’s 
satisfaction or dissatisfaction with their residence will depend in part on how the ethnic mix of 
their neighborhood compares with their ethnic preference. 
 

Households also hold preferences for housing quality and preferences for neighborhood 
status. In simulations where these preferences are active, households seek the highest quality 
housing they can afford. All else being equal, they also seek higher-status neighborhoods over 
lower-status neighborhoods. 
 

These three preferences — ethnic preferences, housing quality, and neighborhood  
status — influence how households evaluate their level of satisfaction with their current 
residence and their potential level of satisfaction with any residence they may consider moving 
to. The evaluation of residential options is discussed in more detail below. 
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Housing Units and Their Characteristics 
 

Households reside in housing units found at fixed locations in a two-dimensional virtual 
city landscape (discussed below). Housing units differ in housing “quality” or value measured on 
a scale of 1–99 corresponding to the scale for household socioeconomic status. Households seek 
higher-quality housing but can only move to housing units they can “afford” as determined by 
comparing their socioeconomic status to the value of the housing unit. 
 

Households can only move to vacant housing units. When households move, they leave 
their origin housing unit unoccupied, and it is added to the pool of “available” housing units. 
Their destination housing unit becomes occupied and is removed from the pool of available 
housing units. 
 
 
City Landscape 
 

Housing units are arranged in a virtual city landscape as shown in Figures 1 and 2. The 
default city landscape is roughly circular. It consists of a collection of small “bounded areas” 
arranged within a “neighborhood” grid. Each bounded area contains a fixed number of housing 
units arranged in a square housing grid within the neighborhood. In the simulations presented in 
this paper, the neighborhood grid is 15 × 15, which means that the city spans 15 neighborhoods 
at its maximum height on the north-south dimension and on its maximum width on the east-west 
dimension. Neighborhoods within this grid are “developed” and contain housing units if they are 
within a fixed distance from the city center. Otherwise, they are undeveloped and have no 
housing units. This arrangement gives the city landscape its approximate circular form. In the 
simulations reported in this paper, a total of 177 bounded areas are developed. Each contains  
49 housing units arranged in a 7 × 7 housing grid. Thus, the city has 8,673 housing units. 
 
 
Urban Structure: City Size and Shape 
 

The size of the city can vary from small to medium to large. Larger cities have more 
neighborhoods and more housing units. In this work, the city landscape is set to a large size for 
all simulation experiments considered. At present, city shape is limited to the circular city form 
described above. Future versions will include the option of choosing from a variety of city forms, 
including patterns fashioned after real cities and abstract patterns, such as a boundless torus. 
 
 
Ethnic Demography 
 

The ethnic mix of the city can vary in two major respects. First, the city can have either 
two (White and Black) or three (White, Black, and Hispanic) ethnic groups. Second, the relative 
sizes of the groups can vary. Current choices parallel patterns commonly found in American 
metropolitan areas. Whites are a numerical majority of from 60% to 90%, and minority ethnic 
populations constitute up to 40% of the population in varying mixtures. 
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Urban Structure: Area Stratification 
 

The distribution of high-quality housing can vary in its spatial distribution. When area 
stratification is low, high-quality housing is randomly distributed such that all neighborhoods 
have similar mixtures of low- and high-quality housing. When area stratification is high, 
high-quality housing is concentrated in suburban neighborhoods (i.e., bounded areas on the city 
perimeter), and low-quality housing is concentrated in central neighborhoods. This model 
parameter influences where high-status households and population groups are most likely to 
reside in the city. 
 
 
Status Inequality 
 

Socioeconomic status varies in the degree to which it is equally or unequally distributed 
across households. At one extreme, low-status inequality, the relative gap between low- and 
high-status households, is moderate. At the other extreme, high-status inequality, the relative gap 
between low- and high-status households, is large. This model parameter can influence the 
degree to which low- and high-status households and population groups are residentially 
segregated. 
 
 
Minority Status Disadvantage 
 

Minority ethnic groups can be subject to status disadvantage relative to Whites. When 
minority status disadvantage is set to low, minority groups and Whites have identical status 
distributions and, thus, similar ability to purchase high-quality housing. When minority status 
disadvantage is set to high, minority groups have much lower status distributions and lesser 
ability to purchase higher-quality housing. This model parameter can influence whether minority 
ethnic groups can afford to live in neighborhoods where Whites reside. 
 
 
Discrimination Dynamics 
 

Households’ efforts to search for and move to new residential locations can be subject to 
discrimination in various forms. All households can be subject to ethnic steering, whereby 
households are not “shown” a random selection of housing but instead are more likely to be 
shown housing in neighborhoods where their ethnic group is concentrated. Minority households 
can be subject to minority exclusion, whereby a substantial fraction of their attempts to move to 
predominantly White neighborhoods are blocked. Similarly, minority households can be subject 
to discrimination in credit qualifying, whereby their purchasing power is lower than that of 
White households with similar socioeconomic status. These model parameters influence the 
degree to which White and minority households are residentially segregated from each other. 
 
 
Neighborhoods and Neighborhood Evaluations 
 

Neighborhoods are relevant when a household evaluates a housing unit. Households can 
evaluate the ethnic mix of the neighborhood in which the housing unit is located. They also can 
evaluate the socioeconomic status of the neighborhood in which a housing unit is located. In 
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SimSeg, neighborhoods are delimited in two ways. The first is the “bounded area” described 
previously in the discussion of the city landscape. All households within the bounded area are 
treated as neighbors for purposes of evaluating neighborhood ethnic mix and neighborhood 
socioeconomic status. In the case of ethnic mix, group percentages for the bounded area are 
compared against the household’s targets for in-group and out-group contact to determine the 
household’s satisfaction with ethnic mix. In the case of socioeconomic status, the average 
socioeconomic status of households in the neighborhood is compared against the household’s 
own socioeconomic status to determine the household’s satisfaction with area socioeconomic 
status. 
 

In addition, households can also consider immediately adjacent bounded areas when 
evaluating the ethnic mix of a neighborhood. In this case, group percentages are computed for 
the population residing in adjacent areas. These percentages are then compared against the 
household’s targets for in-group and out-group contact to determine satisfaction with ethnic mix. 
Satisfaction with the ethnic mix in adjacent areas is then averaged with satisfaction with the 
bounded area, with the latter counting twice as much as the former. 
 

Future versions of SimSeg will include more options for specifying neighborhoods. One 
is the option of specifying larger bounded regions or districts analogous to school districts. 
Another is the option of specifying “site-centered” neighborhoods, that is, neighborhoods 
delimited in terms of households residing within a fixed distance (in housing units) from a 
reference housing unit. 

 
 

SIMULATION EXPERIMENTS 
 
 
Initialization, Housing Search and Movement, and Duration 
 

At initialization, the city housing stock is created on the basis of the settings for city size 
and shape, socioeconomic inequality (which establishes the distribution of housing values), and 
the level of area stratification (which determines the spatial distribution of low- and high-quality 
housing). Next, the city’s population of households is created on the basis of the settings for 
overall socioeconomic inequality, ethnic demography, and minority status disadvantage. The 
households in the population are assigned preferences for housing quality, neighborhood status, 
and neighborhood ethnic mix on the basis of active settings for the simulation. 
 

When the population for the city is created, the households are randomly assigned to 
housing units with the one restriction that they must reside in a housing unit with a value that 
matches their socioeconomic status. At initialization, the only systematic segregation that exists 
is segregation that results from the interaction of socioeconomic inequality (within and between 
ethnic groups) and area stratification.3 

 
During a simulation experiment, households are randomly chosen and given the 

opportunity to search for housing. A searching household is presented a random selection of 

                                                 
3  Future versions of SimSeg may also allow for the option of starting with a segregated landscape. This feature is 

demonstrated in some of the examples presented in this paper but is not scheduled for inclusion in the initial 
release of SimSeg. 
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available housing units. If moves are means-tested (the default condition), the housing is 
screened on the basis of the household’s purchasing power. If discrimination dynamics are 
active, the housing the household “sees” may be subject to further screening. 
 

The searching household evaluates each available housing unit it is shown and assesses it 
according to the preferences that are active in the simulation. Separate satisfaction scores are 
computed on housing quality, neighborhood socioeconomic status, and neighborhood ethnic mix. 
These scores are then summed to obtain an overall satisfaction score. If the score for the most 
satisfying available unit is higher than that for the household’s current residence, the household 
attempts to move. If discrimination dynamics are active, a minority household’s efforts to move 
may be blocked. Otherwise, the household moves to the new location, and a vacancy is created 
in its previous residential location. 
 

In a small fraction of cases, households are required to move even if they would prefer to 
remain in their current residence. All households are subject to a “forced move” if they have not 
previously moved during the simulation. Most of this movement is concentrated in the very 
beginning of the simulation. It ensures that all households reside in a location that they have 
chosen through search. Later in the simulation, households are subject to forced moves on the 
basis of a low random probability. This procedure simulates fundamental demographic dynamics 
of residential turnover, such as household formation and dissolution, in- and out-migration, and 
so on. One significance of this dynamic is that the city landscape moves toward a dynamic 
equilibrium because household movement ceases only when the duration specified for the 
simulation has been completed. 
 

Time is represented in the simulation in units termed cycles. Cycles are periods of time 
during which housing search and movement take place. Their duration is controlled by the 
fraction of households that are given the opportunity to search during the cycle.4 The settings for 
this parameter generally produce levels of residential movement that are roughly comparable to 
those observed in a “real city” over a 6- to 12-month period. The standard duration for an 
experiment is 30 cycles. This length of time is normally more than adequate to reveal the pattern 
of segregation that will be generated under the settings in effect. 
 
 
Model Inputs 
 

SimSeg provides a library of formatted reports and graphical figures that can be easily 
accessed to summarize and document the settings in effect for model parameters in the 
simulation. These tools are relatively straightforward and easy to interpret. Accordingly, we do 
not review them in detail in the present paper. 
 
 
Segregation Outcomes 
 

As noted earlier, SimSeg documents segregation patterns with the continuously updated 
graphical representation of the city landscape. Color choices register the ethnic status of 
households at different residential locations. Shading registers the socioeconomic status of the 

                                                 
4  During each cycle, 25% of the city’s households are randomly selected and given the opportunity to search for 

new housing. In any given case, this may or may not lead to a move. 
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households, with dark shades representing high-status households and lighter-shades 
representing lower-status households. Figures 1 and 2 illustrate these visual principles. 
Clustering in the patterns of color and shade on the city landscape reveal segregation by ethnic 
and socioeconomic status. Or, as is the case in Figure 1, the absence of marked visual patterns 
indicates the absence of ethnic and status segregation. 
 

SimSeg also computes a battery of standard segregation measures (e.g., the index of 
dissimilarity, the index of isolation, a centrality index) and maintains these in a database. SimSeg 
makes the scores available via figures and reports that can be accessed when the simulation is 
completed. These measures are computed on the basis of summary data for the bounded areas 
described earlier. We do not review quantitative measures of segregation here because the 
graphical patterns are more than adequate to establish major differences in the segregation 
patterns produced by the simulation scenarios considered here. 
 
 
Generative Models and Typologies of Segregation Patterns 
 

One of the hallmarks of agent-based models is that they make it possible to establish 
typologies of generative models. That is, the modeling framework makes it possible for 
investigators to systematically document how particular combinations of settings for model 
parameters will consistently generate particular patterns in simulation results. Typologies can be 
established inductively by observing segregation patterns that emerge from simulations with 
different settings that are considered on an exploratory basis. Or, typologies can be established in 
a confirmatory way by varying model parameters in combinations that theory would suggest will 
produce particular patterns. 
 

We follow the second approach in this paper. Guided by theoretical perspectives on 
residential segregation drawn from sociology and agent-based models, we specify combinations 
of model parameter settings that should, on the basis of  theory, generate particular patterns of 
residential segregation. We highlight these patterns here for several reasons. One is to establish 
that the SimSeg model has the capacity to generate a wide range of segregation outcomes. 
Another is to show that the model has the ability to represent conditions and processes identified 
by important theoretical perspectives on residential segregation. Finally, this approach also 
demonstrates that the model’s algorithms produce expected results under particular model 
parameterizations. 
 

The distinction between patterns discovered inductively and patterns strictly implied by 
theory is not always simple. This difficulty is reflected in the present paper, as some of the 
segregation patterns documented here can, at this point in time, be described as implied by 
theory. However, at an earlier point in time this was not the case. In particular, patterns of 
segregation produced by ethnic preferences were first noticed in exploratory simulation analysis 
and were not strongly predicted by previous theory. However, their observation stimulated the 
development of new theory and the refinement of existing theory such that the generating 
principles can now be stated; however, at an earlier point in time they were unknown. 
 

The typology of segregation patterns reviewed here is produced by varying a small 
number of factors, namely: 
 

• Area stratification, 
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• Minority economic disadvantage,  
 

• Whites’ preferences for in-group contact,  
 

• Minorities’ preferences for in-group contact,  
 

• Adjacent neighborhoods are considered in in-group evaluations, and 
 

• White exclusion of minorities. 
 

Each variable is discussed in more detail below. Although the discussion is brief, it 
identifies the states the variables take, the relevant body of theory associated with the variable, 
and basic predictions for the variable’s effect. 
 
 
Area Stratification: Low-High 
 

When the variable is set to low, high-quality housing is distributed throughout the city. 
When set to high, high-quality housing is concentrated in suburban neighborhoods. This variable 
is highlighted in urban-ecological theories of residential segregation, especially the Burgess 
“zonal hypothesis,” which predicts that status segregation will emerge on a suburban-central city 
continuum and will reinforce ethnic segregation when minority groups are disadvantaged in 
socioeconomic status. It also plays a role in Hoyt’s “sector model” of ethnic segregation, which 
hypothesizes that new, high-quality housing stock usually is built on the periphery of the city and 
tends to take on the ethnic composition of adjacent areas. 
 
 
Minority Economic Disadvantage: Low-High 
 

When this variable is set to low, Whites and minorities have identical status distributions. 
When set to high, minorities have much lower average socioeconomic status. This variable is 
relevant in urban-ecological theory (per the Burgess-Hoyt model described above) and in spatial 
assimilation models, which hypothesize that minority segregation tends to diminish when 
cultural and economic assimilation occur. 
 
 
White’s In-group Preferences are Segregation Promoting: No-Yes 
 

When this variable is set to no, White’s in-group preferences are zero. When set to yes, 
Whites are given in-group targets, which motivate them to seek 90% in-group contact, an amount 
that exceeds the group’s representation in the population (which is 80% in two group simulations 
and 60% in three-group simulations). Preferences are central in Schelling’s agent-based model. 
Fossett’s (2004a, 2005a,b) extensions of Schelling’s theoretical analysis predict that Whites’ 
preferences for in-group contact will promote White-minority segregation when Whites’ targets 
for in-group contact exceed the group’s representation in the city population. 
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Minorities’ In-group Preferences are Segregation Promoting: No-Yes 
 

When this variable is set to no, minority group goals for in-group contact are fixed at 
zero. When set to yes, minority groups are given in-group targets, which motivate them to seek 
50% in-group contact, an amount that is higher than the group’s representation in the population 
(which is 20%). Again, preferences are central in Schelling’s model and Fossett’s extensions of 
Schelling (Fossett 2004a; 2005a,b). These perspectives generate two predictions: (1) minority 
group preferences for in-group contact above group representation will produce White-minority 
segregation, and (2) these same preferences will produce minority-minority segregation. 
 
 
Adjacent Areas are Considered in Ethnic Mix Evaluations: No-Yes 
 

When this variable is set to no, ethnic mix (i.e., in-group presence) is evaluated only for 
the bounded area. When set to yes, ethnic mix is evaluated for the bounded area and for the 
adjacent areas. The former receives twice the weight of the latter. This variable is relevant in 
Schelling’s bounded area model, in all agent-based models that use site-centered definitions of 
neighborhood, and in urban-ecological invasion-succession theory. These perspectives all predict 
that evaluation of adjacent areas will produce ethnic clustering (i.e., ghettoization). 
 
 
Whites Exclude Minorities from Majority White Areas: No-Yes 
 

When this variable is set to no, minorities can freely enter majority White areas. When 
set to yes, minorities are systematically blocked from entering majority White areas. This 
variable is relevant in discrimination theory which predicts that it will produce white-minority 
segregation. 
 
 
Other Variables 
 

The six variables summarized above represent only a subset of the variables that can be 
manipulated in the SimSeg model and, for these variables, only some of the values they can take. 
However, as illustrated below, manipulating this small set of variables produces a wide range of 
highly distinctive segregation patterns. 
 
 Finally, before presenting the results, we note that several important variables in the 
SimSeg model are fixed at constant values over all of the simulations reported in this paper. 
These variables include the following: 
 

• Status and housing preferences are set to active in all simulations.  
 

• City size is the same in all simulations.  
 

• Overall status inequality is set to high in all simulations.  
 

• All residential moves are means-tested.  
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• City ethnic mix is the same in all two-group and three-group experiments. In 
two-group experiments it is 80% White and 20% Black. In three-group 
experiments it is 60% White, 20% Black, and 20% Hispanic.  

 
 
Simulation Results 
 

The typology of segregation patterns produced by varying the six featured variables in 
differing combination is introduced in the figures presented below. Each figure provides a brief 
summary of the segregation pattern and a brief summary of the “generating mechanisms” 
operating in the simulations depicted. In each case, representative examples of the city landscape 
images produced by the simulation design are presented for a two-ethnic-group city and a 
three-ethnic-group city. To assist in making comparisons across experiments, Table 1 presents 
an overview of the settings for the key variables in each simulation, and Table 2 presents an 
overview of the segregation patterns produced by each simulation. 
 
 
Basic Patterns 
 

Segregation measurement theory identifies several different dimensions of residential 
segregation (Massey and Denton, 1988). The two most widely studied dimensions of ethnic 
segregation are uneven distribution and group isolation. Uneven distribution of ethnic groups is 
evident in city landscape images when ethnic group colors (blue, red, and green) are not 
distributed evenly. Ethnic isolation is seen when an ethnic group’s color is predominate in some 
areas and absent others. Not surprisingly, uneven distribution and isolation often occur together. 
But as will be evident in some examples discussed below, they also can vary independently. Two 
other important dimensions of segregation, clustering and centralization, also can be easily seen 
in city landscape images. Clustering is evident when areas of ethnic homogeneity form a few 
broad regions rather than many small areas. Centralization is evident for an ethnic group when it 
is concentrated in central areas and is low when the group is concentrated in outlying or 
suburban areas. 
 

When segregation is high on three or more dimensions at once, the pattern is termed 
hypersegregation. Massey and Denton (1989) report that the condition of hypersegregation is 
found in many American cities. It is especially common for Blacks and is also sometimes seen 
for Hispanics. 
 

Segregation between socioeconomic groups can also be seen in city landscape images. In 
this case, the patterns involve uneven distribution of shades (lighter and darker) rather than 
colors. 
 
 
Patterns of Segregation from Six Variables 
 

This review focuses on the patterns of segregation that the SimSeg program will produce 
when running experiments based on scenarios with varying combinations of the six featured 
variables. These “generative models” include: 
 

• Random distribution (no segregation by socioeconomic status [SES] or 
ethnicity), 
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TABLE 1  Summary of generating mechanisms and their states across different simulation experiments 

Figure Description 
Area 

Stratification 

Minority 
Economic 

Disadvantage 

 
White 
Ethnic 

Preferences 
Promote 

Segregation 

Minority 
Ethnic 

Preferences 
Promote 

Segregation 

Ethnic Mix 
Evaluations 

Consider 
Adjacent 

Areas 

Whites 
Exclude 

Minorities 
        

  3 Random ethnic and status distribution None None No No No No 
  4 Random ethnic distribution in a Burgess zonal city High None No No No No 
  5 Random ethnic distribution in a zonal city with 

minority disadvantage 
High High No No No No 

  6 Ethnic checkerboarding  None None Yes Yes No No 
  7 Ethnic checkerboarding in a zonal city High None Yes Yes No No 
  8 Ethnic clustering  None None Yes Yes Yes No 
  9 Ethnic sectoring  High None Yes Yes Yes No 
10 Minority hypersegregation  High High Yes Yes Yes No 
11 Minority checkerboarding variations None None Yes No/Yes No Yes 
12 Minority checkerboarding variations in a zonal city Yes None Yes No/Yes No Yes 
13 Minority clustering variations  No None Yes No/Yes Yes Yes 
14 Minority sectoring variations  Yes None Yes No/Yes Yes Yes 
15 Minority hypersegregation variations  Yes High Yes No/Yes Yes Yes 
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TABLE 2  Summary of segregation patterns evident in simulation resultsa 

Figure Description 

 
Low SES-
High SES 
Uneven 
Distrib. 

White-
Minority 
Uneven 
Distrib. 

Minority-
Minority 
Uneven 
Distrib. 

White 
Isolation 

Minority 
Isolation 

Ethnic 
Cluster 
Patterns 

White 
Centrality 

Minority 
Centrality 

          
  3 Random ethnic and status distribution  Low Low Low Medium Low None Medium Medium 
  4 Random ethnic distribution in a Burgess zonal city High Low Low Medium Low None Medium Medium 
  5 Random ethnic distribution in a zonal city with 

minority disadvantage 
High Medium Low Medium Low Low Low High 

  6 Ethnic checkerboarding  Low High High High High None Medium Medium 
  7 Ethnic checkerboarding in a zonal city High High High High High None Low High 
  8 Ethnic clustering  Low High High High High High A Medium Medium 
  9 Ethnic sectoring  High High High High High High B Medium Medium 
10 Minority hypersegregation  High High High High High High B Low High 
11 Minority checkerboarding variations Low High Low/High High Low/High None Medium Medium 
12 Minority checkerboarding variations in a zonal city High High Low/High High Low/High None Medium Medium 
13 Minority clustering variations  Low High Low/High High Low/High High “A” Medium Medium 
14 Minority sectoring variations  High High Low/High High Low/High High “B” Medium Medium 
15 Minority hypersegregation variations  High High Low/High High Low/High High “B” Low High 

 
a Notes: Minority-Minority Uneven Distribution: In Figures 11−15, “Low/High” indicates “Low” when minority preferences are not segregation promoting 

and “High” when minority preferences are segregation promoting. Ethnic cluster patterns: High “A” clusters are SES integrated; High B clusters are SES 
zoned. Minority Isolation: in Figures 11−15 “Low/High.” 
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• “Zonal” patterns of status segregation (per Burgess),  
 

•  “Checkerboard” patterns of ethnic segregation, 
 

• “Clustered” patterns of ethnic segregation (ethnic ghettos), 
 

• “Sectored” patterns of ethnic and status segregation (per Hoyt), and 
 

• “Hypersegregation” of minorities. 
 

In Figure 3, the six variables featured in this study are all set to low values for the 
simulations. The city landscapes produced under this scenario exhibit very low levels of ethnic 
and socioeconomic segregation. Low levels of ethnic segregation is seen in the fact that White, 
Black, and Hispanic households (depicted in blue, red, and green, respectively) are found in all 
neighborhoods. Likewise, lower- and higher-status households (depicted in lighter and darker 
shades, respectively) are found in all neighborhoods. 
 

In Figure 4, the previous scenario is changed by modifying one setting: area stratification 
is set to high. This implements a Burgess “zonal” pattern in the distribution of housing values, 
with high-quality housing being more common in suburban areas and low-quality housing more 
common in central areas. The change produces a clear zonal pattern of status segregation as 
high-status households follow high-quality housing. The zonal organization of status segregation 
is seen in the fact that households in the center of the city are of lighter shades (signifying lower 
socioeconomic status), while households in the suburban areas are of darker shades (signifying 
higher socioeconomic status). The zonal pattern of status segregation produces centralization and 
clustering of low-status households. Low-status households are found in central areas, and 
central areas form a broad region of lower-status. In addition, high-status households experience 
low centralization and clustering, because high-status areas form a suburban ring surrounding the 
central city. Significantly, area stratification by itself produces little ethnic segregation. The 
different ethnic groups are again found in all areas of the city in roughly population proportions. 
 

In Figure 5, the scenario used in the previous simulation is modified in one additional 
way: the setting for minority status disadvantage is changed from low to high. The combination 
is often posited to be one that plays a major role in promoting ethnic segregation. The previous 
zonal pattern status segregation is again evident in the city landscape images. In addition, there is 
a noticeable but modest increase in ethnic segregation. Suburban areas have higher 
concentrations of White households (depicted in blue) than in Figure 4, while central city areas 
have higher concentrations of Black and Hispanic households (depicted in red and green, 
respectively). Ethnic segregation remains low overall, however, since all ethnic groups are found 
n all neighborhoods throughout the city. This result illustrates a finding reported in many 
previous studies: the combination of area stratification and minority status disadvantage 
contributes to ethnic segregation but does not by itself produce high levels of ethnic segregation.  
 

In Figure 6, all ethnic groups are given preferences for in-group contact that exceed their 
group’s representation in the population. The other four featured variables are set to low states. 
The scenario produces a striking pattern of ethnic segregation known as checkerboarding. In 
checkerboarding, many small, ethnically homogeneous areas emerge. Significantly, however, 
while almost all individual neighborhoods are ethnically homogeneous, the ethnically  
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Two Groups 

 

 
 

Three Groups 

Characteristics: No systematic ethnic or status segregation. Distributions are random. (Note, this is different from “exact” even distribution.) 
Generating mechanisms: Random assignment of housing values in space. No ethnic dynamics. 

FIGURE 3  Random ethnic and status distribution 
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Two Groups 

 

 
 

Three Groups 

Characteristics: Status segregation by SES “zones,” but no ethnic segregation (i.e., ethnic distributions are random). 
Generating mechanisms: Area stratification in housing values. No ethnic dynamics. 

FIGURE 4  Random ethnic distribution in a burgess “zonal” city 
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Two Groups 

 

 
 

Three Groups 

Characteristics: Status segregation by SES “zones.” Some ethnic segregation is produced by status dynamics. 
Generating mechanisms: Area stratification in housing values. Minority status disadvantage. Status dynamics, but no ethnic dynamics. 

FIGURE 5  Random ethnic distribution in a “zonal” city with minority economic disadvantage 
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Two Groups 

 

 
 

Three Groups 

Characteristics: Uneven distribution and isolation of ethnic groups, but no clustering or centralization. No status segregation. 
Generating mechanisms: Random assignment of housing values in space. Households have ethnic preferences (for immediate area only). 

FIGURE 6  Ethnic checkerboarding (uneven distribution without clustering) 
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homogeneous areas for a particular group are not clustered together to form large regions or 
ghettos. 

 
In Figure 7, area stratification is added to the previous scenario. The combination of 

segregation promoting in-group preferences with area stratification produces ethnic 
checkerboarding (as seen in Figure 6), which is overlaid on a zonal pattern of status segregation 
(as previously seen in Figure 5). The combination yields ethnic segregation and status 
segregation as seen in these previous examples. It also yields something not previously seen — 
status segregation within ethnic groups. This is evident in the fact that individual areas tend to be 
homogeneous with respect to both ethnic mix and socioeconomic status as low- and high-status 
households within ethnic groups live apart from each other. 
 

The simulations shown in Figure 8 implement a different variation in the scenario shown 
in Figure 6. Here all ethnic groups are given preferences for in-group contact that exceed their 
group’s representation in the population. In this case, however, households evaluate 
neighborhood ethnic mix for adjacent areas as well as for the immediate bounded area. This 
change produces a pattern of ethnic segregation characterized by high levels of clustering or 
“ghettoization” instead of the checkerboarding seen in Figure 6. 
 

Figure 9 adds area stratification to the scenario used in the simulations show in Figure 8. 
The results is a distinctive pattern of segregation termed ethnic sectoring. By itself, area 
stratification produces a zonal pattern of status segregation. By itself, the combination of ethnic 
preferences and evaluation of adjacent areas produces large ethnically homogeneous regions. 
When these occur together, ethnically homogeneous clusters align across status rings to form 
ethnic sectors (i.e., wedges or pie slices) that begin in the central city and extend out toward the 
suburban ring. These sectors are large, ethnically homogeneous regions characterized by a 
striking pattern of ethnic-group-specific status segregation. Lower-status households in the 
ethnic group are found in the inner-city portion of the sector, and higher-status households in the 
ethnic group are concentrated in the suburban portion of the sector. 
 

The patterns seen in Figure 9 begin to approximate the patterns of hypersegregation seen 
in many American cities. Ethnic groups are unevenly distributed and reside in large ethnically 
homogeneous clusters (ghettos), where they are isolated from other ethnic groups. Minority 
centralization/White suburbanization is the dimension of segregation not observed in these city 
landscapes. 
 

Figure 10 shows city landscapes produced when minority status disadvantage is added to 
the last simulation scenario. The results exhibit maximum hypersegregation as minority status 
disadvantage produces a strong pattern of minority centralization and White suburbanization. 
The chief difference from the pattern seen in Figure 9 is that minority ethnic sectors are “fatter” 
in the central city and do not extend as far into the suburban ring because (due to minority status 
disadvantage) minority households are over-represented at lower-status levels and 
under-represented at higher status levels. 
 

The simulations presented in Figures 11−15 are all variations on the three-group 
simulations presented in Figures 6−10. The correspondence is summarized below. 
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Two Groups 

 

 
 

Three Groups 

Characteristics: Uneven distribution and isolation, but no clustering or centralization. Status segregation by SES “zones.” 
Generating mechanisms: Area stratification in housing values. Households have ethnic preferences (for immediate area only). 

FIGURE 7  Ethnic checkerboarding in a “zonal” city 
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Two Groups 

 

 
 

Three Groups 

Characteristics: Uneven distribution, isolation, and clustering, but no centralization. No status segregation. 
Generating mechanisms: Households have ethnic preferences for both immediate and adjacent areas. 

FIGURE 8  Ethnic clustering 
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Two Groups 

 

 
 

Three Groups 

Characteristics: Burgess-Hoyt pattern – status segregation by SES zones with ethnic segregation by sectors or “wedges.” 
Generating mechanisms: Area stratification and ethnic preferences for both immediate and adjacent areas. 

FIGURE 9  Ethnic sectoring  ethnic clustering in a “zonal” city 
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Two Groups 

 

 
 

Three Groups 

Characteristics: Burgess-Hoyt pattern with minority segregation on four dimensions (uneven distribution, isolation, clustering, centralization). 
Generating mechanisms: Area stratification, minority status disadvantage, ethnic preferences for immediate and adjacent areas. 

FIGURE 10  Minority hypersegregation 
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Minority Segregation from Majority Only 

 

 
 

All-Way Segregation 

Characteristics: Uneven distribution and isolation for minorities, but no clustering or centralization. Minority-minority segregation varies. 
Generating mechanisms: Active ethnic preferences for immediate area only, majority exclusion and minority preferences vary. 

FIGURE 11  Minority checkerboarding variation 
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Minority Segregation from Majority Only 

 

 
 

All-Way Segregation 

Characteristics: Uneven distribution and isolation for minorities, but no clustering or centralization.  Minority segregation varies.  Status 
segregation by SES “zones.” 
Generating mechanisms: Active ethnic preferences for immediate area only, area stratification, majority exclusion and minority preferences vary. 

FIGURE 12  Minority checkerboarding variation in a “zonal” city 
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Minority Segregation from Majority Only 

 

 
 

All-Way Segregation 

Characteristics: Uneven distribution, isolation, and clustering for minorities, but no centralization. Minority-minority segregation varies. 
Generating mechanisms: Active ethnic preferences for immediate and adjacent areas, majority exclusion and minority preferences vary. 

FIGURE 13  Minority clustering variation 



 

 

70 
 
 

 
 

Minority Segregation from Majority 

 

 
 

All-Way Segregation 

Characteristics: Uneven distribution, clustering, and isolation of minorities, but no centralization. Minority segregation varies. Status segregation  
by SES “zones.”  
Generating mechanisms: Active ethnic preferences for immediate and adjacent areas, area stratification, majority exclusion and minority 
preferences vary. 

FIGURE 14  Minority zonal-sectorial variation 
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Minority Segregation from Majority Only 

 

 
 

All-Way Segregation 

Characteristics: Uneven distribution, isolation, clustering, and centralization for minorities. Minority-minority segregation varies. Status segregation 
by “zones.” 
Generating mechanisms: Ethnic preferences for immediate and adjacent areas, area stratification, minority status disadvantage, majority exclusion 
and minority preferences vary. 

FIGURE 15  Minority hypersegregation variation 
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In each figure, the city landscape on the right side of the page is the landscape presented 
earlier for the three-group simulation for the reference simulation experiment. In each figure, the 
city landscape on the left side is a new landscape generated by a simulation experiment that 
varies from the reference simulation. 
 

The variation implemented is the same in all cases and can be described as follows. In the 
experiments reported in Figures 6−10 all ethnic groups are given segregation-promoting, in-
group preferences (i.e., preferences for in-group contact at levels above population 
representation). In the new experiments reported in Figures 11−15, only Whites are given 
segregation-promoting in-group preferences. In-group preference targets for Blacks and 
Hispanics are set to zero (i.e., households in these groups have no preferences for in-group 
contact). Accordingly, housing search by minority households will take them to any 
neighborhood where they can satisfy their desires for high-quality housing and high-status 
neighborhoods, regardless of the ethnic mix of the neighborhood. But, a new dynamic is added to 
the original scenario for these simulations — a simulated process of minority exclusion is 
implemented. The consequence of this dynamic is that minority households trying to enter 
majority White areas are systematically blocked from entering.5 

 
The impact of these changes in the simulation scenarios is easy to summarize. In broad 

terms, city landscapes on the left side of the page manifest high levels of White-minority 
segregation but low levels of minority-minority (Black-Hispanic) segregation. In contrast, city 
landscapes on the right side of the page manifest high levels of both White-minority segregation 
and minority-minority segregation. The minority-minority integration in the landscapes on the 
left side of the page also leads to lower levels of minority isolation and ghettoization. More 
precisely, minority isolation and ghettoization are evident, but levels of Black and Hispanic 
isolation and ghettoization are much lower than in the reference simulations. 
 
 
Conclusions 
 

This set of simulation results highlights an important finding from agent-based models of 
ethnic segregation. This is the interaction of ethnic preferences and ethnic demography, which in 
this case is dramatically evident in the impact that minority preferences have on 
minority-minority segregation patterns. Schelling (1971) called attention to this interaction, and 
Fossett (2004a) has explored it in considerable depth. He offers the following conclusion. The 
implications of ethnic preferences for segregation cannot be assessed by examining the 
preference itself. One must consider the preference in relation to the ethnic demography of the 
city. Preferences for in-group contact become segregation promoting only when the level of 
in-group contact sought begins to equal or exceed the group’s population representation. As a 
result, groups that are demographic majorities can hold preferences for relatively high levels of 
in-group contact without generating ethnic segregation. On the other hand, groups that are 
demographic minorities can hold preferences for relatively low levels of in-group contact that 
will generate high levels of ethnic segregation. Fossett (2005b) terms this counter-intuitive 
pattern the “paradox of weak minority preferences.” 
 

                                                 
5  This pattern simulates White owners refusing to sell to minority households or systematically favoring co-ethnic 

households over minority households. 



73 

 

The contrasts between Figures 11−15 and Figures 6−10 highlight the fact that agent-
based models of segregation contribute important insights to a more complete understanding of 
ethnic segregation. From Schelling forward, segregation research drawing on the agent-based 
modeling framework has stressed that agent-based models show that surprisingly complex, 
counter-intuitive patterns of segregation can arise from the interplay of seemly simple conditions 
and dynamics. The segregation-promoting implications of minority preferences represent a key 
example of this fundamental insight. Even today, the broader literature on ethnic segregation has 
tended to ignore the role of minority preferences. Descriptive studies of ethnic segregation in real 
cities rarely report minority-minority segregation patterns. General theories of segregation are 
overwhelmingly geared to explaining majority-minority segregation and give almost no attention 
to explaining minority-minority segregation although it is the norm in most American cities. 
Agent-based studies thus address an important blind spot in the broader literature on residential 
segregation. 
 

The broader literature on ethnic segregation has also tended to ignore a fundamental 
insight that orients adherents of the agent-based modeling perspective. Agent-based models have 
a strong appreciation of the fact that the implications of particular conditions and dynamics for 
segregation may not always be obvious and should never be casually presumed on the basis of 
discursive theory and intuitive reasoning. Agent-based modeling adherents believe instead that 
discursive theory and intuitive reasoning should be given formal representation and carefully 
explored using a rigorous modeling approach. We return to this point in the concluding section 
of this paper. 
 
 

SimSeg AND PEDAGOGY 
 

The segregation patterns presented in Figures 3−15 are compelling and highlight the 
educational value of SimSeg’s implementation of agent-based models of residential segregation. 
First, as Figure 10 shows, SimSeg is able to produce simulation results that manifest the kinds of 
complex, multidimensional patterns of segregation by ethnic and socioeconomic status seen in 
real cities. This itself is a significant modeling achievement. 
 

Second, SimSeg presents these complex patterns of segregation in a form, namely, the 
city landscape, that can be easily understood and appreciated by students with little technical 
background in segregation measurement. Moreover, while not directly evident here, SimSeg 
illustrates segregation principles in a dramatic way by generating these patterns of segregation in 
real time in the classroom. Thus, for example, city landscapes for the simulations shown in 
Figure 10 are ethnically integrated at initialization. But when the simulation experiment is run, 
the visual pattern of ethnic integration transforms into a striking pattern of maximum 
hypersegregation within a matter of seconds. This can be repeated for effect and easily and 
quickly compared with simulations using other scenarios that do not produce maximum 
hypersegregation. 
 

Third, and perhaps most importantly, SimSeg shows how the complex pattern of 
segregation seen in Figure 10 is built from the interaction of several separate dynamics. If any 
one of these dynamics is removed from the simulation scenario, something less than maximum 
hypersegregation is produced. This kind of demonstration simply cannot be accomplished using 
data for real cities. The reason for this, of course, is that the states of the crucial factors 
contributing to segregation patterns in real cities are “naturally occurring” (in the sense of 
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beyond the investigator’s control). They cannot be manipulated by outside observers, and many 
combinations simply never occur. 
 

In our opinion, simulation analysis presents the best alternative for exploring the effects 
of these separate dynamics and demonstrating how they come together to create complex 
segregation patterns. 

 
Multivariate statistical analysis is the chief method used to assess the effects of different 

factors on segregation outcomes in the social scientific literature. But it is not a viable alternative 
for instruction. For one thing, it is difficult for undergraduate students to understand the results 
of such analyses. Lectures and readings must emphasize statistical analyses of multiple 
quantitative indices of segregation (to get at the multiple dimensions of segregation), which to 
undergraduates are technically challenging and hard to interpret. Similarly, the notions of 
statistical control and interaction effects, crucial to a full explanation of the dynamics involved, 
are unfamiliar to most undergraduates. Finally, and perhaps most important of all, many 
combinations of settings for the factors involved never occur “naturally,” so statistical analysis of 
observational data on real systems simply cannot provide a basis for assessing the independent 
contributions of these factors and their interactions with other factors. 
 

Theoretical analysis is the other major alternative for instruction, but it is inferior to 
simulation analysis on several counts. The relationships involved are complex and, at least to 
date, have defied theoretical deductions and “proofs” of complex effects. This, of course, is the 
type of situation where simulation analysis provides an important option for theoretical analysis. 
Theoretically relevant conditions and processes can be implemented and manipulated within a 
simulation program and the implications of the complex model can be assessed inductively by 
observing the results generated by the model. 
 

To summarize, SimSeg is an attractive pedagogical tool for several reasons. The 
constructs and algorithms in SimSeg reflect the key conditions and dynamics identified in 
sociological theories of segregation. SimSeg provides a means for exploring these theoretical 
perspectives in “real time” in the classroom setting. SimSeg gives students the opportunity to 
engage in empirical research and test hypotheses about residential segregation. SimSeg exposes 
students to the power of using experimental methods to test ideas against empirical evidence. 
 
 

THE STANDING OF AGENT-BASED MODELS OF SEGREGATION 
 

Agent-based models have generated important theoretical insights about the dynamics of 
residential segregation in urban areas. As noted earlier, Schelling (1971) introduced the best 
known and most celebrated example of agent-based models of segregation. Today, more than 
three decades past the date of initial publication, his theoretical analysis drawing on agent-based 
models stands as a key contribution to understanding of how micro-level residential choice 
behavior can produce complex aggregate-level patterns of ethnic residential segregation. The 
Schelling model has been influential across many disciplines, including sociology, economics, 
demography, political science, geography, and social psychology. It is routinely cited as an 
exemplar of how seemingly simple, micro-level behavior can produce nonobvious emergent 
structure in spatial networks (Clark, 1991, 1992; Epstein and Axtell, 1996; Krugman, 1996; 
Young, 1998; Wasserman and Yohe, 2001; and Macy and Willer, 2002;) are among the many 
scholars and researchers who have explored different aspects of Schelling’s model and endorsed 
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his conclusions that spatial integration is a surprisingly fragile condition and that high levels of 
segregation can occur even when no individual in the population wishes to reside in the type of 
ethnically homogeneous neighborhoods found in highly segregated cities. 
 

Theoretical insights derived from agent-based models are celebrated by many, but their 
influence in the broader theoretical and empirical literatures on residential segregation is mixed 
at best. Notable scholars (e.g., Clark, 1991, 1992; Thernstrom and Thernstrom, 1997; and  
Glazer 1999) have argued that Schelling’s work has important implications for social science 
understandings of ethnic residential segregation. In the main, however, it is fair to say that agent-
based modeling efforts have been viewed with skepticism by sociologists, geographers, and 
political scientists. Thus, for example, important surveys of the field (Massey and Denton, 1993; 
Yinger, 1995; Charles, 2000, 2001, 2003; Farley et al., 2001) severely discount the relevance of 
Schelling’s theoretical work for understanding segregation in the real world. 
 

What accounts for this situation? It is not weakness in Schelling’s theoretical analyses; 
they have withstood the test of time. The few scholars who have criticized Schelling’s preference 
models of residential segregation (e.g., Massey and Denton, 1993; Yinger, 1995; Krysan and 
Farley, 2002) have not offered any formal critiques of his mathematical or simulation models.6 

Their critiques have instead relied on discursive reasoning and a variety of arguments that the 
Schelling model is not relevant for “real world” segregation patterns because it is too abstract, 
too simplistic, and too artificial. 
 

One might respond that this type of criticism of Schelling, and agent-based models of 
segregation generally, is rooted in a view that places little value on the task of building 
theoretical models with rigorously grounding in basic principles. There is at least circumstantial 
evidence to support this view. Social science research on residential segregation is highly 
developed in the area of description and documentation of macro-level patterns of segregation 
and the micro-level dynamics that are involved. But it is severely undeveloped in the area of 
formal modeling frameworks that tie micro-level dynamics to macro-level patterns in rigorous 
ways. Thus, there is a clear tendency for segregation researchers to emphasize description over 
model development. 
 

Nonetheless, agent-based modelers are not free of responsibility for this situation. One of 
the limitations of this literature is that agent-based modeling efforts are largely divorced from the 
broader theoretical and empirical literatures on residential segregation. Agent-based modeling 
efforts rarely use measures of segregation that are standard in the broader literature. They often 
make modeling choices (e.g., implementing city landscapes as a torus), that unnecessarily 
weaken the correspondence between model systems and empirical systems, often for reasons that 
are obscure if warranted at all. As a result, agent-based studies appear strange and artificial to 
conventional segregation researchers, and theoretical insights derived from agent-based models 
have been viewed with skepticism by most sociologists. 
 

The SimSeg model seeks to address at least some of these problems and achieve closer 
integration of agent-based modeling traditions and conventional traditions of research on 

                                                 
6  A recent study by Laurie and Jaggi (2003) purports to identify significant problems with Schelling’s insights 

regarding segregation dynamics. But Fossett and Waren (2004) show that Laurie and Jaggi’s modeling approach 
and conclusions based on it are flawed. Fossett and Waren also show that when the flaws in the Laurie and Jaggi 
modeling approach are corrected, the results provide strong support for Schelling’s position. 
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residential segregation. As noted earlier, SimSeg combines the core elements of the Schelling 
model together with elements of important theories of urban-demographic spatial structure. The 
model draws on standard measures of residential segregation and makes it easy to compare 
results from simulation analyses with results from traditional descriptive analyses of segregation. 
 

The interaction between traditional researchers and researchers drawing on agent-based 
modeling frameworks need not be antagonistic. Indeed, there are many reasons for anticipating 
productive exchange and debate. A good simulation model must embody sociological theory and 
knowledge and thus rests on the identification of basic constructs, conditions, and behavioral 
processes relevant to residential segregation. Consequently, agent-based modeling needs to draw 
on the broader empirical literature on segregation, including both quantitative descriptive studies 
of segregation patterns and quantitative and qualitative studies of the dynamics involved in 
segregation. Agent-based modeling efforts can stimulate the broader literature because model 
building requires development of formal representations that can be implemented in 
unambiguous ways in the context of a model. The task of model building thus exposes 
conceptual ambiguity and gaps in knowledge. In addition, the representations of theory and 
assumption in concrete ways in simulation models invites criticism and productive debate. 
 

We offer SimSeg in precisely this spirit. The model incorporates insights and approaches 
taken from agent-based modeling traditions. But it also seeks to represent constructs and 
dynamics not previously examined in agent-based studies. The SimSeg modeling effort should 
be seen as a significant step forward but hardly the last step along this pathway. 
 

Finally, and perhaps most importantly, the SimSeg project strives to make agent-based 
models accessible to broader audiences that are not versed in the technical details of the 
modeling framework. SimSeg’s user interface allows students to explore basis insights from 
agent-based modeling perspectives, without initially having to directly confront the more 
difficult conceptual and practical issues that occupy the attention of agent-based researchers. 
Agent-based models yield compelling insights about segregation dynamics. We believe SimSeg 
can be an important tool for bringing these insights to larger and broader audiences. 
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SYSTEMS DEVELOPMENT LIFE-CYCLE METHODOLOGY  
FOR AGENT-BASED MODEL DEVELOPMENT 

 
R.L. SIPE,* New Science Partners, Houston, TX 

 
 

ABSTRACT 
 

Systems development life-cycle (SDLC) methodologies are used to plan and execute a 
wide variety of software development efforts, ranging from traditional custom 
applications to rapid applications using prototyping. Consultants use SDLC 
methodologies in the commercial delivery of their services to show their how they can 
plan and execute software development while properly controlling scope and cost. As 
agent-based models (ABMs) take their place in the list of capabilities of custom software 
development companies, a variation on the traditional SDLC methodologies will be 
needed to control the ABM development process. This paper presents a methodology for 
developing ABMs that defines the phases, activities, and deliverables of the process. It 
also provides some insights and comments on favorable circumstances for the application 
of an ABM and the nature of the dialogue between the developer and the client. 
 
Keywords: Agent-based modeling, systems development life-cycle methodology, SDLC, 
project management 

 
 

INTRODUCTION 
 

All of us at this conference believe in the future of agent-based models (ABMs). To 
some, ABMs represent a paradigm shift in the way we see human systems of all sorts that will 
lead to a revolution in the way we understand and manage our way in the world. To others, 
ABMs represent the latest generation of modeling techniques — more efficient and effective 
than the last generation.  
 

If correct, over the next few years, in order to apply these models in business, we will 
increase our knowledge of how to create them; refine their capabilities and sophistication and 
what they can tell us; and move out of the research and development (R&D) phase of our 
experimental efforts and into the world of standard business systems, in which embracing the 
concepts and utilizing the capabilities of ABMs will become the standard, not the exception. 
 

Along the way, the size and complexity of the projects that create the models will 
increase with the size and complexity of the modeling objectives, and we will find ourselves 
(indeed, we already find ourselves) facing a problem of structure and organization that precisely 
parallels the issues that have always faced computer application development projects, namely, 
how to manage and control the systems development life cycle (SDLC). 

 
This paper presents an SDLC methodology for ABM development, in the hope that such 

an effort will contribute to the ongoing dialogue on the issue among the modelers. That dialogue 
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may lead to a heightened awareness and understanding of the fundamentals of large-scale 
application development projects and, perhaps more important, of the standards and practices 
already in place in corporate America for those projects. If we are lucky, we will have to deal 
with those standards as the capabilities and popularity of the discipline gradually work their way 
into the best practices of critical decision makers in business. 
 
 

BUSINESS CASE FOR AN SDLC METHODOLOGY 
 

I first participated in complexity-science-based systems development projects as liaison 
from Ernst & Young’s consulting practice to Biosgroup, Stu Kauffman’s company. Kauffman is 
fond of comparing the behavior of a deregulating industry to the Cambrian explosion in the fossil 
record, citing the parallels in the proliferation of candidate solutions to the new paradigm and in 
the gradual winnowing away of the suboptimal to a steady state of winning solutions (Kauffman, 
1995). Like the early efforts in a deregulating industry, we are in the early stages of an 
investigation of the nature and capability of ABMs and of our ability to build them effectively 
and efficiently. We are operating in an R&D mode, in which the project of building the model is 
as much a research effort into the feasibility of the application of the science as it is a systems 
development project. Our customer to date has been the “visionary,” as defined by Geoffrey 
Moore in Crossing the Chasm (Moore, 1991). Whether the visionary is a corporate finance 
executive frustrated with his inability to set effective risk management policy or a hard-bitten 
operational manager faced with multi-million-dollar scheduling decisions on a daily basis, he 
sees the world as it could be and is willing to invest in our research just in case we might be able 
to improve his bottom line. To the visionary, who is used to big bets, the risk of the investment is 
justified by the potential of the payoff. My first big project with Biosgroup was the development 
of an ABM for a natural gas pipeline. It modeled the pricing mechanisms of natural gas at a 
physical pricing point in Louisiana called the Henry Hub. The funding came from the marketing 
department, to whom the prospect of a strategic advantage was well worth the investment. 
 

In the introduction to It’s Alive, Christopher Meyer and Stan Davis say, “Our information 
systems themselves will become adaptive  otherwise, our businesses cannot be. By the end of 
the decade, business management, information systems, and biological concepts and 
technologies will converge around a common view of how change happens” (Meyer and Davis, 
2003). This theme of seeing the organization as a living, breathing being rather than a Newtonian 
clock, as you are well aware, has been gathering momentum for some time. From Peter Senge’s 
learning organization (Singe, 1990) to Margaret Wheatley’s “zeitgeist of interconnectedness” 
(Wheatley, 1999), the notion of harnessing the power of ABMs to model the behavior of the 
organization is well formed in the minds of the visionaries. As usual, the concept is fully 
articulated far in advance of the reality. Whether ABMs will indeed fulfill their promise as the 
thinking engines of a whole new generation of systems that are able to adapt themselves to the 
environment or will go the way of artificial intelligence remains to be seen. I believe that the 
effectiveness and efficiency of the development projects themselves can be a very positive factor 
in the ongoing success of the effort, lending credibility to ABM development in the eyes of our 
“investors,” those who would risk their software budgets on our efforts. And that depends, in 
part, on the method. 
 

In Crossing the Chasm, Moore acquaints us with how information-systems-based 
products are born with a model he calls the “technology adoption life cycle” model. In this 
model, “innovators” and “early adopters” put up with the fits and starts of an R&D approach in 
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which one of the legitimate outcomes is “it didn’t work,” in order to get what they want. They 
are the means by which a software product is born, but they do not constitute a large enough 
market to sustain success. To reach a larger market, the entrepreneur, armed with his product and 
the innovator’s endorsement as a happy first customer, must cross Moore’s chasm and do battle 
with a very different sort of a buyer, the “pragmatist” (Moore, 1991). Wrapped in the cloak of 
corporate custom and heavy with the responsibility of “due diligence,” the pragmatist is the gate 
keeper of corporate funding. He wants to see your work plan. He wants to talk to a happy 
customer. He wants it on time and within budget, and he wants to know exactly what “it” is. 
Even in the earlier stages of development while the visionary is still working on an R&D basis, 
the visionary is often “shadowed” by the corporate technology control network, busy ensuring 
the standardization and interoperability of all corporate software products and services. 
 

It is through this portal that the funding for the realization of agent-based modeling 
(ABM) lies. As we get better and better at modeling; as our track record improves; as we enjoy 
mass exposure for early, significant successes; as our object libraries fill up with standard 
customer behavior entities and blind auction modules; as our interface engines evolve, combine, 
and connect; as our software moves from custom, one-of-a-kind, stand-alone modules to 
integrated, corporatewide, real-time systems  one of the enabling technologies of this success 
will be the methods and standards that govern the development process.  
 

Further, because the project in question is one that attempts to do something that no one 
has ever done, the customer has a reason to be nervous about its outcome and will require even 
more hand-holding during the process than is usual.  
 

So, the business case for an ABM SDLC methodology is simply the need to put what we 
want to do into a format that is recognizable by those who have to pass judgment on it (and who 
are often responsible if it is out of specifications), to keep them informed during the process, and 
to give them the comfort that we are conducting our business in a disciplined way and are not 
going to embarrass them with that thing most feared: a “problem” project that is over time or 
budget or, worse, ineffective in its results. 
 
 

TECHNICAL CASE FOR AN SDLC METHODOLOGY 
 

In my 30 years as a practitioner of application development, I have participated in 
countless methodology training sessions and seminars and have been a principal in the 
development and deployment of methodologies from four full generations of thought on the 
subject. In all those years, I still come back to 1975’s The Mythical Man Month by Frederick 
P. Brooks, Jr., as the best book ever written on the subject of large-scale systems development 
projects. Now out in a 20th anniversary edition with four new chapters, it still reminds me of 
what I once knew but had forgotten.  
 

The heart of much of the technical miscommunication between the pragmatist buyer and 
the model developer, when it is there, is described in the text on the “programming systems 
product” on the very first page of Brooks (1975). He identifies a program, which is “complete in 
itself, ready to be run by the author on the system on which it was developed,” and three 
escalations of that state. The first is a “programming product,” which is “a program that can be 
run, tested, repaired, and extended by anybody.” The second state, a program improved in a 
different direction, is a “programming system,” which is “a collection of interacting programs, 
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coordinated in function and disciplined in format, so that the assemblage constitutes an entire 
facility for large tasks.” The happy marriage of “program product” and “program system” yields 
the third state, “programming system product,” which the author notes costs nine times as much 
to develop as does the program. 
 

It is my observation that the developers of ABMs are often writing programs, the 
customers are often expecting programming system products, and the lack of some fundamental 
best practices within the project sometimes delays the discovery of this miscommunication until 
it has escalated into a major problem. 
 

It’s fine to just be writing a program. As a matter of fact, as we shall see in the 
methodology, that’s exactly what must be done in the prototyping phase, to prove the concept 
before real money is provided for its development. The point is that descriptions of the 
deliverables that are early and effective are much less likely to be misinterpreted by the customer 
and are one of the primary objectives of a good method. 
 

Because of the parallel between the methodological needs of ABM development projects 
and of traditional systems development projects, it is fair to say that all the problem areas in the 
latter apply to the former. Project planning, work plan development, project team training, 
scheduling, requirements gathering, module design and testing, data architecture development, 
training, and implementation  all are traditional areas of focus and deserve the attention of the 
ABM developer. Like its traditional counterpart, the ABM development project is susceptible to 
delays and missed deadlines. While these project execution issues are items of interest and 
concern to the ABM developer, who is focused on perfecting the application of the science, they 
are items of ominous portent to the pragmatist project controller, focused on controlling the 
scope of the project.  
 

In addition, whereas the developers of a new accounts receivable system start the project 
with a common understanding of what one of those systems does, the ABM development project 
team must add the burden of the conceptual development of how the model will work in the real 
world, what it will do, and how that will be better, to the already lengthy list of things that must 
be attended to during the project. This puts a particular emphasis on a skill set that is usually a 
minor sidebar in a traditional project: facilitation. One does not need to get a group of subject-
matter experts together to discover the fundamental concepts behind accounts receivable; the 
concepts have been well documented for 400 years or more. However, if you are building an 
ABM of the pricing mechanism of the Henry Hub, you do have to get a group, because no one 
has ever done that before. In my pipeline project example, it took several intensive group 
sessions with the executives of the company to get closure on the fundamentals of the design of 
that system, far longer than would have been necessary in a traditional development project. 
Each executive had his own opinion, forged in the fire of his personal experience, about a matter 
that was central to the success of the company. Identifying the agents, their environment, and 
their behaviors became a war of wills within the executive camp, with implications that went far 
beyond the model itself. Had we not prepared the customers for this eventuality, they might very 
well have taken it as evidence that the model was not feasible rather than a natural consequence 
of the creative process. 
 

Variances in the work program like this are not a problem if you have anticipated them 
and prepared the customers for the effort. They become a problem only if you let your customers 
compare the project to their only frame of reference, the traditional project, and if you don’t 
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point out to them the ways in which ABM development differs. In summary, from a technical 
point of view, an ABM development project has all of the old issues plus some new ones, and the 
keys to success are to educate the customer about what those differences are, keep the customer 
informed about the status of the project, and do a good job of scheduling and executing the tasks 
that are necessary. 
 
 

METHODOLOGY 
 
 
Origins 
 

The need for a methodology to control the ABM development process emerged 
immediately when I became involved with the discipline during my first few major assignments. 
The methodology was not, and is not, an effort to control the creative process of the developer 
but rather to align the development process with the expectations of the customer, a customer 
who is used to doing business in a certain way as it relates to controlling software projects. The 
fact that a good methodology is all about collecting and using the best practices of the discipline 
to make development more efficient and effective is a beneficial, but secondary, objective.  
 

My interest in the development and formalization of a methodology has increased in 
recent years because of the changing nature of the customer. Winning key assignments with very 
sophisticated objectives and big budgets in my current work with NuTech 
(www.nutechsolutions.com), Biosgroup’s successor, when each assignment has been more 
integrated with the business (and therefore the “line” organization) than the last, has brought the 
need for this sort of a formalized method out of the “nice to have” category and into the “must 
have” category. Because of this growing need, over the last year, I have formalized a 
methodology for a systems development project that is based on the application of complexity 
science. Attachment 1 provides a level 1 process model for this method. Because the assignments 
often employ a variety of techniques drawn from complexity science, the method is not specific 
to ABM development, although many of its applications have, in fact, been ABM development 
projects. 
 

In the spring of 2002, as I was launching New Science Partners, I attended the conference 
called Capturing Business Complexity with Agent-based Modeling and Simulation: Useful, 
Usable and Used Techniques at Argonne National Laboratory. Here I saw Michael North’s 
excellent presentation entitled, “The ABMS Paradigm,” in which he presented a “high level 
visual roadmap of ABMS development and use” (North, 2002). With North’s permission, I have 
included some of the features of his paradigm, particularly with respect to his steps in the 
attribution of model behavior. These help bring my generic model down to a specific application 
of ABM development. Attachment 2 is an excerpt from Michael’s presentation that presents an 
overview of his method. 
 



84 

 

Attachment 3 is an analysis of the components of the two methods, which told me, in 
part: 
 

• My entire first phase was an expansion of North’s first step. 
 
• We were in general agreement about the steps in model development, but 

North’s model provided a clearer explanation of the entity identification and 
attribution steps and of the creation of the global environment in which the 
entities would operate. 

 
• North’s “use phase” was, in general, the same as my “model application 

phase,” but my phase extended into the first level of results feedback from the 
initial application of the model. 

 
• North’s model had some of the flavor of “build a capability, then see what 

business problems we can solve with it,” whereas mine had more of a flavor 
of “prove to me up front you can make this thing work, and maybe I’ll give 
you the money to try.” This caused me to move some of North’s 
“experimental design” step (the first one in his ABMS use phase) all the way 
up to my prototype phase. 

 
• My “integrate model into production” phase was in need of detailing because 

it was where the standalone models finally found their way into the corporate 
mainstream and it was outside of the scope of North’s method. 

 
Also, because of my experiences with the actual application of this method, I have broken 

the model development phase into two activities: “baseline model development” and “model 
refinement.” This is a concession to an orderly management of the process that the business 
community can understand and help us execute. I wanted the basic operation of the model to be 
in hand before the sophisticated work of detailed attribution got under way, and this two-step 
approach accomplished that objective. 
 

In addition, this exercise led me to the realization that there were several different 
potential definitions of a successful project, depending on what the model was being asked to do 
and by whom the model would be operated. This led me to Attachment 4, which is an 
identification of five different levels of deliverables. The proof of concept, baseline model, and 
refined model levels are all required to deliver an “expert interpretation” system, but additional 
work is required to escalate that deliverable to the decision support or “integrated production” 
level. 
 
 
Overview of the Five Phases 
 

Attachment 5 is an overview of the five phases of the SDLC methodology, which are 
governed throughout the project by a set of activities that manage the project, control change, 
and maintain the client relationship. 
 

Phase 1, proof of concept, includes the initial identification of a “business value 
proposition” in which the modeler and the customer conspire together to find an application for 
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the science in business and describe the application and its potential value to the business. The 
model developer then creates a prototype, the purpose of which is to test the feasibility of the 
objective and conclude whether the application of the science has a reasonable chance of 
achieving the business value expected. 
 

Phase 2, basic model development, defines the architecture of the model, including any 
development tools that will be used in its creation, and builds the initial model. Since the 
identification of the agents in the model and the attribution of behavior to them are such 
fundamental features in the process, Phase 2 attempts only to “stub in” the agents, describe the 
landscape of their environment, implement their basic interaction with that environment and each 
other, and “baseline” the model for further development. Because of this approach, it is easier for 
the business community to see if we have the fundamental relationships right, before the model 
is clouded with subtle and sophisticated interactions. 
 

Phase 3, model refinement, asks for the participation of the business community to help 
bring the attribution of the behavior of the agents up to a “significant” level, meaning that we can 
begin to see real-world-like interactions in the execution of the model. This phase, in my 
experience, is where the model must gain the confidence of the business community. It is 
iterative and intensive and, when successful, leads to a growing customer confidence that the 
model will have real value in the business. 
 

Phase 4, model application, is always the first mode of operation, regardless of the 
ultimate plans for more sophisticated implementations in the future. In the hands of subject 
matter experts in the customer’s organization, the model is loaded with production data, the 
model attributes are set, the model is iterated, and the results are analyzed for business 
implications. Feedback loops lead back to the model refinement phase for finding errors and 
making enhancements to the model. An investigation of the business consequences of applying 
the model’s results completes the phase.  
 

Phase 5 is model integration. Phase 4 may be the end of development, in that a  
stand-alone module run by a specialized subset of the business community may have been the 
objective all along, or Phase 4 may be a proving ground for further escalation of the use of the 
tool to include automatic interfaces or a wider user community. In either of these cases, model 
integration is the process of aligning the model with the production system standards in place in 
the organization, and includes the modifications required to make the model, in the words of 
Brooks (1975), a “programming systems product.” 
 
 
Project Management 
 

Project management is an ongoing effort throughout the project to control the SDLC 
process in a businesslike manner, thereby increasing our probability of success and, just as 
importantly, keeping those who control our funding happy. It consists of three components. 
 
 The first component, project management, is the total of our efforts to plan the project, 
develop schedules for executing it, staff those schedules with our own and customers’ personnel, 
gauge and report progress on a regular basis, and make adjustments to the project plan for any 
number of unanticipated events and distractions that will threaten the project during its lifetime.  
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 The second component, change control, is a formal system in which the excellent ideas 
about what else we could do that are offered by everyone during the project are duly recorded for 
posterity. They are included in the project only when the specific permission of the customer, 
fully knowledgeable of the cost and time implications of the inclusion, has been given. This 
preserves the relationship between the cost of the project and the scope of the project. 
 
 The third component is customer relationship management. Since ABM development is 
not the same as accounts receivable development, particular attention must be paid to 
maintaining a clear, open, and frequent line of communication with the customer. From the 
funding authority, through project managers, down to the actual members of the project team, 
frequent, frank, and informative communication of the project status is necessary to keep 
everyone “on the same page.” 
 
 

PROJECT ORGANIZATION  
 
 
Project Organization Chart 
 

Attachment 6 is a typical project organization chart for an application development 
project. The need for a formal process and data integration grows with the number of detail 
teams running in parallel. In a small project, the project manager usually performs both of these 
roles, but in a larger one, the two roles are required to keep the design/development teams 
coordinated.  
 
 
Design Session Facilitation 
 

As I mentioned earlier, because of the exploratory nature of the ABM development 
project, facilitation is far more important here than it usually is. It is an art in itself and supported 
by much literature. A good facilitator is worth his weight in gold when toiling away all day to 
extract the fundamentals of the business out of a room full of headstrong department heads, each 
with a hidden agenda that usually doesn’t have anything to do with the project. Further, it is not a 
skill that is widely practiced, particularly in the development community. 
 

Because the attribution of the agents in the model can be an iterative process, the busy 
customer may tire of repeated requests for dialogue on the subject or, worse yet, stop returning 
our phone calls (he has a railroad to run, you know). It is incumbent upon us to use his time 
wisely, extract as much information as possible at each session, consolidate and remember the 
results of Session 1, and make sure that Session 2 moves us forward and doesn’t just go over 
Session 1 again. A solid approach to facilitation will ensure a happy customer and get closure on 
the critical information-gathering tasks in the design phase. 
 
 

SUMMARY 
 

Obviously, I have presented the framework for a methodology, and it falls far short of 
providing the level of detail and depth of content that a formal SDLC method contains, whether 
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it is an internal standard at a major corporation or a standards package offered for sale by a major 
software organization.  
 

My motivation for developing this framework is that the lack of its existence has, on 
occasion, caused difficulty and miscommunication between an eager customer and a talented 
developer who happened to be working on an application of ABM that promised to be a real 
advancement of the science. It seems that the larger and more important an opportunity is, the 
more likely it is that issues would arise among the customers, technical community, and 
developer, thereby taking energy away from the objective and sometimes dampening the 
momentum of the effort.  
 

Understanding and being able to present our processes in the native language of the 
customer, so that he is comfortable with our approach and can focus on more important things, is 
just good business, particularly when that business is the furtherance of a discipline that all of us 
believe will become a very important one in the years to come. 
 

Finally, many of you may well have begun your own efforts in methodology, and 
I welcome your comments and offer you this model as a contribution to that effort. I continue to 
expand this methodology. Currently, I am working on definitions and best practices for the 
project management components, and I already have detailed process models of the phases. 
 

The best use of a methodology, in my opinion, is not as a cookbook, in which every step 
must be observed, but as a library, from which those things that are important to the effort at 
hand are extracted. If nothing more, use this SDLC methodology as a checklist. Ask yourself if 
you have done the task, and if not, why not? And it doesn’t have to be a huge tome to be 
effective. A simple memo to your customer citing your understanding of an important issue may 
well uncover fundamental misconceptions, easily corrected in the short term but much more 
difficult to unravel on the day that the model is delivered. 
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ATTACHMENT 1  Complexity-science-based development methodology 
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ATTACHMENT 2  Visual ABMS roadmap containing two main parts: model development and model use (North, 2002) 
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ATTACHMENT 3  Methodology comparison 
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ATTACHMENT 4  Variation in design and function of agent-based models 
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ATTACHMENT 5  Agent-based modeling systems development methodology overview 
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ATTACHMENT 6  ABM development project team organization structure 
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DISCUSSION: 
 

MODEL DEVELOPMENT METHODS 
 

(Thursday, October 7, 2004, 11:00 a.m. to 12:00 p.m.) 
 

Chair and Discussant:  P. Sydelko, Argonne National Laboratory 
 
 
SimSeg and Generative Models:  A Typology of Model-generated Segregation 
Patterns 
 

Pam Sydelko:  I’d like to begin by saying, “Wow!” The two speakers this morning 
[Burkhart and North] have really set us up and started the juices flowing. I don’t know about 
anybody else, but not only have they shown where so much promise is, but they also have laid 
down a gauntlet for how challenging it’s going to be to get there. One of the issues I think is 
really important, as a nonprogramming modeler, is the trend I’ve seen this morning — that we 
need to do whatever we can to make things more intuitive to those people who might not know 
how to put everything in a code base. When we look at this meta-modeling-type approach, 
getting all the way there may not be necessary, but getting closer would certainly be nice. I like 
the trend that I’ve seen in the two talks this morning. 

 
This morning we’re going to start with the “Model Development Methods” session. We 

have two speakers. We’re going to start with a talk by Mark Fossett called “SimSeg and 
Generative Models: A Selected Typology of Model-generated Segregation Patterns.” Mark is 
from the Department of Sociology at Texas A&M. It’s interesting in the model development 
session that we’re taking some of these things out of the research and development arena and 
trying to push them into other arenas — in this case, into education — giving people the ability 
to test theories by using these kinds of models. I think it’s very interesting. So I’ll hand it over to 
Mark.  

 
[Presentation] 

 
Sydelko:  Are there any questions or comments? Yes, Tom? 
 
Tom Howe:  First, I want to commend you for doing this work. I think this is what Mike 

[North] was talking about when he said that we need to get models out in a more public way so 
that people can explore them and start to understand what they’re doing. This is exactly what he 
was talking about: give students the chance to play around with their underlying assumptions 
from the perspective of the theoretical ideas that have gone into it. In light of that, I wonder if 
you plan on bringing other social theories into this model, such as institutional memory, for 
example, because you start with a somewhat unrealistic perspective that everyone is purely and 
completely integrated, instead of having some sort of institutional memory.  

 
Mark Fossett:  In the test bed, we have that, and we have to deal with a handful of very 

important, real-world problems. One is that if we develop a tool, we ask ourselves if somebody 
will use it. We’re getting feedback from the field that people are using it in the classroom. We’re 
trying to find out how far the students can go with this in a given class and how many ideas they 
can put in front of students and feel like it’s being effective. We’re getting two kinds of 
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feedback: one is to give people more realism, more detail, institutional memory. This is a starting 
point where the segregated world is something we can do and may with the next grant try to do 
that and some other things. On the other hand, people are also telling us that they’ll use this for a 
week or two weeks, and in the context of that time frame, be able to explore about six ideas. 
Someone in class or somebody writing a thesis or dissertation would go a lot farther with it and 
really zero in on that. We have a list of things that we’ve accumulated by going through feedback 
from workshops we’ve conducted and from people using the program. We’re trying to prioritize 
that list and add more things. 

 
Craig Stephan:  I’d also like to commend you on the work you’ve done. It seems like a 

very interesting tool to get into the business of ABM. I’d also like to reference Michael North’s 
talk. I forget which ‘E’ it was, but he talked about the idea of showing individual interactions. 
This seems like an ideal vehicle for doing something like that. Could you, in fact, have a segment 
where you could watch an individual agent make a decision about where to move or how to 
exclude somebody or whatever, to show what’s actually going on? 

 
Fossett:  We can’t do that at this moment. This is definitely a very intriguing idea, and 

I can see the merit of that, so we’ll be taking notes and discussing how feasible that is. I’ve only 
shown you a few model outputs. We have outputs where you can look at individuals and see 
what their preferences are and what kind of neighborhood they’re currently living in. You get 
some unusual things, such as somebody saying that they don’t care about the ethnicity of their 
neighbors, yet they live in a neighborhood that’s ethnically homogeneous. We have the ability to 
do a little bit of that, but not with the sophistication you’re talking about. That would be really 
attractive though. 

 
Sydelko:  We have time for one more question. 
 
Brian Pijanowski:  I’m interested in how you actually get the students to work with the 

software. What is the classroom environment like? Are they doing individual work with the 
model, or are they working in small groups and teams? How do you give the assignments, and do 
they work outside the class? 

 
Fossett:  All of the above. We have faculty from universities, a handful of universities 

around the country, who are using it, and I’ve used it for years and have pestered some other 
people into using it. Sometimes their students do very simple exercises using support materials 
that we’ve developed that guide them through running six quick-start scenarios and writing up 
what they saw. We also guide them through building a simulation and reporting the results — 
hypothesis testing and so forth — and they may work individually or in groups. That’s an 
instructor’s decision. But the software is so easy to use that you could ask people to work 
individually, and it would not be very difficult; it would not require a high level of support.  

 
Pijanowski:  Just to follow up. I’ve introduced tools into the classroom before, and you 

always have the group of students that just take it and run with it. They come back to you with 
things that you never thought about. There’s also another group of students that just are terrified 
of the computer — terrified of technology or very suspicious of it. You’ve also got a large 
population of students in the middle that are just a little clumsy. They can do some things with it, 
so I’m wondering whether your experiences have been similar in your classes. 

 
Fossett:  Yes. 
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Pijanowski:  How do you actually solve that where you …. 
 
Fossett:  I won’t ask my students if I’ve solved it, but I feel like I have something quite 

workable. That is, I have structured exercises that I make everyone do. They’re fairly 
straightforward, and you can give the students the actual list of instructions; the quick-start 
scenarios are great for that. I ask them to contrast this one against that one, and then reflect on 
what that could mean for the model and then for social reality. I also offer the opportunity to do 
term papers or extra credit projects for those people who want to take it and run with it. I just try 
to work with two audiences, but I want everyone to use it directly. In some cases, for example, 
one task might be with generative models. I might show them an outcome, and then, without 
giving clues, I might say that there are basic components that they can manipulate. I ask them to 
find a combination that generates an outcome like this, and then ask them to tell me. So it’s like a 
little scavenger hunt. The options are restricted enough that they can play with them to do it. 
When the software is set up and installed, the interface, thanks to the work at Amber Wave 
Software and Richard Senft’s team, the feedback we’re getting, is that no one worries about the 
difficulty of using it. I have had students who put the CD into the crack between the CD drive 
and the 3.5-inch drive. They need support, but for the people who can get it in the slot, the menus 
are easy enough to use, and with a little bit of support, they’re going to do okay. We’re real 
pleased with that. 

 
Sydelko:  Thanks Mark. I would like to also say that I think Mark’s work is very 

important because one of the things we talk about is the challenge of trying to get these 
technologies useful to decision makers. Certainly one way of doing that is to hit the future 
decision makers, making them comfortable with these kinds of tools and letting them see how 
they might be useful. So I think this is really a step in the right direction. 
 
 
Systems Development Life-cycle Methodology for Agent-based Model 
Development 
 

Pam Sydelko:  Rod Sipe is now going to talk about “Systems Development Life-cycle 
Methodology for Agent-based Model Development.” Rod is with New Science Partners. When 
I read his paper, I found it interesting that he, too, is in an educational mode because one of the 
things he sees as challenging about agent-based modeling and to some traditional types of 
software development cycles is educating people on what it means and what it does. I’m hoping 
he’ll touch on that a bit, too.  

 
Rod Sipe:  Thank you. I’m also a little bit out of water. It is a tribute to Michael North’s 

eclectic personality that he invited me to make this speech. I’m a retired Ernst & Young 
consulting partner and spent my entire career building systems for corporate America. I spent 
30 years in corporate America, cruising the halls, trying to understand what those people were 
saying and what they meant, building very large systems — $400 million worth of 
implementations over 20 years at Ernst & Young, with 20- and 30- and 40- and 50-people 
projects that lasted for three, four, five, and six years, which is an interesting environment and 
one that causes you to have to go to school on the way corporate America behaves, particularly 
in the IT substructure.  

 
The connection to complexity sciences at the end of my tour of duty at Ernst & Young, 

I was fortunate enough to get involved with Chris Meyer, director of the Center for Business 
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Innovation in Cambridge, which was Ernst & Young’s think tank and their development and 
creation of the Bios Group, which was one of the early for-cash ventures out of the Santa Fe 
Institute. So my proudest designation is probably that I still hold the post of lead guitar in 
Stu Kauffman’s after-hours blues band called the Strange Attractors. I spent a considerable 
amount of time with them, and I’m still aligned with NuTech, which is the company that bought 
the assets of Bios Group, and Stu is on the board of directors, along with Bob MacDonald.  

 
So the social dynamic in terms of this talk is the relationship between the developer and 

the customer. New Science Partners is my company. I’m in the business of trying to make money 
out of the commercial application of complex adaptive systems and the kind of business results 
that you can create for them, which is an interesting point of view. 

 
[Presentation] 

 
Sipe:  Value and use — I offer these to you as a starting place. If you’re dealing with 

corporate America over a contract, these are more important issues than they might be otherwise.  
 
Sydelko:  First, I have a comment that many of the things that you talked about definitely 

carry over to my area for government agencies that are actually funding research and 
development. It’s research and development, yet, there’s a lot of impatience for wanting to get 
here quickly. I know the iterative cycle of software development — I truly believe in it, but 
sometimes find it difficult because I might have somebody who’s funded me that’s higher in the 
chain of command, but I’m actually delivering to somebody in the lower level. They understand 
the need for this iterative cycle because we’re doing knowledge engineering at the same time, but 
the person on the top is saying, “I don’t have time for that.”  

 
Sipe:  Exactly. You can at least prepare those people for the eventuality if you’re able to 

lay out a methodology and say that this is a little different than traditional systems development. 
It’s different right here and right there and right there, and here is how it’s going to be different. 
That helps them to understand that when we get into iteration over attributing behavior to a 
model, that that’s just the way this one works, and it’s not a signal as it might be in a traditional 
project that this is not going to work because you don’t know what you’re doing. 

 
Sydelko:  It’s the interpretation sometimes. Are there any other questions? Chick? 
 
Charles Macal:  In your life-cycle methodology, there were sprinklings of agent 

references here and there, but we all know that the data issue and the verification and validation 
issue can be overwhelmingly large aspects of any project. How would you characterize the 
agent-based modeling approach? Do you do 90% of the work and then add on the agent aspects, 
or is the process much different somehow, with agent development changing the process in a 
fundamental way? 

 
Sipe:  Do you mean changing the actual business processes in the company? 
 
Macal:  Well, no, I mean in terms of how you actually develop agent models for a 

particular project. 
 
Sipe:  The only way I know how to do this is — and the way I have done it in the past — 

is to take the executive group. I can give you a good example. The first one that I did was for a 



99 

 

high-flying, sharp-dressing bunch of natural gas marketers from Houston, Texas, who wanted to 
know what the pricing mechanisms were around the Henry Hub, which is a physical gas trading 
point in Louisiana where natural gas is traded because pipes come in from three or four different 
directions. It’s just a natural place. 

 
The project turned into a debriefing and almost a counseling session with the four or five 

major executives because they each had their own mental model of how the business worked, but 
the production guys’ mental model was completely different than that of the marketing guys. 
First, we had to get everybody’s views out on the table and build this theoretical model of all the 
factors that affected the price of gas at the Henry Hub. The facilitation of the different points of 
view of the executives was a roadblock that had to be passed before we could identify all the 
factors. Once we did that, we could build a model and see if we could make it behave that way. 
So, first we have to consolidate the corporate knowledge about the business process into a logical 
model of the agents and their attributed behavior.  

 
Macal:  I have one brief comment on your answer. It seems that you have a 

fundamentally different starting point in how you’re analyzing system — where you’re starting 
with how the people think of the system … 

 
Sipe:  Right. 
 
Macal:  … in the sense that they are the agents, as opposed to a view that takes a look at 

the system as a process and seeks to somehow optimize [or improve] it.  
 
Sipe:  It also depends on where you’re at. My work for my company is just an 8-crayola 

box, not a 64-crayola box. All we care about is that we’ve got trucks and roads and well 
equipment, so there are not a lot of moving parts to this model. In fact, you can start with an 
analysis of the current physical behavior of the system, but if you’re shooting for pricing 
mechanisms or any sort of social interaction, it’s a fundamentally much deeper problem than the 
one I’m trying to solve. 

 
From a commercial point of view, I’m trying to do the least amount of innovation in the 

delivery as possible because I want the greatest potential for success. If I can give a 5% 
improvement on the utilization of the resources around the well work over in the Permian Basin, 
I’m a hero without having to get out on the ragged edge of the behavior of the tool operators 
where I’m not so sure I can be successful.  

 
Sydelko:  We have time for one more question. 
 
Unidentified:  You’ve been describing a methodology, and we work with the capability 

maturity model, which is a product of Carnegie Mellon, for software engineering. There’s 
something coming out, called CMM Integrated, for systems engineering. How does your 
methodology fit in with this overall picture, and how does it compare with the things that might 
come out of the cookie-cutter approach to systems engineering and software development? 

 
Sipe:  I don’t know the answer because I don’t have detailed knowledge of the model you 

reference. What do you think — if you know them both — because I don’t? 
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Unidentified:  One of the issues with the CMM [Capability Maturity Model] is that it is a 
kind of meta-process, a process by which you define the process. It’s up to people to figure out 
what their process is, and they probably go to the books and start to put together a number of 
steps, which leads to even more steps. 

 
Sipe:  Right, a model of the model. It makes you dizzy to think about it. 
 
Sydelko:  We’re out of time. I’d like to thank everyone for their comments. 
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TO DECEIVE OR NOT TO DECEIVE? 
MIMICRY, DECEPTION, AND REGIMES IN TAG-BASED MODELS 

 
Y.Y. CHEN,* Emory University, Atlanta, GA 

M.J. PRIETULA, Florida International University, Miami, FL 
 
 

ABSTRACT 
 
The tag-based computational model of cooperation described by Riolo et al. in Nature 
(2001) was extended in a series of experiments that examined the impact of tactical 
deceptive mimicry on cooperation, tolerance, and the emergence of regimes. Under all 
conditions, tactical deceptive mimicry increased the population cooperation above that of 
the base case. Allowing deceptive tolerance or deceptive propensity to evolve as separate 
traits (from the base case) increased the average life span of a regime. In addition, 
endowment gains through cooperation were associated with the emergence of regimes, 
while endowment gains through deception occurred when no groups where dominant. 
Not allowing deceptive tolerance or deceptive propensity to evolve as separate traits 
inhibited the emergence of regimes but yielded the highest overall cooperation levels. 
 
Keywords:  Tag-based cooperation, indirect reciprocity, social algorithm, deception, 
organizational simulation 

 
 

INTRODUCTION 
 

In general, the explanation of why individuals cooperate at a cost to themselves has been 
somewhat problematic. Much of the confusion is based on the wide variety of contexts within 
which cooperation may or may not occur. Cooperation necessarily involves more than one 
individual; therefore, cooperation is a construct that must be socially defined. Consequently, 
given the range of contexts and possible social situations, as well as the wide definitions of 
“individuals” that may underlie them (ants, apes, or economic agents), it is not unexpected to see 
disparate perspectives, assumptions, or theoretical underpinnings associated with this topic. 
 

The basic model described in this paper is based on the genetic algorithm method of 
Riolo et al. (2001). It requires no agent assumptions of specific social memory typically 
associated with cooperation, such as direct or indirect reciprocity (Sober and Wilson, 1994; 
Nowak and Sigmund, 1998; Henrich and Boyd, 2001; Sethi and Somanathan, 2003), or direct 
sanctions (Boyd and Richerson, 1992). Rather, tactical cooperation decisions are determined by a 
simple behavioral rule that is influenced through a specific and common social process: to mimic 
the strategy of the agents whose performance is better than yours. The decisions themselves are 
based on a simple and common social constraint: to cooperate only with those who are similar to 
you. The tactical decisions are based on the particular values of the mimicked strategy, and the 
values of the mimicked strategy are determined by the best performing agents in the group. 
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30322; e-mail: yychen@bus.emory.edu. 
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In the model, a strategy is composed of two independent values: a tag and a tolerance. 
A tag is an identifier (in our case, an integer τ) that obviously can be compared for similarity — 
like the “green beard” hypothesis in evolutionary biology (Dawkins, 1996) — but can also be 
readily adopted or changed by other agents. For example, tags can represent a way of dress or 
perhaps a dialect. On the other hand, a tolerance is a value (in our case, an integer T) that 
represents the flexibility in an agent’s perception of similarity. Specifically, one agent considers 
another agent as being similar to it only if the absolute difference between the two tags is less 
than or equal to the agent’s tolerance. 
 

In this model, the cooperation context is defined as when one agent solicits a donation 
from another agent, and cooperation is defined as when the donation occurs. In such an 
exchange, the donor suffers a cost of donation, and the recipient gains a benefit. The tactical rule 
for donation, therefore, is the following: 
 

Social Donation Rule. Agent x will donate to agent y iff │τx – τy│ ≤ Tx. 
 
Thus, an agent cooperates with (donates to) another agent only if the tag of the other agent is 
sufficiently similar to its own (i.e., within its tolerance). Each agent is given several donation 
opportunities to randomly interact with other agents in any given generation.  
 

The social comparison rule used for adjusting the strategic values, on the other hand, is 
adjusted each generation and is based on the performance (as defined by the endowment E [a real 
number]) of the other agent as follows: 
 

Social Comparison Rule. Agent x will adopt the tag (τy) and tolerance (Ty) values 
of another agent y iff E(y) > E(x). 

 
By using this model, Riolo et al. (2001) demonstrated that substantial cooperation levels 

can emerge and be sustained. Chen and Prietula (2003) replicated their findings and explored this 
model further by looking at the particular regimes that emerge with varied population sizes, 
perceptual errors, and generation lengths. In particular, they tracked the value of the tags and 
defined a regime as a state in which at least 80% of the agents have adopted the exact same tag 
value. In this paper, we explore mimicry a little further by examining the effects of mimicry 
when applied to the social donation rule. 
 
 
Adaptive Mimicry: Joining a Group 
 

Both the Riolo and Chen models examine tag-based cooperation from the standpoint of 
agents in the donor role, where donors make decisions to donate and where agents in the 
recipient role have no direct impact on that decision. Future cooperation decisions are influenced 
through intergenerational mimicry opportunities given at the end of a generation. Thus, in these 
models, mimicry is an adaptively strategic mechanism designed to achieve a particular social 
goal: to gain the most cooperation possible by adopting the look and behavior of the most 
successful agents. If we interpret this strategy as adopting norms of conduct for a group that is 
identified by a tag range, then the strategy is not unlike joining a particularly successful group. 
As research has consistently demonstrated, group influence on individual behavior can be 
substantial (e.g., Asch, 1956; Milgram, 1974; for comparison, see Crano, 2000), and imitation is 
a core component of cultural emergence and adoption (Dugatkin, 2000). 
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Deceptive Mimicry: Deceiving a Group 
 

Tags, as visible signs of membership, can be mimicked not only for making a strategic 
membership change, thereby satisfying a rational social goal, but also for satisfying a different 
and more tactical but nonetheless rational social goal: immediately gaining the most cooperation 
you can by temporarily mimicking the look (i.e., tag) of the proximal agent. As an extension of 
the Riolo and Chen models, we incorporate such an intragenerational mimicry component to be 
made by agents in the requesting role. When an agent encounters a situation in which a donation 
is to be requested from another agent, there is an opportunity for the requesting agent to 
temporarily mimic (at a cost) the tag of the potentially donating agent before making that 
request. We refer to this as deceptive mimicry. This was accomplished by adding a social 
deception rule: 
 

Social Deception Rule. Agent x will temporarily adopt the tag value (τy) of 
another agent y at a cost (z) iff [tolerance conditions] and [deception conditions] 
hold. 

 
We ran a 2 × 2 factorial experiment that examined four forms of the social deception rule 

and compared them to the base case (Chen model) results. The forms were derived by 
manipulating two constructs of the rule: the tolerance condition and the deception condition. The 
four forms were defined by the resulting combination of the condition types. 
 

The tolerance conditions define the situations under which the social deception rule is 
relevant. Consistent with the Riolo and Chen models, the tolerance conditions test the extent to 
which the potential donator agent’s tag is similar to the requesting agent’s tag. If the values are 
not sufficiently similar, then the requesting agent would consider applying the social deception 
rule. Two tolerance conditions were defined on the basis of whether the tested tolerance trait was 
the same as the trait used by the tag, or if there was a special trait for that decision: 
 

1. Same Trait. The social deception rule used the same tolerance trait as the 
social donation rule, but the results were inverted:  

 
Agent x will consider deceiving agent y iff │τx – τy│ > Tx. 

 
2. Different Trait. The social deception rule used a different and separately 

evolving tolerance trait T′x for the rule:  
 

Agent x will consider deceiving agent y iff │τx – τy│ > T′x. 
 

The deception conditions define the likelihood of the social deception rule being applied, 
given that the tolerance conditions are satisfied. Accordingly, two types of deception conditions 
were examined on the basis of whether deception was certain or determined by the value of a 
separately evolving trait: 
 

1. Certain Deception. If the social deception rule is relevant, it will be applied. 
 

2. Deception Trait. There is a separate inheritable trait (δ). Deception will occur 
if the value of this trait for the agent exceeds the average propensity value of 
the population for that generation g, E(δg).  
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METHOD AND PROCEDURE 
 

Following the general form of Riolo et al.’s model (2001), in the base case, agents have 
two inheritable traits: a tag τ ∈ [0,100], and a tag tolerance threshold T ∈ [0,100]. Cooperation 
occurs when an agent donates to another agent. Donation is done at a cost (c = 0.1, plus the 
1.0 donation) to the donating agent, with the recipient of the donation achieving a benefit 
(b = 1.0). A population of 100 agents was used, with the initial values for tags and tolerances 
selected randomly from a uniform distribution [0,100]. On average, for each generation, an agent 
(x) has three opportunities to donate to other agents (yi) via random pairings. For each pairing, if 
agent x’s tag is sufficiently similar to the tag of the other agent yi (i.e., │τx – τy│ ≤ Tx), then agent 
x will donate to agent yi. At the end of a generation, each agent is compared with another 
randomly selected agent, and the agent with the lower score adopts the tag and tolerance levels 
of the higher-scoring agent. This strategy results in the traits of higher-scoring agents being 
replicated about two times faster than the traits of lower-scoring agents in the population, with 
the traits of the lowest-scoring agents not being replicated at all.  
 

In the base case and for each manipulation below, 30 replication runs were made per cell. 
For each replication, there is a 0.1 probability of replication error in any trait. A run consisted of 
3,000 generations. Apart from the stated manipulations, all other elements of the simulations 
were the same as those in the base case. The forms of the social deception rule were made as 
indicated in Table 1. The specific inheritable traits are shown in parentheses. 
 
 

TABLE 1  Classification of manipulations 

  
Tolerance Condition 

 
Deception Condition Same Trait Different Trait 
   
Certain deception Form 1 (τ, T) 

 
Form 3 (τ, T, T′) 

Deception trait Form 2 (τ, δ, T) Form 4 (τ, δ, T, T′) 
 
 
Form 1: Same Tolerance Trait, Certain Deception 
 
 Conditions were similar to the base case and two traits were used: tag and tag tolerance. 
Before the social donation rule was invoked, agent x would deceive the donor agent by 
temporarily mimicking agent y’s tag if the tags of the paired agents were not within the tag 
tolerance of x (i.e., │τx – τy│ > Tx). In other words, agent x would deceive those it does not 
consider “its kind.”  
 
 
Form 2: Same Tolerance Trait, Deception Trait 
 
 An inheritable trait was added to the base case: deception propensity, δ. Therefore, agents 
had three inheritable traits: tag, tag tolerance, and deception propensity. Deception propensity 
was initialized via a random draw from a uniform distribution [0,100]. The soliciting agent x 
would deceive a potential donor agent y only if x’s tag differed from y’s tag as defined by its tag 



107 

 

tolerance (i.e., │τx – τy│ > Tx) and if x’s deception propensity exceeded that of the population 
average of that generation. 
 
 
Form 3: Different Tolerance Trait, Certain Deception 
 
 A deceptive tolerance trait was added to the base case model. Agents had three 
inheritable traits: tag, tag tolerance, and deceptive tolerance. Each agent now had two tolerance 
traits defining two thresholds (i.e., tag tolerance threshold T and deceptive tolerance threshold 
T′), reflecting the dual decision contexts in the game (i.e., cooperation, deception). For each 
pairing, agent x would deceive agent y if the difference between tags exceeded x’s deceptive 
tolerance threshold (i.e., │τx – τy│ > T′x).  
 
 
Form 4: Different Tolerance Trait, Deception Trait 
 
 The two inheritable traits examined in Form 2 (deception propensity δ) and in Form 3 
(deceptive tolerance T′) were combined. Agent x would deceive potential donor agent y if the 
difference between their tags exceeded x’s deceptive tolerance threshold (i.e., │τx – τy│ > T′x) 
and if the deception propensity δ of x exceeded that of the population average at generation g,  
δx > E (δg). 
 
 

RESULTS 
 

A brief overview of the results follows. The simulation results indicate that the average 
level of cooperation achieved (i.e., the donation rate) is more than 90% in all four manipulations 
and higher than the levels achieved in the base case model (Figure 1). Thus, agents learn that it is 
economically beneficial to deceive (at a cost) in order to gain tactical advantages (via donations) 
over other agents. The consequence of this is that substantially more agents are deceived into 
cooperating through the use of deceptive mimicry. This study is small and necessarily 
constrained; therefore, our embryonic findings are presented as assertions rather than 
conclusions; they should be examined later in depth.  
 

Assertion 1. Deception (as deceptive mimicry) generated higher cooperation 
levels (and less variance) than equivalent groups without such deception. 

 
An examination of Figure 1 shows that the highest donation rates and lowest variance in the 
study are found in Form 1. Recall from Table 1 that this form retains the same two traits as the 
base case but adds a decision procedure (deceptive mimicry) that relies on those two traits. The 
reason for this can be found, in part, by examining one of those traits: tolerance, T, as shown in 
Figure 2, indicating the low tolerance of Form 1.  
 
 Here, we compare the two cases (base and Form 1). In essence, the base case has two 
driving forces (see Chen and Prietula, 2003). First, high-tolerance results in more donations at a 
cost to the donor; therefore, tags of highly tolerant agents will be replicated at a comparatively 
lower level, so the associated high tolerance will be propagated at a lower rate. Second, the 
agents that benefit from donations are those whose tags fit within the tolerances. Consequently,  
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FIGURE 1  Donation rates for base case and all manipulations 
 
 

 

FIGURE 2  Average tolerance T for all manipulations 
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as lower tolerances propagate, the tags associated with the lower tolerances propagate. This 
results in a rapid “takeover” of one type of tag into a regime, since tags that are not similar do 
not receive donations. Thus, there is a forced, albeit opportunistic, convergence to a particular 
tag value as the tolerance converges.  
 
 Once a regime dominates, the likelihood of one agent encountering another agent that has 
a substantially different tag drops, and so does the value of having a small tolerance, since it 
becomes nondiscriminatory. However, through mutation, agents that have tags that are not the 
same but that are sufficiently similar emerge, and they can receive donations from agents in the 
dominant regime. Furthermore, some of these agents will have comparatively smaller tolerances, 
which will make the donations asymmetric (i.e., they are similar, so they receive donations, but 
they have smaller tolerances, so they will not donate). These free-rider agents will rapidly 
propagate and take over as a new regime. As can be seen, however, each regime lays the 
foundation for its own collapse, and all regimes bear the same fate: they collapse from within. As 
a consequence of this pattern, the base case tolerances oscillate with high variance, causing a 
wide variance in donation rates. 
 

Form 1 affords a slightly different twist. As in the base case, agents with higher 
tolerances donate more (via the social donation rule), resulting in lower endowments and lower 
propagation rates (via the social comparison rule). Accordingly, the average tolerance in the 
population falls. In this group, however, agents also incorporate the social deception rule, which 
results in higher donation rates for agents that deceive other agents that are not like themselves. 
This condition also results in movement toward lower tolerance values. Figure 2 shows the low 
tolerance T of Form 1 resulting from this confluence of pressure. The results from the two are 
remarkably high donation rates (see Figure 1).  
 

Note two other influences. As in the base case, there is pressure to adopt similar tags (to 
fit within the tolerances and receive donations), which leads to the emergence of regimes. 
However, there is also indirect pressure to be different (via low tolerance to afford more 
opportunities to deceive others and receive donations), which resists the emergence of regimes. 
What this implies is that although regimes emerge, additional events lead to their demise because 
not only is there a subsequent emergence of free-riders (as in the base case), but there is also an 
emergence of deception. When all agents are sufficiently similar (i.e., during a regime), tolerance 
generally is not selective (in the base case), but in this form, low tolerance can be quickly 
exploited by shifting to a deception strategy. The consequences are shorter regimes and periodic 
shifts of deception. In other words, when regimes emerge, deception is low. Then deception sets 
in, and gains by deception dominate gains by donation. Figure 3a illustrates a typical sequence of 
the cycling between generations. In this figure, the percent of agents in the dominant group is 
depicted as black triangles (which may or may not be a regime), gains by donation are depicted 
as white squares, and gains by deception are depicted as black squares. Note that gains by 
donation are closely aligned with the emergence of the dominant group and that overall, 
deception strategies account for a relatively lower percentage of gains overall. This can be seen 
by viewing the same data as shown in Figure 3a but sorted by the size of the dominant group 
(lower to higher, Figure 3b). When no particular group is dominant (left of inflection), there is 
turbulent competition between strategies (donation, deception). When a regime takes over, 
however, donation strategies (among the dominant agents) are used most often and are most 
successful. An analysis of the data revealed similar results for all manipulated conditions.  
 

Assertion 2. Deception is a strategy whose frequency (as an indicator of success) 
varies inversely with group dominance.  
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FIGURE 3a  Source of endowment gain and size of dominant group (form 1) 
 
 

 

FIGURE 3b  Source of endowment gain sorted by size of dominant group (form 1) 
 
 

Our final assertion is based on examining the impact that deception has on regimes. In the 
base case, regimes were limited but could last for a substantial time, and regime takeovers were 
rapid. This can be shown by taking the average size of the dominant group (in percentage of total 
agents) over generations for a set of runs, then putting them in ascending order in a graph. The 
resulting regime graph shapes will reflect the relative time spent in regime dominance and 
transitions. Because of Assertion 2, the shapes will also reflect the relative time spent with 
groups of agents behaving with cooperative or deceptive strategies; more dominance indicates 
more gains by donations than by deception. Figure 4 shows such a graph. Note that the base case  
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FIGURE 4  Average sorted dominance sizes for all forms 
 
 
has the smallest number of small dominant groups (reflective of nonregimes), while Form 1 has 
the largest number. Forms 2, 3, and 4 reside within the two extremes. Figure 5 illustrates specific 
examples of regime emergences in the four forms. As can be seen, when the social deception rule 
was given the opportunity to vary traits independently (i.e., Forms 2, 3, and 4), two effects 
occurred. First, the impact of deception on regime emergence and sustainability was mitigated. 
Regimes now emerged and were sustained, but not to the higher levels of the base case (sans 
deception). Second, cooperation (as donation rate) was reduced, but not to the lower levels of the 
base case (see Figure 1). The reason for the differential effects was the decoupling of the traits of 
the rules underlying the strategies. In the base case, the behavior (deception) was introduced with 
little flexibility and independence. The consequence of this was high cooperation but minimal 
emergence of regimes. When additional degrees of freedom were added (via traits), levels of 
cooperation dropped, but regimes could emerge.  
 

Assertion 3. Regime emergence is affected by the flexibility (independence) of 
deception strategies. 

 
 

Base 

Form 4 Form 3 

Form 2 Form 1 



112 

 

 

FIGURE 5  Dynamics of regimes 
 
 

CONCLUSION 
 

Riolo et. al (2001) demonstrated that cooperation can emerge in groups where decisions 
to cooperate are based on simple rules of social comparison embodied in the social donation rule 
and the social comparison rule. We explored that model further and examined how minor 
adjustments and the addition of deception can impact cooperation and the emergence of agent 
groups (regimes). We can view the set of rules we have described as a portfolio of routines or 
social algorithms in which an agent will engage in response to events in the social environment, 
where the social environment is defined perspectively as “the other agents.” As events relative to 
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the routines change, the agents have the ability to change components of the routines themselves. 
Note that in the rules described, the behaviors are invariant, but the conditions under which they 
are engaged are variable, and it is these condition components of the rules that adapt over time. 
In this research, we essentially modified how different rules (and therefore behaviors) were 
interlinked and examined the resulting impact on cooperation and group/regime emergence. 
 

We explored how the structure of routines and interactions can impact behaviors, not the 
intentionality of the routines themselves. These agents do not have active goals, but we may 
assume that the routines are derivative of goals and intentionality. Note that the social goal in 
this work is simple, implicit, and individualistic (i.e., to maximize endowment), but the effects of 
the social routines brought to bear on this goal have social (sometimes beneficial) consequences, 
such as the formation of groups and cooperation. Thus, regimes and cooperation in these models 
are by-products of (and barometers for) strategies interacting with collective behavior over time. 
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ABSTRACT 
 

Ontologies provide a formal methodology for establishing a common vocabulary; for 
defining concepts and the relationships among those concepts with a particular domain; 
and for reasoning about the objects, behaviors, and knowledge that constitute the domain. 
We present an ontology for agent-based modeling and simulation, which has become an 
important and popular paradigm for the computational social and natural sciences. 
However, this paradigm tends to be applied in an ad-hoc fashion, leading to questions 
about underlying assumptions in an agent-based model, verification of the software 
implementation as a representation of that model, and validation of hypothesized 
conclusions inferred from data produced by computer simulation experiments. An 
ontology provides a formal, logical knowledge representation that supports automated 
reasoning. Such reasoning capability provides for consistency checking of the concepts 
and relationships in an agent-based model, can infer the assumptions inherent in a model, 
can infer the assumptions and the parameters inherent in a simulation or software 
representation of a model, and can enforce adherence to formal methods or best practices 
for verification and validation testing. These reasoning tasks direct, or at least inform, the 
modeler relative to relevant techniques and methods in the agent-based paradigm. The 
reasoning capability also provides a framework for automated generation of software 
code, automated design and execution of simulation experiments, and automated 
generation and execution of validation tests for those experiments. We use the standard 
Ontology Web Language (OWL) to provide a complete, detailed ontology of agent-based 
modeling and simulation, and we show how the ontology is used as part of the modeling 
and simulation process. 
 
Keywords: Agent-based modeling, agent-based simulation, automated reasoning, 
ontology, artificial intelligence, discrete-event simulation 
 

 
 

INTRODUCTION 
 
 Agent-based modeling and simulation has become an important and popular paradigm for 
the computational social and natural sciences; however, this paradigm tends to be applied in an 
ad hoc fashion based on a subjective understanding of the agent-based concept. Different 
techniques for construction of the model and implementation of computer simulations are often 
accompanied by underlying assumptions that are unknown to the researcher or cannot be 
explicitly characterized for the particular model. In addition, manifestation of artifacts in the 
computer simulation can lead to legitimate questions about the verification of the implementation 
and validation of hypothesized conclusions. Model-to-model comparison, or docking, can expose 
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these issues because it forces the researcher to confront some of these underlying assumptions 
while analyzing differences between the two models. However, this still is no guarantee against 
situations where the two models can inadvertently hide possibly relevant assumptions. 
 
 Ontologies provide a formal methodology for establishing a common vocabulary; for 
defining the concepts and the relationships among those concepts within a particular domain; and 
for reasoning about the objects, behaviors, and knowledge that constitute that domain (Russell 
and Norvig, 1995; Miller et al., 2004). We present an ontology for agent-based modeling and 
simulation. The ontology is general in that we define the terms, concepts, and relationships for 
the process and objects of agent-based modeling and simulation without reference to a specific 
application domain. Such an ontology provides a solution to the issues of ad hoc construction 
and subjective interpretation in three ways. First, the establishment of a common vocabulary 
provides unambiguous interpretation of terms. Next, the definition of concepts and their 
relationships makes explicit the assumptions that accompany those concepts. Finally, the 
reasoning capability of this ontology provides a framework for automatic generation of software 
programs, automatic composition of agent-based models to form new simulations, automatic 
design and execution of simulation experiments, and automatic generation of validation tests for 
those experiments. We use the standard Ontology Web Language (OWL) to provide a complete, 
detailed ontology of agent-based modeling and simulation. Our ontology is too large to include 
in this paper, but the files can be obtained from our Web site (Christley, 2004). To better 
associate the discussion with the ontology, in the remainder of this paper, we use italics when 
referring to specific classes or properties in the ontology. 
 
 

AGENT-BASED MODELING AND SIMULATION 
 
 The three basic reasons for using simulation are (1) to design something that does not yet 
exist, (2) to train people when the real task is costly or dangerous, and (3) to understand some 
real-world phenomena as part of scientific study. Although the design task and scientific inquiry 
can be considered similar to each other, all three uses have different processes and techniques. 
We concentrate on using simulation to understand real phenomena. Simulation provides (1) finer 
control over the complete system than is usually possible with the real system and (2) the ability 
for extensive what-if analysis through tweaking of parameters and altering the assumptions in the 
underlying theory. However, simulation injects a new problem into the scientific method in that a 
model of the theory for the phenomena must be implemented in a concrete representation so that 
it can be manipulated and simulated. Thus, the question becomes not just is the theory consistent 
with the real phenomena, but also is the concrete model representation an accurate description of 
the theory and is the execution of that model an accurate representation of the processes in the 
theory? The analysis needs to be taken one step further to the question: Are the implications of 
the simulation consistent with the implications of the theory? If not, the simulation does not 
provide the logical step required to determine whether the theory correctly captures the real 
phenomena. Most of the work with modeling and simulation involves doing the proper checks to 
provide a high degree of confidence for taking that logical step. 
 
 Although we focus on agent-based simulation, much is shared with general discrete-event 
simulation (Banks, 1998; Banks et al., 2001). Therefore, we highlight the differences where 
appropriate while relying on core fundamentals that have made discrete-event simulation a 
successful field. Despite being called agent-based simulation, the methodological differences lie 
more in the constructed models versus the implementation of those models in a computer 
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simulation. When viewing a phenomena through the agent-based paradigm, one sees agents 
interacting with other agents within an environment and within a spatial structure. An agent is 
the conceptual unit of interest, and there may be multiple agents. The concept serves to define a 
boundary between what is internal to the agent versus what is external. By agent, we are 
referring to a prototypical concept and not an individual. The environment and space can also be 
considered agents because they may have interaction mechanisms, but they are generally 
differentiated since their boundaries are not well defined. The environment (or possibly multiple 
environments) represents state information that is external to the agents. The environment could 
be global state for all agents, or it may be local state in conjunction with the spatial structure with 
its defined notions of locality. Space can be two or three dimensional physical space, or it may 
be a virtual construct, such as a network. Space is different from the environment in that it 
provides measures, like distance or connectivity, and typically only holds state specific to those 
measures. Multiple spaces can exist, each with its own set of measures. A cognitive agent 
maintains, among other things, internal state about what it perceives about the environment and 
space; so in a simulation, the environment and space represent actual truth versus what a 
cognitive agent might perceive as truth. 
 
 By modeling, we refer to the process of representing something with something else; it 
can be an abstract model whereby the representation simplifies or removes extraneous detail  
to capture the conceptual properties, or it can be a concrete model, which, oppositely, specifies  
a more detailed representation. By simulation, we refer to the process of enacting the model  
to learn consequences and to compare against the real phenomena of interest. Four key  
modeling concepts represent different model types: ConceptualModel, CommunicativeModel, 
ProgrammedModel, and ExperimentalModel (Balci, 1998). The ConceptualModel is a verbal, 
abstract model that states the theory or hypotheses for the proposed agent-based representation 
and the goal and objectives of the corresponding agent-based simulation. A ConceptualModel 
also provides descriptive specifications for the agent, the environment, the space, and the actions 
and properties for those constructs. A ConceptualModel is made more concrete by constructing  
a CommunicativeModel. In our process, the CommunicativeModel is a domain-specific ontology 
that fits within the general agent-based ontology. Objects in the model, such as agents, 
environment, and space, are represented through subclasses of those concepts in the  
general ontology. Subclasses are also created for the properties of those objects as well as  
their actions. Through SoftwareProgramming, a ProgrammedModel is constructed from the 
CommunicativeModel by representing the ontological concepts with concrete implementation  
in software code. A ProgrammedModel is one that can be executed as a ComputerSimulation.  
In a later section we discuss how the ProgrammedModel can be automatically generated from 
the CommunicativeModel using a reasoner. Finally, DesignExperiment involves using a 
ProgrammedModel to produce an ExperimentalModel, and PerformExperiment will cause the 
ExperimentalModel to produce SimulationData. Validation can use a StatisticalTest to compare 
the SimulationData against EmpiricalData. This is a simplified example of the modeling and 
simulation process as there are many more actions and concepts involved. Figure 1 shows a 
portion of the semantic network representing our formalized knowledge about agent-based 
modeling and simulation. 
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FIGURE 1  Relationships among models and agent, space, and environment 
 
 

ONTOLOGY FOR AGENT-BASED MODELING AND SIMULATION 
 
 When developing an ontology for agent-based modeling and simulation, we must clearly 
distinguish between the concepts and relationships that comprise the process of modeling and 
simulation versus the agents and behaviors in the domain of interest; yet these two are intimately 
related. The latter is called the domain-specific ontology, and the former is called the general 
ontology. The relationship between the two is simply that the domain-specific ontology provides 
more detail concepts and properties. For example, the general ontology has the concept of an 
agent that has some undefined properties and behaviors, but the domain-specific ontology will 
have the concept of a SoftwareProgrammingAgent that has defined properties like skill and 
resources and defined behaviors like writing code and fixing bugs. 
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 Our ontology is implemented in OWL (2004) using Protege (2004). OWL represents 
knowledge as a semantic network with nodes as classes and directed edges as properties. We 
have more than 100 classes in our ontology, with a similar number of properties. The root classes 
include Agent, Environment, Space, Action, and Property for concepts in the agent-based 
paradigm. Action and Property, along with Model, Simulation, Representation, DataSource, 
Test, and Assumption, are root concepts for the process of modeling and simulation. Measure, 
Time, and Event are concepts that appear in any general ontology. Action and Property are both 
concepts about the modeling process as part of the model, so we have AgentAction, 
EnvironmentAction, AgentProperty, and EnvironmentProperty subclasses for those concepts in 
the agent-based model; while, ModelerAction and ModelProperty subclasses are concepts about 
the modeling process. The classes that refer to concepts in the agent-based model stop at a 
general description, so more specialized subclasses would be provided by the domain-specific 
ontology.  
 

Our ontology focuses on the process of modeling and simulation, so ModelerAction 
includes subclasses like InputModeling, ParameterEstimation, DesignExperiment, Verification, 
Validation, ModelToModelComparison, and others. The Model class encapsulates all  
types of models, although we concentrate on ConceptualModel, CommunicativeModel, 
ProgrammedModel, and ExperimentalModel as described in the previous section. Simulation  
can be split between ComputerSimulation and PhysicalSimulation, with AgentBasedSimulation 
as a subclass of the former. Representation deals with representational forms like 
OntologyRepresentation as given by a CommunicativeModel or SoftwareRepresentation as 
embodied in a ProgrammedModel. The DataSource class conceptualizes all sources of data, such 
as EmpiricalData, RandomNumberGenerator, and SimulationData. Test refers to all forms of 
testing, especially specialized classes of StatisticalTest used in InputModeling and Validation 
actions. Finally, we have the concept of Assumption, which our reasoner will use to categorize 
the assumptions within the agent-based model. All of the concepts in the general ontology 
establish a common vocabulary that can be shared across domain-specific ontologies and provide 
unambiguous interpretation of conceptual terms. 
 
 In addition to classes, OWL has properties that define the relationships among concepts. 
The properties themselves are concepts that can form an inheritance hierarchy. Many properties 
are found in most ontologies that represent general relationships such as composition with 
isPartOf and isBunchOf, dependencies like requires, ordering of events with isBefore, isAfter, 
overlapsWith among others, or actions like has and produces. We specialize many of  
these relationships for agent-based modeling so that we can perform more accurate reasoning 
tasks. For example, a NormalDistribution hasParameter Mean and hasParameter Variance; 
thus, we will be able to reason that a simulation using a NormalRNG to produce normally 
distributed random numbers will require two parameters to define the distribution.  
Likewise, PerformExperiment requires an ExperimentalModel that isProducedFromAction 
DesignExperiment and that ExperimentalModel requires a ProgrammedModel that 
requiresSoftwareRepresentationOf Space, Environment, and Action. As for classes, the 
properties establish a common vocabulary for relationships, and the properties and classes 
together form our complete knowledge base for agent-based modeling and simulation. 
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ONTOLOGICAL REASONING 
 
 An ontology formalizes our knowledge base, so it is possible to perform automated 
reasoning on the process of modeling and simulation as well as on the models and simulations 
themselves. Reasoning on a model and its corresponding simulations provides us with a set of 
inferred assumptions for the model, a set of inferred assumptions for the representation of the 
model as a simulation, and a set of inferred parameters for the simulation. Reasoning on the 
process of modeling and simulation provides the potential for automating many of the primary 
tasks in the process, including software programming of the simulation, design and execution of 
computer simulation experiments, and validation of experimental results. We describe each of 
these capabilities in more detail in the following sections. 
 
 
Inferred Assumptions 
 
 An Assumption can be further categorized into a DataAssumption or a 
StructuralAssumption. A DataAssumption refers to questions about how data are collected and 
analyzed, so InputModeling of EmpiricalData to come up with an appropriate probability 
distribution introduces a DataAssumption that the distribution is an appropriate representation  
of the EmpiricalData. A GoodnessOfFitTest can be used to validate that assumption. 
A StructuralAssumption refers to questions about the composition of the model and the 
conceptual representations in the model. Concepts in the model and the relationships among 
those concepts, as abstract constructions of reality, imply assumptions about how those 
constructs are represented and whether the relations are correct. Viewing a CommunicativeModel 
as a semantic network, a StructuralAssumption asks whether the nodes are appropriate concepts, 
whether the edges are appropriate properties, and whether concepts linked by an edge is an 
appropriate relationship. Assumptions can either be falsified or failed to be falsified (validated), 
much like a null hypothesis, if an appropriate test can be performed. For the InputModeling 
example above, the GoodnessOfFitTest performs this function, while experiments and tests 
would need to be performed to provide Validation of a CommunicativeModel.  
 

Not all assumptions can be tested, such as whether a CommunicativeModel accurately 
represents the concepts in a ConceptualModel, because the ConceptualModel is a verbal model 
lacking a formal description. The best that can be performed is a SubjectiveTest such as 
FaceValidity. The reasoner is able to infer all of the assumptions in an agent-based model from 
the CommunicativeModel through to the ExperimentalModel, and our goal is for the reasoner to 
determine whether these assumptions can be validated and what appropriate test should be used. 
The assumptions can be inferred by looking at the properties of the classes and questioning 
whether the relationship among the classes implied by the property is correct. With all of the 
assumptions clearly laid out, the modeler obtains a broader view of how the agent-based model 
can be validated and may gain insights into model changes to strengthen the overall theory. 
 
 
Inferred Parameters 
 
 A Parameter is a ModelProperty that is considered as an input to the model. 
A Parameter may be given a value through the ParameterEstimation action, or the modeler may 
AssignParameterValue as part of DesignExperiment. The Parameter may have a constant  
value throughout the simulation, or it may be attached to a DataSource like EmpiricalData or 
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sampled from a Distribution created by a RandomNumberGenerator. An InitialCondition is a 
ModelProperty similar to a Parameter, but an InitialCondition assigns values to state variables 
for just the start of the simulation. In contrast, a Parameter is persistent through the whole 
simulation run. Like a Parameter, an InitialCondition may be assigned a specific value or sample 
values from a DataSource. The reasoner has the capability to determine all of the Parameters 
and InitialConditions in an agent-based model. It can do this because the ontology encodes 
knowledge of the properties of agents, environment, and space, so a logical query on the 
properties provides the list. The result of such a logical query becomes part of the automatic 
design and execution of experiments, whereby the query results are presented to the modeler for 
specification of input values. 
 
 
Automated Software Programming 
 
 Complete automated software programming of the simulation requires more than a 
CommunicativeModel embedded within the agent-based ontology because it does not provide 
sufficient detail to generate source code for all agent and environment actions. Attempts  
to provide high-level specification of software can fail because too many assumptions  
must be made about the functionality and purpose of the software, or the specification  
process may be more cumbersome than directly writing the code (Rich and Waters, 1988;  
Flener and Popelmnsky, 1994). However, we believe an intermediate approach is both feasible 
and useful. The CommunicativeModel can be translated into the high-level structure of the 
ProgrammedModel. This process includes generation of the object-oriented classes for the agent, 
environment, and spatial constructs in the model with instance variables for the properties of 
those constructs, and accessor, constructor, and stub methods for the constructs’ actions. Such an 
intermediate approach means the modeler can focus upon the software implementation for the 
fundamental behaviors in the model while much of the “glue code” required to make the 
simulation work is handled automatically. 
 
 
Model Composition 
 
 Another fruitful area of automation is the composition of multiple, separate 
CommunicativeModels into a single ProgrammedModel. These CommunicativeModels can be 
created by the same modeling group or different groups. Composition of CommunicativeModels 
requires semantics of the interactions among the models. We separate the composition process 
into two situations according to whether these CommunicationModels consist of the same or 
different collection of entities: 
 

1. Two CommunicativeModels representing the same collection of entities that 
interact together over time: We consider these two CommunicativeModels as 
representations of the same world phenomena. One of the research groups at 
the University of Notre Dame models the evolution of natural organic matter 
(NOM, a complex mixture of molecules that is heterogeneous in structure and 
composition) by using the agent-based modeling approach (Xiang et al., in 
press). As NOM passes through an ecosystem, it is acted upon by a variety of 
reactions. To satisfy different research interests, two communicative models 
are developed. One models the physical reaction behaviors of NOM, and the 
other models the chemical reactions between NOM and its environment. 
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A new, third model can be generated that includes both of these two behaviors 
by composing the two CommunicativeModels.  

 
2. Two CommunicativeModels representing a different collection of entities that 

interact together over time: The two CommunicativeModels are considered as 
representations of different world phenomena. In the example we describe 
above, the microbes, fungi, and bacteria exist in the natural environment  
and interact with NOM; in the current CommunicativeModels, they are 
represented as a set of environment state variables. It is more realistic that 
these microorganisms be represented as agents in the NOM world and their 
interaction with molecules be explicitly modeled. When there is an existing 
model that models the life cycle of the microorganisms (microorganisms can 
reproduce themselves and die) with an agent-based modeling approach, 
creation of the new model can benefit from the composition of these two 
existing models. 

 
The composition of CommunicativeModels requires merging different domain-specific 

CommunicativeModels together. This merging process can be automated with ontological 
reasoning. Three possibilities for semantics arise for these two situations: the semantics may 
either be already described in both CommunicativeModels, in only one model, or in neither of the 
models. In the first situation, both CommunicativeModels most likely have the same semantics. 
In the second situation, the semantic are most likely existing in one CommunicativeModel but 
not in another (partially overlapped).  
 

One important task residing in the merging process is determining whether two domain-
specific concepts are the same in two CommunicativeModels. Determining the “structural 
equivalence” of two concepts by comparing the incoming edges and outgoing edges of these two 
concepts is one way to complete the task. Much research has addressed matching the concepts by 
using sophisticated algorithm and artificial intelligence techniques, such as machine learning 
(Noy and Musen, 2000; Doan et al., 2003). The merging process may involve integration of new 
knowledge, such as specifying the new interaction among agents, which requires the input from 
model developers. With complete knowledge representation, the composition process can be 
done automatically. 
 
 
Automated Design and Execution of Experiments 
 
 Automated design of simulation experiments can be implemented through manipulations 
of the ProgrammedModel. Such manipulations include basic assignments of values to 
Parameters and InitialConditions, enabling or disabling of Actions for the Agents, Environment, 
and Space, or even completely different implementations for those constructs. Here we take the 
viewpoint that an experiment works within the framework of a CommunicativeModel and that 
manipulations to that model fall outside the domain of the ExperimentalModel. However, most 
model manipulations can be supported as long as the possible changes are encapsulated through 
ontological concepts in the CommunicativeModel. For example, suppose you have designed a 
model and corresponding simulation whereby the agents interact in a two-dimensional 
continuous space using an Euclidean distance neighborhood measure, and you decide you want 
to replace the space with a random network structure connecting the agents. Changing the spatial  
 



123 

 

structure will create a logical inconsistency because a network does not have a Euclidean-
distance neighborhood measure. The inconsistency is resolved by manual alteration of the 
ProgrammedModel to utilize a different neighborhood measure. In contrast, if the original 
CommunicativeModel had both spaces, then a general concept would have been required to 
encapsulate the neighborhood measure; the result being the ProgrammedModel that allows for 
automatic manipulation, via a Parameter, of the spatial structure through use of a generalized 
neighborhood measure. This is not to say that one is more capable than the other, but because we 
have taken an intermediate approach to software code generation, inconsistencies due to model 
changes outside of the ExperimentalModel may not be automatically resolved within the 
ProgrammedModel. 
 
 Once an ExperimentalModel has been designed, it can be executed to produce 
SimulationData, which can then be validated. One execution of a simulation is not sufficient; 
numerous executions, or replications, of the ExperimentalModel must be performed with 
different seed values for any RandomNumberGenerator in the simulation. The reasoner can 
automate these replications because knowledge of the seed values is part of the ontology. 
Likewise, a modeler does not generally design a single experiment; experimentation is often an 
iterative process whereby experimental results are analyzed, changes are made to the 
CommunicativeModel, those changes flow through to the ProgrammedModel, and a new 
ExperimentalModel is designed. This iterative process continues until the modeler feels that the 
CommunicativeModel has been sufficiently validated. At this point, the next step depends upon 
the purpose of the simulation. Presuming that the simulation is for scientific discovery, 
SensitivityAnalysis is an example action that can be performed to better understand the role of the 
model parameters, or experiments with different model parameters or design may be performed 
to generate hypotheses that can be tested against the real world phenomena. 
 
 
Validation of Simulation Experimental Results 
 
 Validation is the process of comparing a model against the real world phenomena it 
represents. All Validation is based on a Test that decides whether two things are same or not. 
There are weak tests and strong tests. A weak test is a SubjectiveTest that does not have a well-
defined decision procedure. A SubjectiveTest includes such things as a VisualTest, whereby you 
make a visual comparison of two graphs, or FaceValidity, whereby a knowledgeable user makes 
a determination if the model appears reasonable. A strong test is generally associated with a 
StatisticalTest where a formal mathematical decision procedure exists to objectively make a 
determination. Computers have difficulty performing SubjectiveTests, but they excel at 
StatisticalTests, so the reasoner can perform automatic validation provided it has sufficient 
knowledge about what type of StatisticalTest is appropriate for the SimulationData provided by 
an experiment. Many statistical tests exist, and formalizing all of them in our ontology is a large 
task; however, we incorporated many of the standard techniques like GoodnessOfFitTest, 
ConfidenceInterval, AnalysisOfVariance, TestOfMeans, and TimeSeriesAnalysis. 
 
 One particular form of Validation introduced by Axtell, et al. (1996) is 
ModelToModelComparison, by which two simulations are compared. The original definition  
has the same CommunicativeModel but different ProgrammedModel, possibly written in 
different programming languages or using different simulation toolkits, and correlated 
ExperimentalModels are designed and their SimulationData are compared. 
ModelToModelComparison provides a good test to validate that the ProgrammedModel is an 
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accurate representation of the CommunicativeModel, so differences indicate that artifacts exist in 
the ProgrammedModel. Takadama and Fujita (2004) propose the notion of cross-element 
validation that makes small changes, one element at a time, in the CommunicativeModel and 
compares the experimental results. For such an experiment, the Bonferroni approach can be used, 
if the SimulationData is a fixed sample size, to produce a confidence level of whether the two 
models are statistically similar or different. We consider both the original definition and cross-
element validation to be forms of ModelToModelComparison. Likewise, our iterative description 
of the experimental process allows for the possibility of ModelToModelComparison between 
CommunicativeModels as they evolve from one iteration to the next. With knowledge of multiple 
programming languages and multiple simulations toolkits, the reasoner can automatically 
generate multiple ProgrammedModels from a single CommunicativeModel, allowing for greater 
experimentation. 
 
 

FUTURE WORK 
 
 Our discussion of simulation in general has been brief; we described key areas that we 
consider relevant to agent-based modeling and simulation but omitted some areas completely. In 
the areas covered, our discussion is not as encompassing as we would like. However, we have 
presented a high standard for automation of many simulation tasks. Going forward, we intend to 
implement tools specific to agent-based modeling that can perform these tasks and put them in 
practice on a couple of actual agent-based simulations. This should help elicit more issues that 
are not apparent just from the theory. One of our key assumptions is the completeness of our 
ontology, which makes many of the automated tasks possible. A more realistic scenario is to 
assume incomplete knowledge as well as uncertainty; then we use a probabilistic reasoner for 
making decisions and a learning algorithm to accumulate additional knowledge. This is very 
much what a modeler does as part of the scientific inquiry into a phenomenon; a useful tool will 
work alongside the modeler, helping to increase the knowledge base while automating many of 
the mundane tasks. 
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ABSTRACT 
 

In recent years, the modeling of realistic relationships by agent-based models (ABMs) 
has been gaining significant ground because of the ability of ABMs to overcome the 
generalizations and statistical moment assumptions of traditional modeling approaches. 
ABMs follow a bottom-up approach to modeling, allowing issues of scale, time, and 
space to be taken into account simultaneously. This paper uses case studies as examples 
to demonstrate these significant properties in an ABM environment that also incorporates 
and utilizes traditional statistical assumptions and properties at an individual agent level. 
In this way, the design of individual agents can be used to more accurately represent 
existing real-world relationships and reduce the level of uncertainty in predicting 
individual and collective agent behaviors for sustainable futures. Specific case studies 
from the Multi Agent-based Behavioral Economic Landscape (MABEL) model are used 
to illustrate the usefulness of the proposed methods for studying land use change, natural 
resource management, efficiency, and environmental-specific considerations that affect 
the decision-making capabilities of the agents. These methods are designed with the end 
user and decision maker in mind, so that robust and efficient outcomes can be back-
propagated to the model in ways that enhance the adaptivity and veridicality of our 
experiments. 
 
Keywords: Agent-based model, MABEL, Bayesian belief networks, Monte Carlo 
experiments, robustness, decision making 

 
 

INTRODUCTION 
 
 In recent years, the modeling of realistic or “real-world” relationships by agent-based 
models (ABMs) has been gaining significant ground. ABMs are an appropriate tool for modeling 
such relationships because of their ability to overcome the generalizations and the statistical 
moment assumptions of traditional modeling approaches. They follow a bottom-up approach to 
modeling, allowing issues of scale, time, and space to be taken into account simultaneously in a 
simulation environment. This paper uses case studies as examples to demonstrate these 
significant properties in an ABM environment. Furthermore, the paper showcases the ability of 
ABM environments to incorporate and use traditional statistical assumptions and properties at an 
individual agent level. In this way, individual ABM designs can be used to more accurately 
represent existing real-world relationships and reduce the level of uncertainty in predicting 
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individual and collective agent behaviors for sustainable futures. Specific case studies from the 
Multi Agent-based Behavioral Economic Landscape (MABEL) model are used to illustrate the 
usefulness of the proposed methods for studying land use change, natural resource management, 
efficiency, and environmental-specific considerations that affect the decision-making capabilities 
of the agents.  
 
 The use of repeated measures as Monte Carlo replication experiments can help 
(1) improve the constructability of the agent-based architecture (by testing the accuracy of the 
agent’s performance by comparisons to historically observed changes) and (2) increase the 
confidence with which changes can be predicted over time (by reducing the uncertainty of the 
estimates and providing the necessary near-term range of scenarios for sustainable futures). The 
examples here show how these replication experiments can be designed and incorporated as an 
integral part of the ABM environment and, at the same time, be used as reference and accuracy-
assessment tools that use external performance metrics in both statistically and environmentally 
based assessment schemes. This linking of the ABM environment with accuracy-assessment 
metrics is important and establishes the degree of confidence required by decision makers and 
end users of the simulations. 
 
 The range of confidence in the simulation replication experiments can be also used as a 
transition step for achieving the necessary predictability and confidence level for near- and long-
term predictions and sustainable-future scenarios. When the ABM exercises are addressed as an 
integral part of a holistic approach to sustainable futures, it is often desirable to use prediction 
ranges instead of individual predictions. Then the simulation veridicality can be advanced by 
incorporating uncertainty considerations (such as behavioral changes of individual agents and 
collective cognitive estimates of agents participating in a simulation) into a simulation 
environment that is more stochastic than deterministic. Designing and constructing cognitive and 
behavioral changes in an ABM requires an adequate number of plausible and realistic scenarios 
that are able to differentiate the agents’ behavior at the desired degree of abstraction, provide 
realistic simulation outcomes, reduce the level of uncertainty in the decision-making process, and 
provide a clear and comprehensive picture of the sustainable futures. This paper provides 
examples of the procedural steps that can be followed in such an ABM environment. 
 
 The approach to modeling proposed here attempts to reveal a working environment for 
ABM architecture that it is not limited to traditional computational science considerations but 
also takes into account, in advance, the considerations and assumptions that are necessary to take 
the simulation results one step further. In other words, it is designed with the end user and 
decision maker in mind, so that robust and efficient outcomes can be back-propagated to the 
model in ways that enhance the adaptivity and veridicality of the experiments.  
 
 
Modeling in the Context of Epistemology 
 
 The epistemological framework upon which the ABM approach is built represents a very 
important concept in designing and implementing an agent-based simulation. Our ability to 
construct theoretical arguments that go beyond the framework of a single simulation experiment, 
thus extending our understanding of the real world, depends on the epistemological content and 
context (Kuhn, 1996).  
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 Here we enhance the epistemological content of our approach to ABMs by widening the 
magnitude and the dimensions of our understanding of what the elements of change are and how 
these changes emerge, and also by addressing questions on why these changes emerge and what 
their broad meaning is in terms of real-world changes. We suggest that the individual elements, 
experiments, and case studies can be assigned a broader meaning only if they are thought of and 
conceived of as a part of a series of inferences to the epistemological context. 
 
 An epistemological framework like the one we employ for the MABEL model 
architecture is neither purely mechanistic, in the sense of the Descartes mechanistic 
representation (Rouanet et al., 1998; Erion, 2001) and the 20th century philosophy of science, 
nor purely stochastic, in the sense of the early game-theoretic approach and social and cognitive 
discipline approaches to modeling (Innocenti, 2004; Milchtaich, 2004). It perceives these 
approaches as being complementary to each other, and it proceeds to construct a scientific 
hypothesis in terms of both “what the world is like” and “how the world can be.” It expands the 
perceptual limits of the first notion by using a diverse array of modeling elements and tools to 
capture the emergent properties of the systems that are present in the modeling environment. 
This allows us to understand what the objects and subjects of change are, what is changing and 
what is not, and what is important to our understanding of reality. It also enhances our 
understanding of the second notion by confining the mechanistic character only to the modeling 
representation and by explaining how a mechanism emerges, how changes occur, and how these 
changes reflect back to the modeling elements and their properties. These two approaches are 
shown in the first part of Figure 1. 
 
 Consequently, our effort to understand why the world changes requires an understanding 
of both the specific elements of change and the underlying mechanisms of these changes. The 
MABEL modeling architecture presents a synthesis of modeling processes and their inferential 
mechanics that can be called inferential modeling (second part of Figure 1). This synthesis is the 
essence of the epistemological framework we employed and describe here, which allows us to 
derive the broad implications and consequences of the changes we model. We live in a less-than-
perfect world; there are no single truths that can provide answers to all of our questions. Often 
our answers and suggestions have numerous and broad implications on policy and 
implementation that can direct future changes in one direction or another within an ensemble of 
alternative futures. Exploring such a broader meaning (final part of Figure 1) can often allow us 
to distinguish between alternative futures in a larger sense and between sustainable futures in a 
desired sense. 
 
 Perceiving and implementing an ABM within such an epistemological framework is 
often a complicated task, since it requires an enhanced ability to move within and across scales, 
involves different levels of complexity, and demands a clear understanding of the broad 
implications and interactions involved. These issues are discussed further. 
 
 
Dealing with Multiple Scales 
 
 The question of the multiplicity of scales in such an agent-based simulation is important 
to consider, especially when the complexity in the simulation and/or representation of reality is 
great. There are numerous simulations over a multiplicity of single scales. Few go beyond the 
single-scale representation and examine the interactions emerging across dualities of scales.  
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FIGURE 1  Constructability of the epistemological framework 
for the MABEL model (Our ability to freely transcribe our 
modeling simulations and exercises to meaning  both 
content and context  depends heavily on how we construct 
the mapping of different scales of perception.) 

 
 
Traditional statistical techniques allow for the discovery of patterns across pair-wise comparative 
scales. When the scale dimensions exceed two, the problem becomes nontrivial, since the 
covariation across and within such scales introduces a significant challenge in the study of 
emergence and its mechanisms. 
 
 An example of the computational and statistical complexities involved in such a attempt 
at representation is shown in Figure 2. Starting from the bottom, the smallest perceptual unit is 
the cognitive belief perception of each agent. This is a microcosmic representation of the 
simulation scale, as the decisions by individual agents are being considered. If we denote as p(ai) 
the probability that an agent would select a specific action ai based on his beliefs, rules, and 
properties, then the mapping of these probabilities across the simulation state space (all the 
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agents or entities participating in the simulation) presents us with the fundamental simulation 
scale via a transition probability model P(ai). Such a transition probability model varies across 
agents belonging to the same class (homogenous), so that we can represent agent class decision 
making as an ensemble of decisions made by individual agents. The transition probability model 
varies across agent classes (heterogeneous) as well, by means of various beliefs, rules, and 
properties. Across an entire simulation with multiple agents and multiple agent classes, the 
representational scale is a probability density function pdf that maps the densities of the 
homogenous agent decisions across all heterogeneous agent classes. 
 
 Such a mapping is a “snapshot” of the underlying reality of the world at the agent-based 
perceptional level. It does not take into account the variability and uncertainty of changes in the 
agent’s decisions as the simulation advances through time. It represents just one possible future 
out of a wide variety of possible futures. Especially in the cases where stochastic simulation is 
employed, the discovery of alternative futures and the conditions under which one would expect 
these futures to emerge is important. These are cases where, for example, we want to simulate a 
hypothetical situation or predict a possible change, as opposed to cases where simulation 
properties are deterministic and correspond to a historical sequence of events or actions. 
 
 If the simulation is a spatial one, the probability mapping described above defines a third 
dimension in a three-dimensional (3-D) scale map (e.g., dimension z on an { , , }x y z  plane, where 
x and y are the latitudinal and longitudinal spatial coordinates, respectively). 
 
 

 

FIGURE 2  Statistical and computational complexity in multiple scales (Movement within 
scales [horizontal dimension] and across scales [vertical dimension] dictates the level of 
complexity involved and thus the number of representational elements required to 
visualize them.) 
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 As is often pointed out, the relative level of complexity encountered within ABMs is very 
important. It can have many consequences on our ability to accurately depict changes that occur 
in the real world (i.e., in the case of structural complexity) and/or our ability to represent and 
communicate these changes in a meaningful and comprehensive way (i.e., in the case of 
representational complexity). Carley’s (2002) discussion on the difference between transparency 
and veridicality provides good insight into the issues associated with the level of complexity and 
on the implications of the complexity on modeling representation. Similarly, Agarwal et al. 
(2002) provides a 3-D insight on different complexity scales that is based on a thorough 
examination of 19 different land-use models in use. 
 
 

MABEL SIMULATION APPROACH: MODELING ELEMENTS  
AND MECHANISMS1 

 
 The MABEL model framework presents a comprehensive, dynamic, and interactive way 
to simulate land-use changes over time and space, accounting for environmental, socioeconomic, 
and cognitive factors. It is based on the Swarm ABM architecture (Swarm Intelligence Group, 
2000) but has several major added distributed architectural tools and simulation elements that 
advance the simulations’ capabilities and present a departure from traditional ABM techniques. 
First, both the agents as well as the simulation as a whole acquire a spatial intelligence character 
by incorporating geospatial and geographic information system (GIS) components and 
visualization elements. Second, it integrates the spatial dimension (2-D) with the socioeconomic 
(SE) dimensionality of the decision makers, thus transforming it into n-D. An agent in MABEL 
is therefore both a parcel of land (with its associated geospatial and GIS attributes) and a 
decision maker (with the parcel owner’s associated SE attributes). Third, an agent’s decision-
making process is associated with an underlying cognitive mechanism, namely a Bayesian belief 
network (BBN) model. An agent’s decision-making intelligence is closely associated with such a 
BBN model, as it interactively provides learning and adapting capabilities for the entire 
simulation. 
 
 The relational mechanism that precedes the actual simulation is a part of the MABEL 
model’s initialization stage. Figure 3 illustrates the procedure itself and how identification 
proxies are used throughout the simulation. 
 
 The SE component of the knowledge base (KB) allows us to map the possible transitions 
from state-space (Si) to action-space (Ai) by using alternative configurations of cognitive 
mechanisms (different BBN models, corresponding to homogenous agent classes). The 
conceptual diagram in Figure 4 demonstrates such a process. 
 
 Through the simulation, the sequential decision-making process exhibits the properties of 
a Markov mechanism. It is referred to as a Markov decision process (MDP), and for each time 
step, an agent has to derive an evaluating ranking of its intentions via an expected utility 
maximization rule. The specific formulation of the MDP model elicits the use of a set of States 
(S) – Actions (A) – Transition Models (P) – Reward Functions (R) to achieve the maximization  
 

                                                 
1 This section provides a very brief overview of the MABEL simulation framework. A detailed description of the 

MABEL model is provided in our recent papers (Alexandridis et al., in revision; Lei et al., 2005). Contact the 
author for further details. 
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FIGURE 3  Acquisition of knowledge base (KB) in MABEL 
(The rectangles represent elements of the KB, and the 
shaded area represents a type of a relational mechanism 
[Source: Lei et al., 2005]). 
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FIGURE 4  Mapping state-space to action-space in the MABEL model 
(In addition to the KB, BBN, and MDP modeling elements, identifiable 
modeling mechanisms are also present. They are the relational 
mechanism, which links the variable-space of the KB to action-space, 
and the cognitive mechanism, which consists of the BBNs for agent 
classes.) 
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of the expected utility (MEU) principle (see Alexandridis et al., in revision, for details). 
Although in a deterministic simulation, this procedure alone would be adequate to derive an 
optimal path toward a given goal, in any real-world situation, such an assumption is, in a 
practical sense, inadequate for providing long-term efficiency assessment measures. The reason 
is that real-world goals associated with long-term dynamics cannot be defined in advance; in 
other words, the simulation faces an infinite horizon MDP problem formulation. To overcome 
this problem, the use of a heuristic mechanism is required. Instead of asking whether or not an 
agent reached a given goal, we can define the goal set (G) as a wider terminal state, where goals 
are elicited as hierarchical arrangements of goal achievements by using welfare measurements of 
intended actions. The theory of social scale development and social psychology provides us with 
many alternative ways to achieve such a hierarchical arrangement (Petty and Cacioppo, 1996; 
Eagly and Chaiken, 1993). We can evaluate and elicit relative distance measurements of the 
degree of change between two sequential time steps. In Figure 5, an example of such a heuristic 
is provided for an agent’s transition from a given time step si to the next one, si+1. The 
alternative pathways between the initial state so  and any of the goal sets g(Ai) describe a given 
sequence of actions, analogous to the way that a DNA string denotes a given sequence of genes. 

 The heuristic distance between the current state si a goal set g(Ai), denoted as  
d[g(Ai)-si], can be estimated in terms of an expected utility measure (EU), and it is the shortest 
path distance measure. The differences between two alternative states, si and si´, in the example 
is simply ∆(s|ai) = d[g(Ai)-si] – d[g(A1)-si+1] and ∆(s´|ai´)=d[g(A2)-si] – d[g(A2)-si´+1]. By 
comparing the two differences, we can say that if ∆(s|ai) > ∆(s´|ai´), then the agent should stay 
on the path (toward achieving some relaxed set of terminal goals). But if ∆(s|ai) < ∆(s´|ai´), the 
agent’s path sequence is a not an optimal one; thus, an alternative action strategy for achieving 
the terminal goal state(s) should be actively sought. This inferential rule is equivalent to the 
MEU rule. The grayed paths in Figure 5 denote nonrational agent action sequences. 
 
 Another relational mechanism is the land bidding module (LBM) in the MABEL 
simulation. The module negotiates “biddings” between buyer and seller agents within a time-step 
sequence. MABEL considers the decisions coming out of the initial MDP model to be intentions  
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FIGURE 5  Procedural representation of the MABEL decision-making sequence (The 
terminal goal state is a stochastic one; thus, the procedure achieves its performance 
by using a heuristic mechanism.) 
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and thus to not represent actual changes in the agents’ attributes. They can be considered as 
latent variables, which are used to indicate the degree and strength of an agent’s willingness to 
engage in a specific action (e.g., buying and selling land). The purpose of the LBM relational 
mechanism is to attempt to match such transactions as efficiently possible. The final outcome of 
the bidding process can then be considered the final (and actual) action that an agent will 
perform in the next time step. Figure 6 illustrates the LBM procedure. 
 
 The variance that emerges between intended and performed actions across agents raises 
the question of how accurate the initial estimation of the agent’s welfare measures is, especially 
in cases where the difference between intentions and actions undertaken is significant. The use of 
an iterative sequence of prediction-correction processes addresses this question. These processes 
are performed by the Bayesian learning and Bayesian updating procedures in the belief networks 
(Berikov and Litvinenko, 2003; Shachat and Walker, 2003; Wong et al., 2004). The use of these 
processes is illustrated in a later section by a case study example. 
 
 
Inferential Modeling 
 
 In this section, we use specific modeling exercises as case studies to illustrate the relative 
importance of the MABEL modeling approach to the conceptual elements and their underlying 
mechanisms. The details associated with these exercises can be found in the respective papers 
from which they were drawn. (It is not the purpose of this paper to replicate the explanations).  
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FIGURE 6  Formulation of the land bidding module (LBM) in 
MABEL (An agent negotiates its intended actions [derived from 
the MDP] and achieves its final decisions. This is an intermediate 
simulation stage between belief prediction and correction. It is also 
a type of relational mechanism, linking intentions with actions.) 
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These exercises are vehicles to show the importance of the epistemological framework and how 
phenomenically diverse modeling exercises address different yet equally important aspects of 
our understanding of the world around us. 
 
 Two broad exercises are examined here. The first involves understanding the landscape 
changes that emerge around us as a result of individual decision making related to land use and 
assessing the accuracy of the spatial aspects involved in the MABEL agent-based simulation. 
The second showcases the use of the BBNs as a cognitive mechanism and the potential effect of 
their use on the agent’s learning capability and intelligence. 
 
 
Monte Carlo Replication Experiment for Landscape Dynamics  
of the MABEL Model 2 
 
 The main goal of the experiment was to assess the parcelization algorithms that are 
designed within the MABEL modeling architecture. Historical data from 1970 to 1990 were used 
to initiate different MABEL simulations that modeled historical land-use change sequences. The 
agents were assigned a set of deterministic goals that were based on a series of assumptions. For 
example, the temporal sequence was fixed so that the initial terminal states of the simulation 
would correspond to the intermediate observed changes (i.e., from the decade observations for 
1970, 1980, and 1990, the number of agents that changed equaled the number of parcels that 
historically changed within each land-use and agent class). Other assumptions were used to 
achieve exactly the opposite: introduce an adequate level of stochasticity on the simulation 
factors that were irrelevant to the exercise goals. For example, the focus was on the shape and 
pattern characteristics of the parcels that changed; thus, the spatial (locational, e.g., centroids’ 
mean longitude and latitude) arrangement of the agents as well as of the cognitive and SE 
elements had to be random. 
 
 To enhance the reliability of and confidence in the simulation, a series of Monte Carlo 
replications were performed (100 replications for each of the three alternative modeling 
configurations). An ensemble of search- and scan-based pattern recognition algorithms was 
tested; the algorithms were tested simultaneously, and the use of functional metrics allowed their 
performance in the simulation to be tested. These metrics are the occupancy area ratio OAR and 
width/height ratio WHR, as follows: 
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where minCR(i) is the smallest confined rectangle containing the agent i. 
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2 Based on the simulation experiments performed in Alexandridis et al. (in review).   
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For a certain partition algorithm i, the optimal value OPTi is used to describe the “correctness” of 
the shape partition. This can be expressed as follows: 
 

,
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where w1 + w2 = 1, and w1 and w2 are defined as the relative proportions of OAR and WHR  
of the optimal shape, respectively. A graphical display of the spatial configuration of the 
partitioning algorithm is shown in Figure 7. 
 
 The simulation’s focal area involved the entire Midwest region of the United States, as it 
was divided into sampling areas by county blocks. Each county block contained eight 3- × 3-mi2 
blocks, each with a distribution of land-use parcels. The distribution and data development 
methods were derived from Brown et al. (2001). For computational and analytical purposes, we 
focused on two of these county blocks in two counties in Michigan  Grand Traverse County 
and Mecosta County  containing eight 3- × 3-mi2 blocks each. An example of a visualization 
of the simulation results’ area is shown in Figure 8. 
 
 To assess the accuracy of the simulation results, the landscape metrics were employed 
(McGarigal and Marks, 1994; McGarigal et al., 2002). The relational and inferential mechanism 
of such a modeling exercise is relatively complex. The interpretation and export of the 
simulation results in a form that can be used for a spatial accuracy assessment are  
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FIGURE 7  Example of quantity measurements of optimal shape in a 
hypothetical MABEL agent (Left: The smallest confined rectangle for agent i is 
denoted by the thick-bordered rectangle and contains the entire area of the 
agent i [shaded area]. Right: Rectangle A denotes the smallest confined 
rectangle for agent i. Rectangle B denotes the scanned area for agent i. 
Rectangle C denotes the unscanned area for agent i.) 
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FIGURE 8  Example of the MABEL Monte Carlo replication experiments (Left: Grand Traverse 
County Blocks, 1970−1980, Replication No.15. Right: Mecosta County Blocks, 1980−1990, 
Replication No. 45. The dimensions of each sample block are 3 × 3 mi2. The blocks across 
counties appear to be different sizes in this display because of the differences in county area 
sizes. [Source: Alexandridis et al., in review]). 
 
 
complicated, as shown in Figure 9. Several alternative landscape and class metrics were 
employed. The landscape metrics presented some inferential properties both for the spatial 
configuration of the agents’ parcels and for the agents’ classification as homogeneous (at the 
landscape level) and heterogeneous (at the class level). The functional forms of these metrics are 
shown in Table 1. 
 
 These metrics were used to calculate and draw the simulation results. A subset of these 
results is shown in Figures 10 and 11. The results seem to confirm the accuracy of the MABEL 
model parcelization algorithms. Additional tests (using a Kolmogorov-Smirnov test) indicated 
that the results differ from a random distribution. A reliability analysis indicated that the 
simulation displayed a significant level of reliability with regard to our process in terms of 
capturing the variability observed in the real-world changes (Alexandridis et al., in review). 
 
 
Assessing the MABEL Cognitive Mechanism by Using Bayesian Belief Networks 
 
 The example that follows showcases the value of the BBN modeling elements in the 
context of the MABEL decision-making process. The example was purposely chosen to be an 
oversimplification of the reality that encompasses the true elicited attitudes and beliefs that 
people use when faced with similar decisions, simply because of its transparency attributes. 
Since the point to be made here is not about the BBN elicitation or constructability but about the 
intelligent learning properties that the agents participating in the simulation are implied or 
inferred to have, unnecessary veridicality was avoided. 
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FIGURE 9  Relational mechanism and procedural steps involved in performing  
a spatial accuracy assessment 

 
 
 The BBN shown in Figure 12 was initially elicited to present a simple situation in which 
a farmer-agent faces a land acquisition decision to either buy land, sell land, or do nothing. At 
each time step, the agent observes directly only a weather forecast (that has a relatively biased 
correlational relationship to the actual weather) and the yield of the land parcel at any given 
planting period, and the agent has a risk aversion potency toward his or her decisions. On the 
other hand, the weather (especially past weather experience) affects the weather forecast, land 
yield, and achieved price levels that exist in the market. Both prices and yield, in turn, affect the 
income from the farm (which, in the long run, affects the agent’s risk aversion properties). The 
elicitation of the welfare measurements in terms of the expected utility (EU) allows both the 
price and farm income levels to affect the scale representation index of these measurements. 
 
 The welfare (EU) index representation is then used to derive the EU distribution for the 
land-use decision node, by weighting the probability value of each of the alternative decisions 
with its corresponding utility index value. The MEU principle in MABEL requires that the action 
with the highest EU should be considered as the intended action and should be message-passed 
to the LBM for further processing. A set of 100 sequential observations used for three of the 
BBN nodes (weather, weather forecast, and yield achieved) was used to enter evidence into the 
model, and the changes in the maximum EU were monitored (Figure 13). 
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TABLE 1  Landscape and class metrics and their inferential properties for the MABEL agents 

Landscape Metrics (Heterogeneous Agents) 

Mean Shape Index 
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Measures the complexity of a parcel 
shape at a landscape level. Equals 1 
for square parcels, and it increases 
for more irregular ones. 
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Measures the degree of complexity 
in a parcel shape, as a departure 
from Euclidian shapes. Ranges from 
1 to 2. The larger its value, the more 
complex the parcel’s shape is. 
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Similar to shape index, but uses the 
smallest circle instead of square. 
Ranges between 0 and 1, and 
approaches 1 for elongated, relative 
linear parcels. 

Shannon’s Diversity Index 
1

( ln )
m

i i
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SHDI P P
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Measures the level of diversity in the 
informational entropy of a landscape. 
The index asymptotically approaches 
0 for homogenous landscapes, and it 
increases for heterogeneous ones. 

Class Metrics (Homogeneous Agents) 
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Similar to the relative landscape level 
metric, but is computed separately 
for different land use (agent) classes. 
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2

1

1
n

ij

j

a
DIVISION

A=

  = −  
   

∑  

Denotes the probability that two 
randomly chosen parcels in the 
landscape do not belong to the same 
land use (agent) class. Ranges from 
0 to 1. For homogeneous 
landscapes, it approaches 0. 

 
 
 Since, by definition, the nondecreasing character of the utility concept does not allow the 
long-term consequences of the actions selected to be accounted for and thus also does not 
discriminate between positive and negative actions, a very simple, balanced reward index was 
implemented on this example (+1 for buying, 0 for doing nothing, −1 for selling). The reward 
function then was derived by weighting the MEU by its corresponding reward index. The 
simulation results are shown in Figure 14. 
 
 An examination of the cumulative reward distribution over time shows that by almost the 
first two-thirds of the simulation, the achievement made by the farmer-agent toward his or her 
goals was highly volatile, making it difficult to interpret the results. During the last third of the 
simulation, the results indicate a clear potency for significantly increasing the welfare. Yet a 
further examination of these results indicates that the agent faced a potentially consistent trend. If 
we compute the moving average of these cumulative rewards for the time-step sequence of the  
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FIGURE 10  Landscape metrics results for the MABEL Monte Carlo replication 
experiment in Grand Traverse County (Column 1 = 1970−1980. Column 2 =  
1980−1990. Row a = mean shape index [SHAPE_MN]. Row b = mean fractal  
dimension index [FRAC_MN]. Row c = mean related circumscribed circle  
[CIRCLE_MN]. Row d = Shannon’s diversity index [SHDI].) 
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FIGURE 11  Class metrics results for the MABEL Monte Carlo replication experiment  
in Grand Traverse County (Column 1 = 1970−1980. Column 2 = 1980−1990.  
Row a = mean shape index [SHAPE_MN]. Row b = mean fractal dimension index 
[FRAC_MN]. Row c = mean related circumscribed circle [CIRCLE_MN].  
Row d = landscape division index [DIVISION].) 

 



143 

 

(b) Posterior Belief Network Probabilities   
(after 100 simulation steps & learning)

(a) Prior Belief Network Probabilities        
(initialization of agent’s beliefs)

(b) Posterior Belief Network Probabilities   
(after 100 simulation steps & learning)

(a) Prior Belief Network Probabilities        
(initialization of agent’s beliefs)

 

FIGURE 12  Farm decision simulation experiment (Both prior beliefs and posterior 
beliefs [a and b] are shown over a 100-step learning simulation from evidence entering 
the system.) 
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FIGURE 13  Distribution of the intended 
actions’ expected utility across the simulation 
steps 

 
 



144 

 

Cumulative Reward Value

-300

-200

-100

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Case Number

C
um

u
la

tiv
e

 R
e

w
a

rd

 

FIGURE 14  Belief network simulation results in terms of the cumulative reward value of 
the intended actions, across the simulation steps 

 
 
entire simulation, we can see that such a consistent pattern emerges. The average cumulative 
rewards represent the second-order dynamics, as they denote the rate of change of the agent’s 
welfare from the beginning to the end of the simulation. This pattern is shown in Figure 15. The 
overall simulation properties exhibit three distinct temporal phases. The first one is a period in 
which there are significant losses in the agent’s welfare, which occur at a consistently decreasing 
rate. The second phase is a break-even period where the welfare level remains relatively 
constant. The third phase is a period of gain in which the agent’s welfare exhibits a consistent 
and significantly increasing trend. 
 
 The BBN mechanism on the MABEL model employs Bayesian learning techniques to 
adapt to observed evidence and to the experience that an agent acquires through the simulation. 
At the theoretical level, such adaptive learning is achieved through the use of an expectation 
maximization (EM) algorithm (Islam, 1999; Laskey and Myers, 2003). The EM algorithm uses 
maximum likelihood estimation properties for fitting a mixture to data via an information 
confusion matrix. When the theoretical exponential learning curve of such an algorithm is fit to 
the data observed in the simulation experiment, there is a high degree of agreement (R = 96.5%). 
Thus, our model exhibits a consistent learning pattern through time. 
 
 The learning components discussed so far present an example of the inferential modeling 
epistemological formation discussed in the initial section of this paper. In other words, they 
attempt to answer the question of why we observe the simulation results, given the stochastic 
simulation elements of a given BBN and the inferential heuristic mechanism of learning. We can 
take our discussion one step further to explore the meaning of this simulation exercise in terms of 
its implication on the agent’s optimal policies (π) and action sequences (A). As Figure 15 
indicates, the data on empirical average cumulative rewards display some interesting  
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Average Cumulative Rewards & 2nd Order Dynamics
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FIGURE 15  Consistent pattern of change in the cumulative welfare of the agents  
(The simulation exhibits a three-stage learning pattern, with gradually decreasing 
uncertainty.) 

 
 
characteristics. In the initial stages of the simulation, the agents face a high degree of variability 
in their outcomes because of the greater uncertainty involved in the evidence entering the belief 
network. This has implications on the relative degree of learning over time (Phase 1). On the 
other hand, as the simulation advances, the variability of the outcomes significantly decreases to 
a minimum degree of uncertainty, and a faster learning curve results.  
 
 The results displayed in Figures 14 and 15 show that a given agent belonging to this land-
use class (farmer-agent) often faces significantly negative welfare measure values. In a real-
world context, this would be translated into debt, cost-associated problems, etc. Thus, a question 
can be formulated on how much loss an agent can withstand without having to change its long-
term consistency. This question can now easily be translated into a more comprehensive or more 
robust postulate in terms of the agent-based simulation framework, as follows: the degree of 
volatility (i.e., the degree of variability and uncertainty) that an agent can withstand is adequate 
to keep the agent consistent in pursuing his or her long-term goals. By transforming this 
question, the inferential modeling framework can be employed to help the decision makers 
improve their long-term consistency between actions and optimal policies. It also becomes clear 
that in order to address this question, the simulation design has to shift its scale of perception, 
since it is not enough to employ only repeated temporal measures (i.e., the simulation observed 
in this example). The simulation also requires repeated measures (i.e., repeated 100-simulation 
experiments for different areas, or agent types) within agents and across agent classes in order to 
discover the confidence intervals associated with the variability in the initial stage. 
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Epistemological Meaning Revisited 
 
 By taking into account the arguments and case studies presented so far, we can often 
derive specific meaning from the inferential modeling elements and mechanisms. As an example, 
we expand here on the previous discussion in order to understand the differences between the 
homogeneity and heterogeneity of agents throughout a simulation model. During the course of 
this text, the terms “homogeneity” and “heterogeneity” were used, but no semantic explanation 
of them was provided. The semantic representation is provided here.  
 

• Heterogeneous agents are diverse among themselves; they have different 
attributes and/or beliefs. They are similar to a population composed of 
individuals. These agents do not necessarily have to belong to different 
classes. The natural tendency is for heterogeneous agents to represent the 
“natural order” of things. We can perceive them to have maximum entropy  
(a minimum amount of information is contained within them). 

 
• Homogenous agents have similarities in their properties and/or beliefs. They 

are similar to a group of people who have something in common. These 
agents do not necessarily have to belong to the same classes. This concept of 
homogeneity implies (or infers) a higher level of organization; thus, the agents 
contain more informational context. 

 
 Homogeneity and heterogeneity are complementary concepts. When we know the level 
of homogeneity of an agent (or the degree of homogeneity of an agent group), we consequently 
know its level of heterogeneity (or the degree of heterogeneity of an agent group). If p is the 
homogeneity level, then heterogeneity is q = 1 − p. In informational terms, if entropy denotes or 
infers a level of homogeneity, then negentropy necessarily infers a heterogeneity content, and 
vice versa.  
 
 When we talk about agent homogeneity alone, we imply the existence of agents that 
belong to the same class (i.e., they have identical class properties in all aspects of their decision-
making attributes, and any differences observed among them are solely attributed to the 
differences that exist in their external agent environment). If we want to differentiate this 
definition, we can introduce a level of classification that refers to completely or totally 
homogenous agents. The idea is the same for the properties of heterogeneity. Agents are 
completely or totally heterogeneous when they share no common decision-making class 
attributes (i.e., they belong to different agent classes) and when this holds true, even when the 
agents share a common external environment. In contrast, we can talk about partial homogeneity 
and heterogeneity of agents. These agents are closer to a real-world cognitive representation, 
where people are never perceived as being entirely identical (unless they are cloned!). We can 
define partial homogeneity (with respect to a specific attribute) as the property of agents that 
have one (or more) specific attribute(s) in common but differ in every other attribute or belief. 
We can intuitively use the terms “partial homogeneity” and “partial heterogeneity” (with respect 
to a specific attribute) interchangeably, depending on the properties or attributes being focused 
on and the common/diverse ratio that they represent. In that sense:  
 

• A set of agents can be considered partially homogenous with respect to 
attribute a when the only common attribute within them is attribute a.  
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• Similarly, a set of agents can be considered partially heterogeneous with 
respect to attribute b when all the other attributes (except attribute b) are 
common within them.  

 
• A set of agents can be considered partially homogenous with respect to an 

attribute set, say A = (a1, a2, …, an), when the only common attributes within 
them are the attributes of the attribute set A, and N ≤ 2n, where N is the total 
number of the agent’s attributes, and n is the number of attributes belonging to 
the attribute set A. 

 
• A set of agents can considered partially heterogeneous with respect to an 

attribute set, say B = (b1, b2, …, bn), when all the other attributes C – B = D 
(and C < B, where C is the total attribute set) are common within them, and 
when N ≤ 2n, where N is the total number of the agent’s attributes, and n is the 
number of attributes belonging to the attribute set B. 

 
• We can take these definitions a little further in accordance with the 

mathematical definitions of homogeneity and heterogeneity. When 
differentiating the degree of homogeneity and heterogeneity, we can refer to 
the “degree of” instead of their generic definitions. In other words, we can say 
that a set of agents is homogenous of degree n with respect to an attribute set 
A, where n is the number of attributes contained in the attribute set A. When 
n = 1, the attribute set A degenerates into a singular attribute element a or 
A = (a). The definition for the degree of heterogeneity is similar. 

 
 The type or the specific properties of the attribute set that postulates the homogeneity 
and/or heterogeneity properties of an agent group can help in further identifying the nature of 
homogeneity. Thus, we can refer to different types or classes of homogeneity and heterogeneity, 
such as spatial, temporal, environmental, physical, natural, economic, technical, social, etc.  
 
 While the agents’ homogeneity and heterogeneity are interrelated, the definitions 
themselves reflect different focal areas or areas of interest for the researcher. Homogeneity is 
related to group attributes and, as such, is subject to a higher degree of generalization within a 
population of interest (to be modeled). In an agent-based dynamic framework, where a degree  
of stochasticity in the modeling process is desired and, to an extent, required, higher degrees of 
generalization infer higher degrees of robustness, higher degrees of confidence, and lower 
degrees of uncertainty in the simulation outcomes. On the other hand, heterogeneity is related to 
the diversification derived from individualistic behavior, and, as such, is related to a higher 
adaptivity and higher degree of intelligence processing of the agents. But an increase in the 
degree of intelligent processing ability and adaptivity of the agents inevitably provides the basis 
for the emergence of robustness in a simulation. These emergent properties of the homogenous 
and heterogeneous agents allow for an abundance of alternative pathways to robustness, as 
shown in Figure 16. Thus, robustness in the epistemological framework of an agent-based 
simulation can be defined as a carefully weighted mix of the heterogeneity and homogeneity of 
agent properties and their underlying mechanisms. 
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FIGURE 16  Alternative pathways to agent-based modeling 
robustness (The level and quality of simulation robustness 
achieved depend on the meaning or semantic representation 
of the simulation’s epistemological framework.) 

 
 

DISCUSSION 
 
 The purpose of this paper is to initiate a wider discussion about the semantics of and the 
need for a wider epistemological framework for an agent-based simulation that crosses multiple 
disciplines of scientific research. We provided a comprehensive description of the 
constructability of such an epistemological framework, and what it may come to represent in 
terms of asking the right questions for the modeling exercises undertaken. We described the 
MABEL modeling architecture in terms of this epistemological framework, and we discussed 
two distinct simulation experiments that served as case studies and revealed two widely opposing 
modeling approaches to epistemology. The first one showcased how a deterministic agent 
behavior can reveal emergent properties of the patterns of change and the dynamics of these 
patterns over time and space. The second one showcased how a stochastic simulation element 
allows us to explore the horizons of adaptivity and intelligence in the agent properties. Both 
experiments display a highly significant level of robustness, but they use alternative pathways 
toward achieving this robustness. 
 
 The growing significance of ABM approaches in addressing and solving real-world 
decision problems, and the increasing reliance of scientific modeling on new, dynamic, and often 
intelligent approaches to problem solving, dictate the need for a unified framework of scientific 
thinking, an epistemological construct that has the ability to cut across different and often diverse 
scientific disciplines. We suggest that such an epistemological construct can address the diverse 
array of issues involved in an agent-based simulation only when it focuses on both the 
deterministic processes and the stochastic mechanisms that underly these changes. Furthermore, 
this epistemological construct must be able to freely move across and within the different 
possible modularizations (or mappings) across the conceptual and semantic levels. This is the 
reason why we believe that representing changes as flexible, loosely connected modules of an 
ABM simulation, rather than “hard-wiring” these modeling elements and mechanisms to a 
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computer code string sequence, can enhance the understanding and effectiveness of a modeling 
architecture. The latter approach presents a relatively inefficient way to approach agent-based 
modeling, since it does not allow for discovering knowledge or testing robust assumptions 
without undertaking extensive computer recoding and revising. 
 
 Finally, we hope that our approach will initiate a broader discussion among scientists, 
modelers, and researchers involved in all disciplines associated with agent-based modeling. Such 
a discussion is important for spotting and identifying the important elements of meaning or 
semantics in our epistemological constructs, and for providing cognitive space for the emergence 
of new ideas and advances in our knowledge and understanding of our natural and anthropogenic 
world. 
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DISCUSSION: 
 

MODEL DESIGN TECHNIQUES 
 

(Thursday, October 7, 2004, 1:30 to 3:30 p.m.) 
 

Chair and Discussant:  N. Collier, Argonne National Laboratory 
 
 
To Deceive or Not to Deceive? Mimicry, Deception, and Regimes  
in Tag-based Models 
 

Charles Macal:  Our first session of the afternoon is “Model Design Techniques,” and 
the chair and discussant for this session is Nick Collier who is one of the — well, is the original 
— Repast developer for those of you that may not be aware of that. I’ll turn it over to Nick. 

 
Nick Collier:  As Chick said, this is the “Model Design Techniques” session, and, as 

before, each presentation has 25 minutes with 5 minutes for questions. We start with Y.Y. Chen 
who will talk about tag-based models. 

 
Y.Y. Chen:  Good afternoon. My name is Yuan-yuan Chen. I’m a third year doctoral 

student in the Business School at Emory University. I will present a preliminary study of work 
that I have done with Professor Mike Prietula who is currently visiting Florida International 
University. 

 
[Presentation] 

 
Collier:  I would like to start with three questions and comments. The first is out of 

curiosity. You said that you were in the business school. I was wondering what part of the 
business school this work falls under and what is the school’s justification for this work? 

 
Chen:  The business school is an online community. This model can be used to study the 

online community. It can be used to look at people who have never met and who never get 
familiar with each other. It looks at how they communicate with each other and how they 
cooperate with each other, so this model can be used to study how the online community 
emerged and evolved.  

 
Collier:  Okay. Second, I’ve read some papers about heterogeneity and homogeneity and 

about how heterogeneity is important for the robustness of a system. As I was reading your paper 
and watching your presentation, it occurred to me that there’s an interesting kind of 
heterogeneity here with the deception, in the sense that you get enough homogeneity so that they 
can cooperate a lot, but then you have the heterogeneity because they’re not really the same; 
they’re deceiving. I wondered if you had any comments along that line in terms of heterogeneity 
and homogeneity. 

 
Chen:  Yes, this is a very good question and a very good comment. This model is 

basically combined to see the co-inference of the homophili — its homogeneity and also the 
deceptions and how this too can influence the cooperation. But you’re talking about the 
heterogeneity. There’s also some heterogeneity in a group, in the entire population. This model 
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does not have this now because we haven’t focused on heterogeneity, but in the future, this is 
definitely the direction we’ll conduct research. 

 
Collier:  Right. And my last question is really a comment for future research. I’m 

wondering about changing the model, or tweaking the model, so that you begin with some agents 
deceiving, but then as they — a notion of assimilation — begin to see that they’re part of two 
groups, and one is deceiving them, they begin to be assimilated by the other group, and they lose 
their ability to deceive. They’re no longer part of their previous group, and they move along. 
This mirrors at least the experience, the anecdotal experience, of becoming friends with people. 
You may not really act like them or whatever, but eventually you do act like them. You become 
one of them, and you’re not faking it anymore. 

 
Chen:  Yes. That’s a good point. Your illustration is to add one level in a population that 

right now we just see is a single level. But if you’re adding a group level into the analysis, that 
will change the intergroup cooperation of things. 

 
Unidentified Speaker:  I’m trying to figure out where are the data that you’re concerned 

with? Did you use data to calibrate your theories or to generate your parameters? 
 
Chen:  We generated. We used a simulation model, a coding model, and simulated, and 

by using an algorithm I introduced it in a presentation. It generates the preliminary data, and we 
analyzed the data. Am I answering the question? 

 
Unidentified Speaker:  You got a sample of real people and got their parameters … 
 
Chen:  No, no. We didn’t do the experimental analysis. We just used the simulation data. 
 
John Sullivan:  Were there any consequences? You didn’t mention it. Were there any 

consequences for being caught at deceiving? Any tit-for-tat or anything like that? 
 
Chen:  Yes. We didn’t consider that there’s punishment. You are talking about the 

punishment if they’re caught. We didn’t simulate a punishment in this model because basically 
in the tech-based model, there’s no memory. There’s no punishment assumption in the original 
tech-based model, so we just extended the model to add another deceptive mimicry, this 
mechanism into the model, so no punishment, no memory are in this model. 

 
Meredith Rolfe:  I had a question about your definition of cooperation. It seems that 

you’re saying there is basically a unilateral donation, and there’s no prisoner slum, if you want to 
call it that, set up, wherein if you give a donation. The idea is that the other person is absconding, 
which brings me to asking if your deceptive agents are different than your donating agents, or 
can the same agent both deceive and donate? 

 
Chen:  The same agent can both deceive and donate. It’s because in each generation each 

agent has three opportunities to pair with the other agents. It’s randomly paired up. If the tech-
value difference between this agent’s tech value with the other agent’s tech value is very similar, 
then a donation occurred. If it’s not similar enough, there’s no donation. When we consider the 
deceived opportunity, if the tech value is not similar enough, the agent we deceived tries to get 
the donation. That is the increased opportunity to get the donation. 
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Pam Sydelko:  I would urge you for future research to seriously consider separating out 
deceiving from donating agents because I think it sets up a very different dynamic, much more 
similar to what we think of as the free writer problem, the problems of cooperation, than the 
current setup, where you can sort of do both. 

 
Chen:  Okay. That’s a good point. Thanks. 
 
Collier:  Any more questions? Okay, thank you. 

 
 
Ontology for Agent-based Modeling and Simulation 
 

Nick Collier:  Next, Scott Christley is going to talk about “An Ontology for Agent-based 
Modeling and Simulation.” Just give him a minute to get set up. 

 
Scott Christley:  This presentation is about some work that I started over the summer. 

I was happy to listen to Roger Burkhart’s keynote speech this morning because I think my work 
plays along in some of the bullet points that he mentioned. And, thankfully, I was listed under 
one of the future trends, not one of the things in the past! 

 
I’m going to talk briefly about the motivation for this work and the ontology and what 

I consider ontology for those who are not familiar with this term. Then I’m going to talk more 
specifically about agent-based modeling. I presume everybody’s familiar with it, so I’ll cover 
that rather fast. The major part of my talk deals with reasoning — reasoning systems for 
inference and automation. Finally, I’ll talk briefly about future work. 

 
[Presentation] 

 
Collier:  First, I want to say thanks. I enjoyed reading the paper. It touched on a lot of 

things that are interesting to me and also directly into things I do every day. I have two 
comments/questions. The first goes back to what Roger [Burkhart] was saying this morning and 
also addresses my own interest in generative programming, that is, create software-creating 
software. Roger talked about these transformers that could take the visual language of UML, or 
SysML, or whichever and turn it into some sort of software code — the raw code itself. I’ve 
certainly seen, and I’m sure you have too, UML tools take a class diagram and stub out all the 
classes and the methods for you. I get the sense, or it’s actually more than a sense, that you want 
to do a little more than this, that the inference engine, starting with a knowledge base, using an 
ontology as opposed to just a visual language, you could go further than this in some way. You 
could, both with the general agent knowledge base and then with the domain-specific one, 
possibly generate more code, code that’s more specific to the domain. Could you comment on 
that? 

 
Christley:  Yes. I agree because when you take a knowledge-based approach, and you 

could say in a certain sense that UML has some knowledge within it, but there is obviously a 
difference between syntactical knowledge and semantics. I think UML has a lot of syntactic 
knowledge, things about interfaces and data types and connections, but that the semantics may be 
lost or only implicit in it. 
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So, yes, if you want to go further, I think you have to put more of the semantics into your 
knowledge. That goes to the point of where, but that’s an issue as well, because you need an 
expert in the system in order to put that in. So I think one of my future works here is learning. It 
would be nice if this tool learned along with you. Say you’re a researcher who’s trying to learn 
about this phenomenon. You’re discovering new things. It would be nice if this tool followed 
you along so that it can continue to be a good assistant. 

 
Collier:  My second question — again I’m monopolizing things — is that this ontology 

is both — and this comes across more in the paper — descriptive in the sense that’s it’s a nice 
formalization of both agent-based models and agent-based modeling. But there’s also a 
prescriptive slant to it, that says it may be that you should write your models this way; you 
should start with a knowledge base because x, y, and z are the benefits of doing that. While I can 
see the benefits, I wonder what experience you have following that trail because in places it 
seems like this might be a bit cumbersome to go through, defining every little thing. And of 
course there are benefits to that, but it does seem cumbersome. Maybe that also gets into the idea 
of the software learning along with you, so you’re not throwing every little thing back into your 
knowledge base. That’s a very valid criticism and one that’s been around in the AI community 
for a long time. And I don’t think we’ve found necessarily a good solution to that. 

 
So, yes, you run into this problem where all these formal methods are great, but they add 

a lot of overhead, and I have to have a lot of knowledge on how to actually use them. I think, 
though, that the tools we now have are getting better, especially with the semantic Web and Web 
services becoming a very big thing. The OWL [Ontology Web Language] language that I 
mentioned is a standard — a Web standard. A lot of people work in it. In the future, although 
these are hard to work with, the tools are probably going to get better and it won’t be as 
cumbersome. That’s a hope. 

 
Collier:  Any questions? 
 
Pam Sydelko:  What are your thoughts about being able to take Legacy models and 

apply this ontology approach to them as a way of documenting them to the point where 
somebody could use the ontology documentation to understand how the model could be used in 
junction with another model or see how this model overlaps with another model? Would 
standardizing ontologies in this way help model integration efforts? It seems it would. 

 
Christley:  Yes. I’m going to point back to some of the semantic Web services-type of 

work because it’s dealing with basically the same issue. They have these business processes, 
these interfaces, and services they want to provide, and they’re grappling. What’s our common 
vocabulary? People have the same services, but how do they know that they’re the same? 

 
I’m not presenting this as a modeling language. I’m a little skeptical about modeling 

languages. I think there are plenty of those out there. But you can take this knowledge-based 
approach and find many forms of how you can represent it. OWL is one — it’s the semantic 
network form, but there are expert systems where you use rules. You know, there are things like 
first-order logic, which some people aren’t comfortable with, but it is very declarative and 
expressive. I think there are a lot of other more practical things where you get into the UML-type 
descriptives. 
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As a way of documentation, I think it’s helpful to a point, but you’re going to need some 
more tools so that it’s useful to other users. If you just put it into the system, if you just encode 
all your knowledge into a system, and there are no tools or ways to get it out to do queries, then 
it’s kind of lost in space and it’s not so useful. Those are my viewpoints. 
 
 
Use of Robust and Efficient Methodologies in Agent-based Modeling:   
Case Studies Using Repeated Measures and Behavioral Components  
in the MABEL Simulation Model 
 

Nick Collier:  Our next speaker is Kostas Alexandridis, and he’s going to be speaking on 
“The Use of Robust and Efficient Methodologies in Agent-based Modeling.”  

 
Kostas Alexandridis:  I’m going to talk about robust and efficient methodologies in 

agent-based modeling. The idea is to step back from current and previous work, look at the big 
picture, and address some of the theoretical uses involved in other approaches we’re taking. 
First, I will talk about the big idea — setting up the framework of thought and putting the 
MABEL model architecture into those terms. Then I will present some simulation case studies 
from current work at our facility. Finally, I will synthesize everything to provide some 
conclusions. 

 
[Presentation] 

 
Therefore, according to the predefined metrics, we see that some of the algorithms are 

performing much better than others, mostly the numbers from 5 to 8. 
 
Collier:  [referring to a slide] I notice you say 1980 to 1990. 
 
Alexandridis:  Yes. That’s why I said in the beginning that we did a deterministic 

because we wanted to be able to compare land-use changes with historical changes, and that’s 
my next slide. We took the number of agents that started in 1970, and we had dates of 1970, 
1980, and 1990. We fixed the number of agents that were changing, and we wanted to see how 
the personalization algorithms were performing, knowing that matching the historical with the 
simulated …. This is the example of how the percent of change, that is, comparing the real with 
the simulated changes of the algorithm, happens across different land-use types. The green one is 
forest and wetlands, the brown one is agriculture, and the orange is urban. So you see, some 
algorithms are better at representing changes on different land-use scales. 

 
[Presentation] 

 
Alexandridis:  The second one [referring to the slide] is looking through heterogeneity; 

looking at the class and the individual agent’s behavior, and achieving robustness through greater 
ability of the agents and intelligence. So robustness can be achieved separately, but a balanced 
approach is more important for achieving both capabilities of generalizing your arguments and 
a higher degree of intelligence and adaptability of the agents. 

 
Collier:  By “robustness” you mean the robustness of your “argument” with respect to 

what? 
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Alexandridis:  It’s with respect to how we can get our simulations and bring them into 
the point where we can start to talk about ideas. That’s what I mean by robustness. Some 
conclusions or ideas that I think are important is that there is a need for a wider epistemological 
framework in agent-based modeling. [We need to find] how, why, and what’s the big meaning 
behind it. Somehow it should contain both stochastic and mechanistic characters inside it. The 
robustness can be achieved via alternative pathways, but balanced approaches make a difference. 
Flexible modulation of modeling components is very important, I think, and it creates a contrast 
versus the hardwiring of computer code strings. 

 
[Presentation] 

 
Alexandridis:  I welcome your questions. 
 
Collier:  All right. Thanks. I want to say one thing first and monopolize again. I’m 

curious about the process of developing this notion of the big idea, the epistemological 
framework. You had this very obviously, very complicated MABEL model. Is that when you 
started to think more deeply about it and came up with this notion of the epistemology that 
would help you think more deeply about the MABEL model? I’m trying to think; obviously, you 
used the MABEL model as an example, but I’m wondering what the epistemology brings to the 
MABEL model, how it helps you think about the MABEL model, and perhaps how it helped you 
overcome certain problems? 

 
Alexandridis:  Well, our class of agent-based model deals with environmental modeling, 

and each of our models involves more real-world realities rather than stochastic simulations or 
very deterministic ones. So the whole idea is how we use our knowledge and what we gain from 
our models to infer about how real-world processes work. That’s the original motivation starting, 
even looking at agent-based modeling. On the other hand, as we designed the model to be part of 
modules as opposed to just building a model — wiring codes for specific components —we were 
able to test those components separately, and then the entire idea developed that somehow all 
those things had to come together. Regarding models, it ties up to the older discussion about 
models talking to each other; I’ve been seeing a lot of replication on the work of a lot of 
scientists. At some point, we have to start thinking about such a big idea to couple it with what 
we’re doing. I think that was the motivation. It’s also very exciting to get out of the everyday 
kind of experimental procedure and start going back and start thinking about those.  

 
Zhian Li:  I have two questions. For the first question, could you go back to your first 

few slides? You defined the probability as the summation of the probability density function. I 
do not understand whether you mean the conditional probability or the individual probability. At 
the beginning, you said a probability of an individual agent is PA, and you get a summation of all 
the agents. Then you probably got the probability over 1, yes, right here [referring to the slide]. 
Yes, the third one. So what do you mean there? You get 1,000 if a 1 … 

 
I started saying that you have individual agent issues, and so the agent decision is a 

probability of making it individual action. Then you go into over 100 agents, a whole class of 
those agents. So you have a sum or weighted average of those decisions, and that’s a probability 
in sample because I don’t want to start talking about — a lot of times you have to compare. I saw 
in those examples in the Monte Carlo that you have to compare the probability distribution 
function across different scales, different land-use categories. Then you scale up and you start 
looking at replication experiments and different landscapes. I still didn’t understand. We can 
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discuss it later, but it seems to me that you cannot make a simple summation of the probability 
distribution function. 

 
Alexandridis:  No. Those are not the acts or properties, just to represent how the idea of 

the level of complexity starts and increases when you start piling things together. 
 
Li:  Right. Then you have a condition of probability. 
 
Alexandridis:  Not exactly. Well, you’re talking about … 
 
Li:  Otherwise, you get our 1. 
 
Alexandridis:  No. You have a conditional belief network, which is different than a 

conditional probability distribution. 
 
Li:  Okay. I don’t want to take too much time. The second question has to do with your 

land-use bidding process; you mentioned that you use a 3- by 3-mile metric area. What’s your 
boundary condition? Do you have a repetitive boundary condition or a reflective boundary 
condition? 

 
Alexandridis:  No, we don’t use boundary condition. 
 
Li:  What if a person says that he wants to buy this land, and the land is occupied? Do 

I want to bid with you, or do I want to look at a different place? 
 
Alexandridis:  No. The land-bidding model involves only agents that have an intention 

to buy or sell land. 
 
Li:  So the agents are just concentrated on this area. 
 
Alexandridis:  Yes. 
 
Li:  For example, I want to bid in Chicago, not necessarily the city but perhaps the 

western suburbs, but you don’t want to go through the lake. You don’t want to bid to build a 
house on the lake. 

 
Alexandridis:  Well, when you do simulation, and that’s why we started thinking of the 

entire Midwest because those are counties, but we didn’t do them separately. We do them all at 
once. So all the agents of all those parcels are together, but there is a round area that is missing. 
Also, because of the computational problems, at one point when you start thinking about larger 
scales, then you have, if you want to address those issues, you have to start thinking about  
in-migration, out-migration, and that’s … 

 
Li:  Sure, yes. That’s exactly the boundary condition you can define at the ingress and 

egress, so that … 
 
Alexandridis:  I agree with you. 
 
Li:  Yes. Are you considering that kind of funding? 
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Alexandridis:  No, no. Up to that point, even as it is a model, it is extremely complex, 
and I think we are away from that point yet. Well, we have it in the back of my mind. 

 
Michael North:  I have a quick question. From the framework that you laid out here, not 

just in terms of land use, but in general, it seems that it could be used to help support 
repeatability of experiments, in particular, repeatability of simulation designs, not only within 
your group, but between groups, which I think is very valuable. Could you address that in more 
detail? How would you use this framework to try to do something like that? 

 
Alexandridis:  Well, I think our case side is examined, not extensively, but looked at 

those properties … 
 
Brian Pijanowski:  … for another group to come back and repeat…. 
 
North:  … between locations. Would you say that repeatability between locations? 
 
Pijanowski:  Well, no, because that’s one of the big issues that I see — simulations 

having repeatability of entire studies and other simulations. In experimental science, we can get 
another apparatus and set up a similar configuration, a similar state or conscious design. This 
part would be sort of natural. 

 
Collier:  You mean, if you could define their model in this scheme, then give the scheme 

to someone else, it would be a good starting point. 
 
North:  Exactly.  
 
Alexandridis:  Well, I agree with you. First, the data for those two case studies are 

available to everybody who wants to test them. I think putting together a unified and universal 
thinking about an epistemological framework eventually would help in doing that as well 
because people would be implementing. Thinking in the same terms, you start being in the same 
level of comprehensive … models work. And I couldn’t agree more with you on those terms. 

 
Collier: Thank you. I think we’re reaching the end, so unless anyone has a quick 

question, we’ll stop for now. 
 
Charles Macal:  Thank you, Nick. Thank you, speakers, for a very stimulating session, 

taking on some of the larger issues that we’re facing in agent simulation. Why don’t we take a 
10-minute break, and then we’ll have a session dealing strictly or specifically with toolkits. 
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NETLOGO: DESIGN AND IMPLEMENTATION 
OF A MULTI-AGENT MODELING ENVIRONMENT* 

 
S. TISUE† and U. WILENSKY, Northwestern University, Evanston, IL 

 
 

ABSTRACT 
 
NetLogo is a multi-agent programming language and modeling environment for 
simulating complex phenomena. It is designed for both research and education and is 
used across a wide range of disciplines and education levels. In this paper, we focus on 
NetLogo as a tool for research and for teaching at the undergraduate level and higher. We 
outline the principles behind our design and describe recent and planned enhancements. 
 
Keywords: NetLogo, agent-based modeling, simulation, modeling toolkits, programming 
languages, complex systems, complexity, emergence 

 
 

OVERVIEW 
 

NetLogo (Wilensky, 1999) is a multi-agent programming language and modeling 
environment for simulating complex natural and social phenomena (Wilensky, 2002). It is 
particularly well suited for modeling complex systems evolving over time. Modelers can give 
instructions to hundreds or thousands of independent “agents” all operating concurrently, in 
order to explore connections between micro-level behaviors of individuals and macro-level 
patterns that emerge from their interactions. NetLogo enables users to open simulations and 
“play” with them, exploring their behavior under various conditions. NetLogo is also an 
authoring environment that is simple enough to enable students and researchers to create their 
own models, even if they are not experienced programmers. 

 
We designed NetLogo for both education and research. There has been considerable 

research on the use of multi-agent modeling in K–12 settings (Wilensky, 1995; Resnick, 1996; 
Wilensky and Resnick, 1999; Ionnidou et al., 2003; Wilensky, 2003; Wilensky and Reisman, 
2004). In this paper, though, we focus on NetLogo as a powerful research tool and as a tool for 
learners at the undergraduate level and higher. 

 
Historically, NetLogo is the next generation of the series of multi-agent modeling 

languages including StarLogo (Resnick and Wilensky, 1993; Resnick, 1994). NetLogo is a 
standalone application written in Java so it can run on all major computing platforms. After five 
years of development, NetLogo is a mature product that is stable and reliable. It is freeware: 
anyone can download it for free and build models without restriction. It comes with extensive 
documentation and tutorials and a large collection of sample models. 

 
                                                 
* Adapted from S. Tisue and U. Wilensky, “NetLogo: A Simple Environment for Modeling Complexity,” 

International Conference on Complex Systems, Boston, MA, May 2004. S. Tisue and U. Wilensky, “NetLogo: 
Design and Implementation of a Multi-Agent Modeling Environment,” SwarmFest, Ann Arbor, MI, May 2004. 

†  Corresponding author address: Center for Connected Learning and Computer-based Modeling, Northwestern 
University, Evanston, IL; e-mail: wilenskytisue@ccl.northwestern.edu. 
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As a language, NetLogo is a member of the Lisp family that supports agents and 
concurrency. Mobile agents called “turtles” move over a grid of “patches,” which are also 
programmable agents. All of the agents can interact with each other and perform multiple tasks 
concurrently. 

 
NetLogo is being used to build an endless variety of simulations. Members of our user 

community have turned turtles into molecules, wolves, buyers, sellers, bees, tribespeople, birds, 
worms, voters, passengers, metals, bacteria, cars, robots, neutrons, magnets, planets, shepherds, 
lovers, ants, muscles, networkers, and more. Patches have been made into trees, walls, terrain, 
waterways, housing, plant cells, cancer cells, farmland, sky, desks, fur, sand, etc. Turtles and 
patches can be used to visualize and study mathematical abstractions, too, or to make art and 
play games. Themes addressed include cellular automata, genetic algorithms, positive and 
negative feedback, evolution and genetic drift, population dynamics, path-finding and 
optimization, networks, markets, chaos, self-organization, artificial societies, and artificial life. 
The models all share our core themes of complex systems and emergence. 

 
In the following sections, we offer more detail on all of these topics. We begin with a 

tour of the application, then back up to outline its history. We then give a more detailed account 
of the language itself. NetLogo has recently become extensible; we explain why and how. 
A technical discussion of how NetLogo is implemented follows. Finally, we conclude with a 
summary of work in progress and future plans. 
 
 

APPLICATION TOUR 
 

In this section, we give the reader a brief tour of the NetLogo user interface and Models 
Library. 
 
 
User Interface 
 

Figure 1 is a screen shot of NetLogo’s user interface after opening and running a model 
from the Models Library. On the right is the graphics window, in which the “world” of the model 
is made visible. In the model shown, the turtles represent diffusing particles. They wander 
randomly. When the model begins, there is a single green patch in the center. When a particle 
encounters a green patch, it “sticks” and turns green itself. Over time a beautiful, branching 
aggregate emerges. 

 
On the left are model controls. In this model, they include: 
 
• Buttons for controlling the model. “Setup” initializes the model and “Go” 

makes it run. 
 
• Sliders that control model parameters. For example, the “num-particles” slider 

controls the number of particles that build the aggregate.  
 
Note that this is a simple model with only a few controls. For more complicated models, 

other types of controls are available including switches, choosers, monitors, plots, text boxes, 
and output areas.  
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FIGURE 1  NetLogo’s user interface, with the model 
Diffusion Limited Aggregation 

 
 

In Figure 1, we see only NetLogo’s “Interface” tab. The Interface tab is also an interface 
builder. No firm distinction is made between using a model and editing it — you can move, 
modify, or create interface elements at any time. Agents can be inspected and altered and the 
code for the model can be changed without restarting the simulation. At the bottom of the 
Interface tab is the “Command Center,” in which NetLogo commands can be issued, even while 
the model is running. 

 
The other tabs are: 
 
• Information, where documentation on the model is found. This typically 

explains the rules behind the model and suggests experiments for the reader  
to try. 

 
• Procedures, where the actual code for the model is stored. A well written 

model includes comments in the code explaining how it works.  
 
• Errors (normally disabled), where any incorrect code can be viewed and fixed.  
 

The order of the tabs is meant to follow a user’s typical engagement with a model. Usually 
people want to dive right in and try out the model first in the Interface tab, then move to the 
Information tab to more fully understand what they’re seeing. Eventually, they can inspect the 
code in the Procedures tab to understand the underlying rules and make modifications and 
additions. 
 

Figure 2 shows the Procedures tab containing the complete code for the model. Language 
elements are automatically color-coded so the code’s structure is more clearly visible. 



164 

 

 

FIGURE 2  Procedures tab with complete 
code for the aggregation model 

 
 
NetLogo can exchange data with other applications. The language includes commands 

that let you read or write any kind of text file. There are also facilities for exporting and 
importing data in standard formats. The complete state of the world can be saved and restored in 
a format that can easily be opened and analyzed with other software. Graphed data can be 
exported for rendering and analysis with other tools. The contents of the graphics window, or of 
the model’s whole interface, can be saved as an image, or you can record a series of such images 
as a QuickTime movie. Finished models can be published on the web or embedded in 
presentations as Java applets. 

 
NetLogo includes a still evolving tool called BehaviorSpace that allows “parameter 

sweeping,” that is, systematically testing the behavior of a model across a range of parameter 
settings. Figure 3 shows an example of using BehaviorSpace to study a forest fire model. Based 
on the experiment setup entered by the user, BehaviorSpace automatically runs the model many 
times while varying the “density” parameter. The results show the effect of that parameter on the 
amount of forest burned.  

 
NetLogo supports not only the construction of wholly computer-based simulations, but 

also what we call “participatory simulations” (Wilensky and Stroup, 1999a), in which a group of 
students acts out the behavior of a system, each student playing the role of an individual element 
of the system. To enable this, NetLogo includes a technology called HubNet (Wilensky and 
Stroup, 1999b), which enables communication between a NetLogo model operating as a server 
and a set of clients, which may be handheld devices or computers running HubNet client 
software. 
 

The most visible area of change in NetLogo 2.0 was graphics. Now, turtles can be any 
size and shape and be positioned anywhere. Turtles and patches can also be labeled with text.  
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FIGURE 3  Using BehaviorSpace to study a forest fire 
model (The density slider is varied from 40 to 80 by steps 
of 2. We measure the percentage of burned trees at the 
end of each run. A run ends when no “fire” agents 
remain. The graph [generated from the BehaviorSpace 
output by means of a graphing package] shows the 
results: an abrupt phase transition at the critical density.) 

 
 
Turtle shapes are vector-based to ensure smooth appearance at any scale. These changes have led 
to dramatic visual enhancement of models. An example of graphics that were not possible before 
is the use of turtles to represent both nodes and edges in a network, as in Figure 4. 

 
Significant improvements made for the NetLogo 2.1 release include: 
 
• Improved editor for turtle shapes, to make it easier to customize how a model 

looks. This is important for data visualization. See Figure 5. 
 
• Parenthesis and bracket matching in the code editor, to make editing complex 

code easier.  
 
• Detecting individual keystrokes from code. This makes highly interactive 

models (and games) more usable.  
 
• Adding let to the language, so new local variables can be introduced 

anywhere. This helps modelers write clearer, more concise code.  
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FIGURE 4  Nodes and edges, both represented using 
turtles in the graphics window 

 
 

 

FIGURE 5  New, improved editor for turtle shapes 
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Models Library  
 

Just as important as NetLogo itself are the materials it comes with. We have devoted 
almost as much development effort to the Models Library as to the NetLogo application. The 
Models Library contains more than 150 prebuilt simulations that can be explored and modified. 
Figure 6 shows the structure of the Models Library. The simulations address many content areas 
in the natural and social sciences, including biology and medicine, physics and chemistry, 
mathematics and computer science, and economics and social psychology. All of the models 
include an explanation of the subject matter and the rules of the simulation and suggestions for 
activities, experiments, and possible extensions. To aid learning and encourage good 
programming practice, the code for the simulations is clear, elegant, and well commented.  

 
Our goal for the library is to include as many as possible of the standard, well-known 

“chestnuts” of complex systems science. This serves several purposes: 
 
• Researchers, already knowing the ideas behind the models, can easily learn 

the language by studying them. 
 
• Modelers can usually find something in the library to base a new model on, 

rather than starting from scratch.  
 
• These well-known examples are introduced to a new generation of students of 

complex systems science.  
 
The Models Library also includes a “curricular models” section. It contains groups of 

models that are intended to be used together in an educational setting as part of a curricular unit. 
Most of them include extra associated curricular materials (above and beyond that which we 
provide with all of our models). 

 
 

 

FIGURE 6  Structure of the Models Library 
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In addition to the 140 simulations, the library also includes several dozen “code 
examples.” These are not full simulations, but brief demonstrations of NetLogo features or 
coding techniques. 

 
 

HISTORY AND AUDIENCE 
 
In this section we summarize NetLogo’s history and how it came to be a tool for both 

education and research, and we explain the benefits of addressing both audiences. 
 
 

Origins 
 
NetLogo originates in a blend of StarLisp (Lasser and Omohundro, 1986) and Logo 

(Papert, 1980); Logo is itself a member of the Lisp family. From Logo, it inherits the “turtle.” In 
traditional Logo, the programmer controls a single turtle; a NetLogo model can have thousands 
of them. NetLogo also follows Logo’s philosophy of ease of use, providing a “low threshold” of 
entry for new users. From StarLisp, a parallel Lisp of the 1980s, NetLogo inherits multiple 
agents and concurrency. 

 
NetLogo derives from our experience with our earlier environment, StarLogoT 

(Wilensky, 1997). Even though the original incarnation of StarLogo (Resnick and Wilensky, 
1993; Resnick, 1994) was on a supercomputer, it had always been primarily intended for use in 
schools.1 But StarLogoT became very popular among researchers. So with NetLogo, we now 
aim more explicitly to satisfy the needs of both audiences. In the transition from StarLogoT to 
NetLogo, we redesigned both the language and the user interface. NetLogo includes almost all of 
StarLogoT’s features and many new ones. Many of the new features of NetLogo are aimed at 
research users. 

 
 

“Low Threshold” 
 
All the multi-agent Logo models have adopted design principles from the Logo language. 

A central principle is “low threshold, no ceiling.” Low threshold means new users, including 
those who never programmed before, should find it easy to get started. No ceiling means the 
language should not be limiting for advanced users. We wanted NetLogo to be just as popular 
with researchers as StarLogoT had been, so that meant devoting significant attention to the “no 
ceiling” side of the principle. Logo’s reputation as a language for schools does not do justice to 
its ample power, as demonstrated by (Harvey, 1997). 

 
We believe researchers should care about “low threshold,” too. Even for such users, 

NetLogo’s inheritance from educational languages brings several benefits. First, in universities 
there is substantial overlap between teaching and research, and if a single tool can serve both 
needs, there are opportunities for synergy. Second, when code is easier to write and easier to 
read, everyone benefits. Models become easier to build; often researchers can build models 

                                                 
1  There were several different early implementations of StarLogo in the first part of the 1990s. The supercomputer 

version was Connection Machine StarLogo. Later came MacStarLogo (Begel, 1999), of which StarLogoT is a 
superset. 
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themselves when otherwise they would have to hire programmers. And models become more 
easily understood by others; this is vitally important in order for researchers to effectively 
communicate their results to others, verify each other’s results, and build upon each other’s 
work. The goals of scientific modeling are compromised if programs are long, cryptic, and 
platform-specific. A NetLogo model is less likely to suffer these problems than one written in 
common general-purpose languages like Java and C++. 

 
 

The Integrated Approach 
 
NetLogo is its own programming language, embedded in an integrated, interactive 

modeling environment. The integrated approach to multiagent modeling originates with 
StarLogo, was refined in StarLogoT and NetLogo, and has also been followed by other all-in-one 
agent-based modeling solutions such as AgentSheets (Repenning et al., 2000) and Breve (Klein, 
2002). “Toolkits” or libraries, such as Swarm (Minar et al., 1996) and Repast (Collier and 
Sallach, 2001), take a different approach; they make simulation facilities available to programs 
written in a general-purpose language such as Java. 

 
We see the integrated approach as essential to achieving our “low threshold” goal. The 

difficulty of programming in Java or C++ isn’t due only to the language itself. It’s also due to the 
complication of the environments (whether command line-based or GUI-based) in which 
programming in those languages is normally done. With the added complexity of getting the 
environment to talk to a modeling library or toolkit, the initial barrier for entry for new 
programmers becomes quite high — even before they start dealing with the difficulties of the 
languages themselves. 

 
In contrast, the NetLogo environment allows a smooth, almost unnoticeable transition 

from exploring existing models into programming. NetLogo’s user interface makes no firm 
distinction between using a model and editing it. Even the smallest amount of knowledge of the 
language is immediately useful in creating buttons and monitors or typing commands into the 
command center, in order to better inspect and control an existing model. The tools for altering 
the model’s rules are only as far away as a click on the Procedures tab. 

 
 

Development History 
 
NetLogo has been under development since 1999. Since then, we have averaged two to 

three substantial new releases per year. Version 2.0.2 (August 2004) is mature, stable, and 
reliable. As of October 2004, version 2.1 is available in beta form and we expect a final release 
soon. Even though our user base has expanded, the rate of incoming bug reports has slowed to a 
trickle. Models now run much faster than in earlier versions — our users now find it fast enough 
for most purposes. 

 
 

Acceptance 
 
We have much evidence that acceptance of NetLogo in the research and education 

communities is wide and growing. The software has been downloaded tens of thousands of 
times. Currently, there are about 50 downloads per day. Our announcements list has over 
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5,000 members. The NetLogo discussion group (http://groups.yahoo.com/group/netlogo-users/) 
has over 1,600 members and averages about 100 posts per month. Traffic on the discussion 
group has increased fivefold since 2002. Several organizations have independently conducted 
workshops on NetLogo for both researchers and teachers. In the summer of 2004, we held our 
own first annual workshop at Northwestern. A number of university classes are now taught, in 
whole or in part, using NetLogo. Some of these classes and workshops have rich collections of 
associated materials available online. The NetLogo web site has an area where users can upload 
models to share with the user community. More than 100 models have been uploaded so far. 

 
 

LANGUAGE  
 
In this section, we describe the NetLogo programming language itself. For further 

information on the NetLogo language, consult the NetLogo User Manual (Wilensky, 1999), 
particularly the Programming Guide and Primitives Dictionary sections. 

 
 

Language Fundamentals  
 
As a language, NetLogo adds agents and concurrency to Logo. Logo, as originally 

developed by Seymour Papert and Wally Feurzeig in 1968, is derived from Lisp, but has a 
friendlier syntax. Logo was designed as a programming language usable by children as well as 
adults and is still popular today as a powerful general-purpose computer language. 

 
Although Logo is not limited to graphical applications, it is best known for its “turtle 

graphics,” in which a virtual being or “turtle” moves around the screen drawing figures by 
leaving a trail behind it. NetLogo generalizes this concept to support hundreds or thousands of 
turtles all moving around and interacting. The world in which the turtles move is a grid of 
“patches,” which are also programmable. Collectively, the turtles and patches are called 
“agents.” All agents can interact with each other and perform multiple tasks concurrently. 
NetLogo also includes a third agent type, the “observer.” There is only one observer. In most 
models, the observer gets the ball rolling by issuing instructions to the turtles and patches. 
Different “breeds” of turtle may be defined, and different variables and behaviors can be 
associated with each breed. 

 
Some models use the patch world just as a lattice. For example, in a cellular automaton, 

there are no turtles, only patches. And in some other models, turtles move on the lattice (from 
patch center to patch center). But the patches are not just lattice sites — they are square sections 
of a continuous two-dimensional space. Turtle coordinates are floating point values, so a turtle 
may be positioned anywhere within a patch. For example, in the aggregation model shown 
above, the aggregate is made up of lattice sites, but particles move freely on the plane. 

 
There are many language elements for talking about space and spatial relations: towards, 

distance, neighbors, forward and back, left and right, size, heading, patch-ahead, diffuse, and so 
on. Some of these come from Logo, while others are new. 

 
An important NetLogo language feature, not found in its predecessors, is “agentsets,” or 

collections of agents. For example, the set of all turtles and the set of all patches are agentsets. 
You can also make custom agentsets “on the fly,” for example, the set of all red turtles, or a 
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column of patches (the set of patches with a given X coordinate). Agentsets are responsible for 
much of NetLogo’s expressive power. 

 
In addition to special constructs to support multiagent modeling, NetLogo also includes 

standard programming constructs such as procedures, loops, conditionals, recursion, strings, lists, 
and so forth. Both integer math and double-precision IEEE floating point math are supported. 
The run and runresult commands can be used to execute code constructed on the fly. 

 
 

NetLogo as Logo 
 
Although there is no single agreed upon standard for the Logo language, NetLogo shares 

enough syntax, vocabulary, and features with other Logos to earn the Logo name. Still, some 
important differences from most Logos include: 

 
• NetLogo has no symbol data type. Eventually, we may add one, but since it is 

seldom requested, it may be that the need does not arise much in agent-based 
modeling. In most situations where traditional Logo would use symbols, we 
simply use strings instead.  

 
• Control structures such as if and while are special forms, not ordinary 

functions. You cannot define your own special forms. 
 
• As in most Logos, functions as values are not supported. Most Logos provide 

similar functionality, though, by allowing passing and manipulation of 
fragments of source code in list form. NetLogo’s capabilities in this area are 
presently limited. A few of our built-in special forms use UCBLogo-style 
“templates” to accomplish a similar purpose, for example, sort-by [length ?1 
< length ?2] string-list. In some circumstances, using run and runresult instead 
is workable, but they operate on strings, not lists.  

 
There are several reasons for those omissions. They are partly due to NetLogo’s descent 

from StarLogoT, which as discussed above needed to be very lean. Many of StarLogoT’s 
limitations have already been addressed in NetLogo (for example, NetLogo has agentsets and 
double-precision floating point math), but some of the “leanness” remains. This leanness is not 
only historical, though. Efficiency is always a vital goal for multi-agent systems, since many 
modelers want to do large numbers of long model runs with as many agents as they can. It is 
easiest to construct a fast engine for a simple language, and, from a language design perspective, 
omitting advanced language features and prohibiting the definition of new special forms may 
actually be desirable for a language in which readability and sharing of code is paramount. We 
weigh these tradeoffs carefully as we continue to expand the language. 

 
 

Reproducibility 
 
One of our core design goals for NetLogo is that results be scientifically reproducible, so 

it is important that models operate deterministically. NetLogo is a “simulated parallel” 
environment. In true parallel computing, programs must be constructed very carefully to avoid 
nondeterminism. We think this is too great a burden for novice programmers, so concurrency in 
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NetLogo operates deterministically. That means that if you “seed” the random number 8 
generator the same way, then a NetLogo model always follows the same steps in the same order 
and produces the exact same results, regardless of what computer you run it on. Java’s 
underlying platform-independent math libraries help ensure consistency. 

 
 

EXTENSIBILITY 
 
In this section, we describe how NetLogo has recently become extensible through the 

addition of new “extensions” and “controlling” facilities. Earlier, we described NetLogo as an 
integrated or “all-in-one” environment. The full NetLogo environment bundles together many 
components: a programming language, a compiler, an interpreter, a syntax highlighting editor, an 
interface builder, a graphics engine, BehaviorSpace, and so on. The downside of the all-in-one 
approach is that “all-in-one” can turn into “all-or-nothing.” We run the risk that if one 
component does not suit a user’s needs, then that user will not be able to use any of the 
components, because they are all tied together. 

 
We want to avoid this all-or-nothing trap by letting users extend or replace parts of 

NetLogo that do not suit their purposes. That way, even users who have unique needs, or just 
needs we did not anticipate or have not addressed yet, can build what they need themselves in 
Java, and they will still get the benefit of the rest of our work. These new application 
programmer’s interfaces (APIs) are steps towards that goal. They lift the “ceiling” on NetLogo’s 
usefulness and range of applications. The integrated NetLogo environment provides core 
functionality; our APIs will allow advanced users to move outside that core.  

 
In making NetLogo extensible, we are bridging the gap between integrated modeling 

environments (easy to use, but potentially restricting) and modeling toolkits (more flexible, but 
much harder to use). 

 
 

Extensions API 
 
NetLogo has always been a full-fledged programming language, so users may write 

procedures in NetLogo and then use them just like built-in commands. But since NetLogo 2.0.1 
we have offered an API for extensions so that users can add new elements to the language by 
implementing them directly in Java. This lets users add whole new types of capabilities to 
NetLogo. 

 
We have been using this new API internally for a while now, and have written extensions 

that let NetLogo:  
 
• Talk to other NetLogos running on different computers, peer-to-peer;  
 
• Pull down data from a web server; and 
 
• Make sounds and music using MIDI.  
 
The sound extension is now included with NetLogo. Full Java source code for it, and a 

number of other sample extensions, are available from the NetLogo web site. Our hope is that 
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extension authors will share their extensions with the wider user community, so that everyone 
can benefit from their efforts. 

 
 

Controlling API 
 
We also offer a “controlling” API, which allows external code to operate the NetLogo 

application by remote control, so to speak. This API includes calls for opening a model and 
running any NetLogo commands. This permits users willing to do a little light Java programming 
to automate large numbers of model runs from the command line. This is useful both on a single 
machine and when distributing runs across a cluster. We already provide an automated 
parameter-sweeping tool called BehaviorSpace, but the controlling API is still be useful in 
situations where BehaviorSpace’s present capabilities are insufficient. The API currently 
requires the full NetLogo user interface to be present, but we are working on removing this 
limitation so that models can be run “headless” from the command line. (On X11-based systems, 
it is possible right now to work around this limitation using X11’s “virtual framebuffer” 
support.) 
 
 

IMPLEMENTATION 
 

In this section, we explain how we have constructed the NetLogo software. This section 
is more technical than the others. 

 
 

Background: StarLogoT 
 
StarLogoT succeeded in attracting a large user base from a range of disciplines, but it had 

important technical limitations that we wanted to address. 
 
The biggest limitation of StarLogoT was that it only ran on Macintosh computers. At the 

time development on StarLogoT’s precursors began, the introduction of Java had not yet brought 
cross-platform development of GUI applications within easy reach. Also, the target audience was 
schools, so the software needed to be compact and fast enough to run even on hardware that by 
today’s standards was very underpowered. Putting thousands of agents on such machines was 
only possible if the underlying engine was written in assembly language, which is of course 
platform-specific. 

 
The need to be fast and small resulted in other limitations as well. Math in StarLogoT 

was fixed point, not floating point, with only a few digits of precision. Many arbitrary limits 
were imposed in order for crucial data structures to fit within a small, fixed number of bits. For 
example, a model could not have more than 16,384 turtles, or a patch grid bigger than 251 × 251, 
or a stack depth of more than 64.  

 
StarLogoT’s language design was constrained as well by what could reasonably be 

implemented. The need for efficiency led StarLogoT’s architecture to become quite complicated. 
It included three different virtual machines for our three agent types (observer, turtles, and 
patches). Different agent types had different capabilities and different rules for acting in parallel; 
this was confusing to users, and some of the restrictions placed on user programs were severe. 
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Starting Over 
 
Because of these limitations, we chose to start over and write a new environment, 

NetLogo, from scratch. We expected Java to permit us to build a cross-platform application that 
was reasonably fast. Java does not always completely live up to its “write once, run anywhere” 
promise, but it performed well enough to bring cross-platform development within reach for our 
small development team. We knew that Java was slower than assembly language but hoped that 
on newer, faster machines it would not matter too much. The issue of speed is discussed further 
below. 

 
Using Java offered the additional benefit that individual NetLogo models could be 

embedded in web pages and run in a browser, without the end user needing to download and 
install an application. (Initially, we even allowed the full NetLogo authoring environment to run 
as an applet in a web browser, but later we abandoned this option as not worth the extra 
development effort.)  

 
Since we were starting from scratch anyway, we took the opportunity to redesign the 

language to further both our “low threshold” and “no ceiling” goals. Sometimes we had to weigh 
tradeoffs between those two goals; in other cases, such as agentsets, we were able to reduce 
barriers to novice entry while also making the language more expressive and powerful. In doing 
so, we also tried to be compatible with standard, popular Logo implementations whenever 
possible and reasonable. In particular, we tried not to stray too far from StarLogoT, so our 
existing user base would not find the transition too difficult. 

 
 

Java 
 
NetLogo is written entirely in Java. Java was chosen because both the core language and 

the GUI libraries are cross-platform and because modern Java virtual machines (VMs) have use 
JIT (just in time) compiler technology to achieve relatively high performance. 

 
NetLogo 1.3 supported earlier Java versions going back to Java 1.1, but for NetLogo 2.0 

we decided to require Java 1.4. The major reasons for choosing Java 1.4 for the new version 
were as follows: 

 
• The new language version includes much richer libraries. It was increasingly 

difficult to find developers used to working within the limitations of the 
antiquated version. 

 
• More recent VMs are higher quality. Before we abandoned Java 1.1, we were 

constantly working around bugs in the various 1.1 VMs, which was a serious 
drag on our development efforts.  

 
• Unlike Java 1.1, Java 1.4 offers “strict” math libraries that guarantee identical, 

reproducible results cross-platform. 
 
• Leaving Java 1.1 behind allowed us to switch GUI toolkits, from the old AWT 

toolkit to the newer Swing toolkit, which has numerous advantages, including 
a better look and feel (Figure 7).  
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• After a long wait, Apple finally released a high-quality Java 1.4 
implementation for Mac OS X.  

 
• Even with the new VM, Apple’s support for AWT-based applications on Mac 

OS X was poor. Mac support is important to us, but a high quality 
implementation on the Mac was simply impossible without switching to 
Swing.  

 
• Since Java 1.4 is available for all the major platforms for which 1.3 is also 

available (not counting Mac OS X 10.0 and 10.1), it seemed unnecessary to be 
backwards compatible with Java 1.3.  

 
Regrettably, switching to Java 1.4 meant dropping support for users of Windows 95 and  
Mac OS 8 and 9, since no Java 1.4 implementation is available for those operating systems. 
However, we continue to offer support and fix bugs for NetLogo 1.3 users. 

 
 

Speed 
 
Early versions of NetLogo were slow, but models in later versions run much faster, 

especially since version 1.3. Most users now find NetLogo fast enough for most purposes. 
Nonetheless, we plan to continue to improve NetLogo’s speed, since agent-based modeling is a 
field in which users always benefit from more speed. 
 

StarLogoT was written partially in assembly language and was highly performance tuned. 
NetLogo is written in Java, and the NetLogo language is much more flexible and feature rich  
 
 

 

FIGURE 7  NetLogo’s new, Swing-based user interface; 
note the new graphics features 
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than StarLogoT. Therefore, you would expect NetLogo to be slower. Surprisingly, that is not 
always or even usually true. Which environment is faster depends on the nature of the model. In 
general, StarLogoT is still faster for models with very simple code and large numbers of agents. 
But NetLogo is usually faster for models with complex code and smaller numbers of agents.  
 

The surprising fact that StarLogoT is not always faster can be accounted for by reference 
to StarLogoT’s unique architecture. As mentioned above, the StarLogoT engine was divided into 
three virtual machines: one for the observer, written in Lisp, and two for the turtles and patches, 
written in assembly language. The turtle and patch machines were extremely fast, but crossing 
the boundaries between the different machines was slow. With simpler code and more turtles and 
patches, overall speed benefited more from the speed of the turtle and patch virtual machines. In 
contrast, NetLogo’s internal architecture is much more uniform. A single virtual machine 
handles all three agent types. Therefore, there is no special penalty associated with complex code 
and no special benefit associated with large numbers of agents. 

 
NetLogo is a hybrid compiler/interpreter. To improve performance, we do not interpret 

the user’s code directly. Instead, our compiler analyzes, annotates, and restructures it into a form 
that can be interpreted more efficiently. 

 
Earlier versions of NetLogo (1.0 and 1.1) compiled user code into a form suitable for 

execution by a virtual machine that was stack-based. However, we discovered through profiling 
that making the virtual machine stack-based actually hurt performance rather than helping it. So, 
in our current compiled representation, each command is tree-structured so that intermediate 
results are stored on the Java VM’s own stack instead of our stack. This change resulted in an 
approximately twofold performance gain. Other, smaller engine performance gains in newer 
versions (since NetLogo 1.0) came from profiling the engine code and addressing inefficiencies 
in object creation, memory usage, and other areas.  

 
If we want to further increase NetLogo’s speed in the future, the most promising 

approach, relative to the likely development effort required, seems to be to compile NetLogo 
code to Java byte code instead of our own custom intermediate representation. Informal tests 
indicate that this would likely result in at least a twofold improvement in speed. We also have 
considered replacing the Java-based engine with a native one, perhaps written in C. However, 
general opinion recently is that JITted Java code is not always slower than C code anymore, so 
this approach may not be fruitful. 

 
So far we have been discussing the speed of NetLogo’s core computational engine. But 

NetLogo’s overall performance does not depend only on engine speed. There is also graphics 
speed to consider. Whether engine speed or graphics speed dominates varies widely from model 
to model — some are 90% engine, others are 90% graphics. The latter kind of model can always 
be sped up by using NetLogo’s graphics “control strip” to temporarily shut off graphics 
altogether, but that does not mean graphics performance is unimportant. 

 
Switching our GUI framework from AWT to Swing raised problems for graphics 

performance. Prior to NetLogo 2.0, graphics window updates were “incremental,” that is to say, 
only agents that moved or changed were redrawn. Incremental painting onscreen, instead of to an 
offscreen buffer, is not supported under Swing, and on Mac OS X, the performance of painting 
offscreen was unacceptable. As an experiment, we switched from incremental painting to always 
redrawing the complete contents of the graphics window every time, expecting that the change 
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would hurt performance. We were pleasantly surprised: on Macs, graphics performance actually 
increased, and on Windows, the speed penalty was negligible. 

 
Abandoning incremental updates freed NetLogo’s graphics capabilities enormously. 

Previously, in order to make incremental updates possible, the graphics window was limited in 
several important respects. Even though NetLogo’s world is continuous, turtles in the graphics 
window were always the same size and appeared centered on their patches, like chess pieces. 
Since patches did not overlap, it was possible to redraw each patch incrementally and separately. 
But if incremental updates are no longer performed, then there is no longer any reason to align 
turtles with the grid. So now, in NetLogo 2.0, turtles can be any size and shape and be positioned 
anywhere. Turtles and patches can also be labeled with text. Turtle shapes are vector-based to 
ensure smooth appearance at any scale. These features had actually been available in earlier 
NetLogo versions, but were slow and buggy. Now they are fast and reliable. These changes have 
led to dramatic visual enhancement of models (Figures 7 and 8). 

 
 

Concurrency 
 
In many respects the NetLogo engine is an ordinary interpreter. But it also has some 

unusual features because of the need to support concurrent processes. Concurrency in NetLogo 
has two sources. 

 
The first kind of concurrency we support is concurrency among agents. If we use the 

command forward 20 to ask a set of turtles to move forward 20 steps, we do not want one turtle 
to win the race before the others have even left the starting line. So, we have all the turtles take 
one step together, then they all take another step, and so forth. Ultimately, the NetLogo engine is 
single-threaded, so the turtles must move one at a time in some order; they cannot really move 
simultaneously. So the engine “context switches” from agent to agent after each agent has 
performed some minimal unit of work, called a “turn.” Because the timing of context switches is 
deterministic, the overall behavior of the model remains deterministic. We only update the 
screen after all the agents have had a turn; this visually preserves the illusion of simultaneity. 
The NetLogo User Manual (Wilensky, 1999) contains a more detailed discussion of the timing of 
context switches between agents. We provide a command, without-interruption, which the 
programmer can use to prevent unwanted switching. 
 

The second kind of concurrency we support is concurrency among the different elements 
of the NetLogo user interface which can initiate the execution of code. Currently these are: 
buttons, monitors, and the Command Center. Buttons and monitors contain code entered by the 
model author, and the user may enter commands into the Command Center at any time. In all 
three cases, a “job” is created and submitted to the engine to request that some code be executed 
by some agents. Jobs are akin to what operating systems call “threads” or “processes.” We use 
the word “job” to avoid confusion. At the operating system level, the NetLogo application is one 
process, and the NetLogo engine is one thread within that process. 

 
When multiple jobs are active, the engine must switch between them, just as it switches 

between the agents within a job. The rule followed is to switch from job to job once every agent  
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FIGURE 8  The Ants model, with and 
without new graphics features 

 
 
in the first job has had a turn. Here, the NetLogo engine is taking on a task more typically 
associated in computer scientists’ minds with the process scheduler in a cooperatively multi-
tasked operating system rather than with a language interpreter. 

 
Concurrency is still an active area of concern for us, and final decisions on how best to 

support it may still lie ahead. We are presently revisiting and rethinking our current design 
choices with an eye towards both helping newcomers avoid mistakes and increasing the power 
available to advanced users. 
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CONCLUSION 
 
We have already touched upon some goals for future NetLogo versions, such as increased 

speed and headless operation. Here are some other enhancements for which we already have 
working prototypes: 

 
• 3-D NetLogo, including language extensions and 13 OpenGL-based 3-D 

graphics. Some 3-D models are already possible, but language support will 
make them easier to build and OpenGL will enable much higher quality 3-D 
visualization. This is a very big job, but we have a working prototype already 
(see Figure 9). 

 
• Support for different lattices and world topologies, with no extra code 

required. Currently, the NetLogo patch world “wraps” in the X and Y 
directions, forming a torus. Some language elements are available in both 
wrapping and nonwrapping versions. Typically, models that do not want 
wrapping use the outer layer of patches as a barrier. In a future version, we 
plan to make wrapping a global option which can be turned off. This is an 
example of an alternate world topology. Soon, we will also support even-
numbered grid sizes and arbitrary placement of the origin of the coordinate 
plane. In the longer term, we would like to support unbounded plane models. 
We already have some models that operate on a hexagonal lattice, but their 
code cannot currently be made as concise as we would like.  

 
• Easier, more flexible randomized agent scheduling. (Random scheduling is 

already possible by adding extra code, but soon it will be built in.)  
 
• Improved plotting requiring less additional code in the procedures tab. 

Separating code for agent behaviors from code for data generation and 
visualization code will improve clarity and conciseness of models.  

 
• A profiling tool for identifying speed bottlenecks in model code.  
 
Networks are currently a very active area of research in the agent-based modeling 

community. Network models are already possible in NetLogo, but we want to make them easier 
to build, including making it easier to leverage the capabilities of existing network analysis and 
visualization tools.  
 

We are also adding support to NetLogo for aggregate modeling. Aggregate modeling, 
also known as systems dynamics modeling, has historically been supported by separate, non-
agent-based modeling tools such as STELLA (Richmond and Peterson, 1990). We are 
incorporating similar finite difference engine technology into NetLogo so that researchers and 
students can investigate systems using agent-based and aggregate techniques in tandem.  
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FIGURE 9  Some screen captures of our 
prototype 3-D version of NetLogo 
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There are ongoing efforts within our research group to further explore NetLogo’s 
potential for research and education. Of particular relevance to NetLogo’s future as a research 
tool are these major ongoing long-term projects: 

 
• Integrated Simulation and Modeling Environments (ISME), a project in 

collaboration with the University of Texas that uses NetLogo to enact 
“participatory simulations” (Wilensky and Stroup, 1999a) in both classroom 
and research contexts. 

 
• Procedural Modeling of Cities, a project in which agents “grow” virtual 

cityscapes for use in architecture, urban planning, training, and entertainment. 
Preliminary results from the model are shown in Figure 10 (Lechner et al., 
2003).  

 
• Modeling School Reform, a project to build models of the potential effects of 

educational policy decisions, to assist school leaders and policy makers. This 
work will include social network modeling and analysis. These projects will 
drive substantial expansion of NetLogo’s ability to support large, ambitious 
modeling efforts. We also have a number of other projects, focused on the use 
of NetLogo in educational contexts.  
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FIGURE 10  Growth of a simulated city; left 
column represents land use, right column 
represents population density 
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AGENT-BASED MODELING AND SOCIAL SIMULATION  
WITH MATHEMATICA AND MATLAB 

 
C.M. MACAL,∗ Argonne National Laboratory, Argonne, IL 

 
 

ABSTRACT 
 

Computational mathematics systems, such as Mathematica and MATLAB, can be 
alternatives or supplements to agent-based model development in the social sciences. 
Mathematica is a symbolic processing system that uses programming paradigms such as 
functional programming and term replacement, while MATLAB is a numeric processing 
system that uses a scripting-language approach to programming. These packages and 
others like them are fully integrated development environments. Their interpretative 
nature and the seamless integration of their graphical capabilities provide immediate 
feedback to users during the development process. This feature makes them particularly 
useful as rapid prototype development tools as part of large-scale model development 
efforts using agent-based toolkits such as Repast, MASON, or Swarm. Furthermore, they 
are readily available on the desktop as well as on campus and can be easily integrated 
into educational courses on social simulation. This paper describes the use of these tools 
in specific modeling approaches to social simulation. 
 
Keywords: Agent-based modeling, social simulation, Mathematica, MATLAB scripting 
languages, computational mathematics systems 

 
 

INTRODUCTION 
 

Mathematica1 and MATLAB2 are examples of computational mathematics systems 
(CMSs) that can readily be used to supplement agent-based modeling efforts in the social 
sciences. The reasons for this are twofold: 

 
1. Mathematica and MATLAB are powerful, consisting of fully integrated 

development environments that combine capabilities for programming, 
graphical display, data import and export, and linkages to external programs. 

 
2. Mathematica and MATLAB are convenient to use, are mature, and provide 

immediate results and feedback to users.  
 
The interpreted nature of these systems avoids the compilation and linking steps required 

in traditional programming languages and provides immediate feedback to users during the 
development process. The systems combine a user interface with data import and graphical 
display capabilities in one package. But most important, these systems are useful as rapid 
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Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439; e-mail: macal@anl.gov. 
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prototype development tools or as components of large-scale model development efforts. 
Furthermore, they are readily available on the desktop and on campus, and they can easily be 
integrated into educational courses on social simulation. This paper, which is pedagogical in 
nature, describes the use of these tools in specific modeling approaches to social simulation. 

 
Several types of modeling approaches have been used as the basis for modeling social 

systems. Systems dynamics (SD), cellular automata (CA), and social networks (SN) are the main 
ones that are addressed in this paper. Guetzkow et al. (1972) provide an overview of early social 
simulations, and Gilbert and Troitzsch (1999) provide one for current approaches. 

 
Many social systems have been modeled by using the SD approach developed by 

Forrester (Forrester, 1969, 1975; Roberts, 1978; Sedgewick, 1988). Systems dynamics is an 
aggregate approach emphasizing the interdependencies of system components. Systems 
dynamics models cast a simulation as a set of simultaneous difference or differential equations. 
The equations are solved recursively to simulate dynamic social processes as they unfold over 
time. Both Mathematica and MATLAB can readily solve models in the SD style, and both have 
extensive facilities for statistical analysis and graphic display of results. The MATLAB add-on 
package, Simulink, is a purely graphical system for constructing dynamic systems models. Other 
development systems dedicated to SD modeling are also available, including STELLA, 
VENSIM, and POWERSIM (Dutta and Roy, 2002). 

 
The structure and organization of recent social simulation models tend to be much 

different than those of traditional social simulations based on SD or discrete-event simulation. 
This difference arises, in part, because recent social simulations have been based on 
independently developed simulation frameworks for artificial life. Most notable are Swarm 
(Burkhart et al., 2000); cellular automata, which are based on a grid structure (Wolfram, 1994); 
and Schelling’s model of segregation (Schelling, 1971), which was based on a grid, although not 
originally computerized.  

 
Several agent-based models using MATLAB to various degrees have been published 

recently, including a model of political institutions in modern Italy (Bhavnani, 2003), a model of 
pair interactions and attitudes (Pearson and Boudarel, 2001), a bargaining model to simulate 
negotiations between water users (Thoyer et al., 2001), and a model of sentiment and social 
mitosis based on Heider’s Balance Theory (Guetzkow et al., 1972; Wang and Thorngate, 2003). 
The latter model uses Euler, a MATLAB-like language. Thorngate argues for the use of 
MATLAB as an important tool to teach social simulation programming techniques (Thorngate, 
2000). The primary references for grid-type simulations using Mathematica for social network 
models include Gaylord and Nishidate (1994), Gaylord and Wellin (1995), Gaylord and 
D’Andria (1998), and Gaylord and Davis (1999).  

 
This paper focuses on modeling agent-based social systems by using the grid and 

SN  approaches with Mathematica and MATLAB. Section 2 briefly describes computational 
mathematics systems and the MATLAB and Mathematica packages. Section 3 describes the 
fundamental operations for agent-based social simulation for two of the most common 
underlying structures in social simulation: (1) two-dimensional grids as in cellular automata, and 
(2) social networks, in which agents are related to each other in social space rather than spatially. 
We present examples of using MATLAB or Mathematica for these topologies. Section 4 
summarizes and presents conclusions on the role of MATLAB and Mathematica in social 
simulation.  



187 

 

 
COMPUTATIONAL MATHEMATICS SYSTEMS 

 
MATLAB and Mathematica are examples of CMSs, which allow users to apply powerful 

mathematical algorithms to solve problems through a convenient and interactive user interface. 
CMSs supply a wide range of built-in functions and algorithms. MATLAB, Mathematica, and 
Maple are examples of commercially available CMSs. Their origins go back to the late 1980s. 
CMSs are structured in two main parts: (1) the user interface that allows dynamic user 
interaction, and (2) the underlying computational engine, or kernel, that performs the 
computations according to the user’s instructions. Unlike conventional programming languages, 
CMSs are interpreted rather than compiled, so there is immediate feedback to the user, but some 
performance penalty is paid. The underlying computational engine is written in the 
C programming language for these systems, but the user does not see the C coding. The most 
recent releases of CMSs are fully integrated systems that combine capabilities for data input and 
export, graphical display, and the capability to link to external programs written in conventional 
languages such as C or Java by using interprocess communication protocols. The powerful 
features of CMSs, their convenience of use, the need for the user to learn only a limited number 
of instructions, and the immediate feedback provided to users make CMSs good candidates for 
developing agent-based social simulations.  
 
 A further distinction can be made among CMSs. A subset of CMSs  called 
computational algebra systems (CASs)  are interactive programs that, in contrast to numerical 
processing systems, allow mathematical computations with symbolic expressions. Computations 
are carried out exactly, according to the rules of algebra, instead of numerically with 
approximate floating point arithmetic. CASs owe their origins to the LISP programming 
language, which was the earliest functional programming language (McCarthy, 1960).  
Macsyma (www.scientek.com/macsyma) and Scheme (Springer and Freeman, 1989; 
www.swiss.ai.mit.edu/projects/scheme) are often mentioned as important implementations 
leading to current CASs. Typical uses of CASs are equation solving, symbolic integration and 
differentiation, exact calculations in linear algebra, simplification of mathematical expressions, 
and variable precision arithmetic. Computational mathematics systems consist of numeric 
processing systems or symbolic processing systems, or possibly a combination of both. 
Especially when numeric and algebraic capabilities are combined into a multi-paradigm 
programming environment, new modeling possibilities open up for developing sophisticated 
agent-based social simulations with minimal coding.  
 
 When it comes to social simulation (as in most types of coding), the most important 
indicator of the power of a language for modeling is the extent and sophistication of the allowed 
data types and data structures. As Sedgewick (1988) observes: 
 

For many applications, the choice of the proper data structure is really the only 
major decision involved in the implementation; once the choice has been made 
only very simple algorithms are needed. 

 
The flexibility of data types plays an important role in developing large-scale, extensible models 
for agent-based social simulation.  
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MATLAB 
 
 MATLAB, originally termed the “Matrix Laboratory,” is a commercially available 
numeric processing system with enormous integrated numerical processing capability 
(www.mathworks.com). It uses a scripting-language approach to programming. MATLAB is a 
high-level matrix/array language with control flow, functions, data structures, input/output, and 
object-oriented programming features. The primary data type is the double array, which is 
essentially a two-dimensional matrix. Other data types include logical arrays, cell arrays, 
structures, and character arrays. The user interface consists of the MATLAB Desktop, which is a 
fully integrated and mature development environment. In addition, an application programming 
interface (API) allows programs written in C, Fortran, or Java to interact with MATLAB. There 
are facilities for calling routines from MATLAB (dynamic linking), routines for calling 
MATLAB as a computational engine, and routines for reading and writing specialized MATLAB 
files.  
 
 Figure 1 shows the MATLAB desktop environment. The desktop consist of four standard 
windows: a command window, which contains a command line, the primary way of interacting 
with MATLAB; the workspace, which indicates the values of all the variables currently existing 
in the session; a command history window, which tracks the entered command; and the current 
directory window. Other windows allow text editing of programs and graphical output display. 
 
 

FIGURE 1  MATLAB desktop environment 
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Symbolic Processing in MATLAB 
 

MATLAB also has symbolic processing capability provided by a nonstandard, add-on 
package — the Symbolic Math Toolbox (SMT). Symbolic processing means that variables can 
be used before they have values assigned to them. The SMT extends the functionality of 
MATLAB to symbolic processing by defining a symbolic object as a new data type (Higham and 
Higham, 2000). The toolbox must be purchased as an extra to the standard MATLAB software. 
The toolbox is based on the Maple kernel, which performs the symbolic and variable precision 
computations.3 Unlike MATLAB, Maple is a computer algebra system. (A comparison of 
Mathematica, MATLAB, and Maple for general mathematical computations can be found at 
http://amath.colorado.edu/computing/mmm/index.html.) 
 

Maple is interactive, and the programming language is interpreted. Maple’s programming 
language is procedural but includes a number of functional programming constructs. Maple is 
not strongly typed like C and Pascal, but types exist, and type checking is done at run time. 
Maple has a rich set of composite data types, including list, array, table, and record, along with a 
large set of standard functions for manipulating the data types (Heck, 2003). Maple does not 
appear to have extensive pattern matching capabilities, such as those available in Mathematica. 
Without pattern matching capabilities, it is not clear how the symbolic capabilities of Maple 
could significantly extend MATLAB’s capabilities for constructing agent-based social 
simulations.  
 
 
Mathematica 
 

Mathematica is a commercially available numeric processing system with enormous 
integrated numerical processing capability (Wolfram, 1999; www.wolfram.com). It is a fully 
functional programming language. Unlike MATLAB, Mathematica is also a symbolic processing 
system that uses term replacement as its primary operation. In contrast, a numeric processing 
language requires that every variable have a value assigned before it is used. In this respect, 
although Mathematica and MATLAB may appear similar and share many capabilities, 
Mathematica is fundamentally much different than MATLAB, with a much different style of 
programming, ultimately resulting in a different set of capabilities.  

 
Mathematica’s symbolic processing capabilities allow programming in multiple 

paradigms, either as alternatives or in combination. Programming paradigms include functional 
programming, logic programming, procedural programming, rule-based programming, and even 
object-oriented programming. Like MATLAB, Mathematica is an interpreted language, with the 
C-based kernel of Mathematica running underneath the notebook interface. In terms of data 
types, everything is an expression in Mathematica. An expression is a data type with a head and 
a list of arguments in which even the head of the expression is part of the expression’s 
arguments.  

 
Figure 2 shows the Mathematica desktop environment. The Mathematica user interface 

consists of a notebook. A notebook is a fully “integratable” development environment plus a  
 

                                                 
3  Maple is a product of Maplesoft (www.maplesoft.com). 
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FIGURE 2  Mathematica desktop notebook environment (A Mathematica notebook is displayed 
in its own window. Within a notebook, everything is a cell, and the notebook cell structure has 
underlying coding that is accessible to the user.) 
 
 
complete publication environment. The Mathematica API allows programs written in C, Fortran, 
or Java to interact with the kernel. The API has facilities for dynamically calling routines from 
Mathematica as well as for calling Mathematica as a computational engine. 
 
 

AGENT-BASED SOCIAL SIMULATION 
 
 
Topologies for Agent-based Social Simulation 
 

The three key representation issues relative to agent-based social simulation are: 
 

• How to represent an agent, 
 

• How to construct and represent the neighborhood surrounding an agent, and 
 

• How to represent the population of agents and the society as a whole.  
 
The foundation of agent-based simulation is the assumption that agents have access to only local 
information — that they are constrained effectively to the information available within an 
agent’s neighborhood. Several neighborhoods are typically used in grid-type agent-based 
simulation (Figure 3), but the representation issues are exactly the same for any neighborhood. 
The representation issues are different in network-type agent simulation, as discussed below.  
 

When we examine a computational system, software toolkit, or language, the key 
question is what the system allows or constrains in terms of the representation of an agent,  
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von Neumann Moore Hexagonal 
 neighborhood neighborhood neighborhood 

FIGURE 3  Typical neighborhood topologies for grid-based agent simulation. For agent-based 
simulations that define agent relationships based on a grid, neighborhoods define the scope of 
agent interaction and locally available information.  
 
 
neighborhood, and society. We examine these representations in MATLAB and Mathematica in 
the remainder of the paper. We consider two types of underlying topologies for social agent-
based simulations: the grid model and the network model. For a typical grid model, we would 
construct an agent-based simulation in the following steps: 
 

1. Begin with a representation of a matrix, which is a rectangular data structure 
in which each row is the same length and each column is the same length. The 
matrix represents the grid upon which the agents live. 

 
2. Seed the matrix with agents and initialize the agent characteristics.  

 
3. Define the structure of a neighborhood. Account for the boundary conditions 

when an agent reaches the edge of the grid. For example, boundary conditions 
may be warp-around or reflective.  

 
4. Define an agent update rule on the basis of the local information available to 

an agent as it exists in its neighborhood. The rule is used to update the agent’s 
position and status at each discrete time point in the simulation.  

 
The update rules are applied to each agent in the matrix, usually at each point in time. 

The process of applying the agent update rule is effectively the agent interaction process, the 
process in which an agent interacts with all the other agents in its neighborhood. If the agent 
interaction is considered to be a process that operates over time, the process represents a dynamic 
simulation. 
 
 
Agent-based Social Simulation in MATLAB 
 

We begin with a demonstration of a simple system that includes a fundamental aspect of 
agent-based social simulation. This is the MATLAB “Game of Life” (GOL) that comes in the 
standard MATLAB demonstration set. The GOL, developed by mathematician John Conway, is 
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a simple cellular automata that represents a problem of enormous complexity to analyze 
analytically (Gardner, 1970). The GOL has a long history of analysis (Poundstone, 1985; 
Sigmund, 1993) and is an excellent example of a highly complex system with a complexity that 
is built up from a number of relatively simple rules. The GOL is played on a two-dimensional 
rectangular grid consisting of a number of cells. The earliest agent-based social simulations were 
built in a form similar to the GOL (Epstein and Axtell, 1996; Schelling, 1971).  
 

In the GOL, cells constitute the agents of the system. Cell behavior is governed by a set 
of rules based on the state of a cell’s neighboring cells, or neighborhood, at any point in time.  
A cell has two possible states; it is either On or Off. The rules are as follows:  
 

1. A cell will be On in the next generation if three of its neighbor cells are 
currently On. 

 
2. A cell will retain its current state if two of its neighbors are currently On.  

 
3. A cell will be Off otherwise.  

 
In the following sections, we look at the underlying structure of the GOL simulation in 

MATLAB.  
 
 
Agent Representation 
 

In the simple GOL example, agents are represented at fixed cell locations with binary 
status. A cell in the On position is represented as a 1, and a cell in the Off position is represented 
as a 0. 
 
 
Grid Representation 
 

In MATLAB, the entire society is contained in a matrix representation. Here is typical 
MATLAB code for seeding the grid matrix, X, in the GOL (MATLAB built-in functions denoted 
in blue, comments in red):  
 

m = 101 % set grid size at 101 
X = sparse(m,m); % create 0 matrix of size m x m 
p = -1:1; % create list [-1, 0, 1] 
 
for count = 1:15, % generate 15 blocks of cells 
 
 kx = floor(rand * (m-4)) + 2; % randomly select column 

ky = floor(rand * (m-4)) + 2; % randomly select row 
  

% using matrix addition, assign 1 to cell if random number 
%  greater than 0.5, else set cell to 0 

 
X(kx+p, ky+p) = (rand(3) > 0.5); 

end; 
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This code creates the underlying 101 × 101 grid of cells, a matrix (double array) called X 
shown in Figure 4a. The entire matrix is first initialized at 0, then cells are selectively 
reinitialized to 1 to cells that are On initially. This code creates up to 15 sets of 3 × 3 cell blocks, 
and it assigns 1’s to randomly selected sites within each block to indicate the cell is On. The 
statement X(kx + p, ky + p) = (rand(3) > 0.5) assigns either a 1 or a 0 to a position in the array 
with probability 0.5, depending on the value for a random variable between 0 and 1. The initial 
cell configuration is displayed in Figure 4a, in which the locations of the 1’s are shaded.  
 
 
Society Update 
 

The next step is to update the cell at each time step according to three update rules. Here 
is the MATLAB code that does this: 
 

% A live cell with 2 live neighbors, or any cell with 3 
neighbors, is alive at the next time step. 
 
X = (X & (N == 2)) | (N == 3); 

 
The updating rule for every cell of the simulation consists of this single line of code. Essentially 
it says that a value in the matrix X will retain its current value if the number of neighbors that are 
On (that is, have values of 1) is either 2 or 3. By default, the value of X is reset to 0 otherwise.  
 

Figure 4b is a snapshot of the MATLAB GOL simulation after the update rules have been 
applied repeatedly to all cells. The figure illustrates one of the most striking aspects of the GOL. 
After the simulation begins with a randomly selected set of cells in the On state, patterns quickly 
emerge among the cells that are On. Some of these patterns can sustain themselves over long 
periods of time and maintain their integrity while they travel across the grid.  
 
 

  
(a) (b) 

FIGURE 4  “Game of Life” simulation in MATLAB (Starting from a set number of simple patterns 
(a), the GOL simulation proceeds by the repeated application of three simple rules applied to 
each cell. Complex patterns quickly develop (b), some of which are sustainable.) 
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Although the GOL example is simple, it illustrates the basic operations of grid-type, 
agent-based simulation and shows how the built-in matrix operations of MATLAB can handle a 
large number of operations in a remarkably small number of coding statements. (Somewhat  
more coding is required than shown here to specify the complete GOL model that includes  
the graphical user interface.) Development of more complex models with richer agent 
representations is then a matter of increasing the use of the data types representing the agents and 
the society as a whole. We now move on to Mathematica and show a more complex agent-based 
social simulation.  
 
 
Agent-based Social Simulation in Mathematica 
 

We demonstrate social agent-based simulation in Mathematica with an example called 
“Mobile Heterogeneous Agents” (MHA). This simple agent simulation was originally published 
in a book on social simulation using Mathematica (Gaylord and D’Andria, 1998). The example, 
although rudimentary, has recognizable agents and behaviors specified by discrete decision rules. 
The example also illustrates the use of pattern matching for identifying the applicable agent and 
cell situation and the use of term replacement for implementing rules that update agent status and 
positions.  
 

The mobile heterogeneous agents live on a two-dimensional grid, similar to the GOL, and 
their behavior consists of moving to their selected point on the grid. Each agent faces a particular 
direction, and the “nearest neighbor” site is defined as the cell that is immediately in front of the 
agent. An agent in any cell updates its position according to the following update rules:  
 

1. If the nearest neighbor site is occupied by another individual, the individual 
remains in place and chooses a random direction to face.  

 
2. If the site is empty but is faced by one or more individuals on its nearest 

neighbor’s sites, the individual remains in place and chooses a random 
direction to face.  

 
3. Otherwise, if the nearest neighbor site that an agent faces is not occupied by 

another individual, the individual moves into that site.  
 
In this simulation, the agents are very “polite,” moving only into uncontested sites and thereby 
avoiding conflict at every opportunity. Variations on these rules are easily implemented to reflect 
a wide range of alternative agent behaviors.  
 
 
Agent Representation 
 

In the MHA example, an agent is represented by a list and a set of attributes. Agents 
move to new cell locations as the simulation proceeds. An agent is represented as follows, by 
using the Mathematica brace notation for lists: 
 

{direction agent is facing (integer between 1 and 4),  
 unique agent identifier (an integer), 
 agent type (0 or 1),  
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 list of 3 agent attributes (randomly selected values),  
 agent’s resources (a number between 1 and 4)  
}  

 
 
Grid Representation 
 

We construct the simulation for heterogeneous mobile agents as follows:  
 

1. Create a society by seeding a matrix of 0’s and 1’s. 
 

2. Create individuals by reassigning a list of agent attributes to each 1. 
 

3. Create a set of update rules that operate on each cell of the society and update 
an agent and its neighborhood. 

 
4. Nest the update process over the entire society. 

 
First we create the agent society. Here is typical Mathematica code for creating a 6 × 6 

matrix and randomly seeding it with agents (Mathematica built-in functions denoted in blue, 
comments in red):  
 

seedingDensity = 0.50 (* approximately 50% of the cells have agents *); 
gridSize = 6 (* create 6 x 6 grid *);  
grid = Table[Floor[seedingDensity + Random[]],{gridSize},{gridSize}]; 
 
numAgents = Plus@@Flatten[grid] (* calculate number of 1’s in grid *); 
(* print the matrix and report number of agents *) 
Print[MatrixForm[grid]]; 
Print[“The society contains “,numAgents,” agents.”]; 

 
Here is the result:  
 

  The society contains 21 agents. 

 
 
We next create the agent society by reassigning the 1 values of the matrix to lists 

representing agents and their attributes. We first set various parameters that indicate the variation 
in the randomly specified initial values for the agents, making use of various Mathematica 
built-in functions:  
 

(* set parameters *) 
seedingWell = g = 0.75 (* 75% of agents of type 1 *); 
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numAgentAtts = s = 3 (* each agents has 3 attributes *); 
k=0 (* counter for agents initialized at 0 *); 
RND:=Random[Integer,{1,4}] (* function to generate random number 
between 1 and 4 *); 
 
(* create agency society from initial grid using term replacement → *) 
society = grid /. 1 → {RND, ++k, Floor[g + Random[]], 
Table[Random[Integer,{1,10}],{s}], Random[Integer,{1,4}]}; 

 
The key step is the substitution step in the last statement in which the all the 1’s in the 

grid matrix are replaced with an agent representation, creating the agent society. Here is the 
result (each non-zero in the society matrix is an agent):  
 
 

 
 
 
Society Update 
 

The main operation for grid-type, agent-based social simulation is to update the society 
through updating each agent’s status and position on the basis of the state of the agent’s 
neighborhood. To implement the update rules for the MHA simulation, following Gaylord  
and D’Andria (1998), we define an extended neighborhood, called the Gaylord-Nishidate 
neighborhood (Figure 5), that accounts for all the cells that need to be considered in updating a 
cell’s contents.  
 

We next define a set of rules that can be used to update any cell in the society. 
Mathematica allows one to define patterns within expressions. Patterns are uninstantiated 
placeholders or slots that allow the attachment of optional general constraints as to data type or 
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value. First, we define a data structure by a sequence of patterns. The first term is the pattern for 
the contents of a cell, and the remainder of the terms constitute a possible pattern for the agent’s 
extended neighborhood. For example, here is a sequence in which an agent denoted by pattern a 
is facing north (direction = 1), and the agent in the northeast cell (NE in Figure 5) is facing to the 
west (direction = 4): 
 

{1,a___},0,_,_,_,{4,___},_,_,_,_,_,_,_ 
 

This pattern identifies the situation in which the agent in the current grid site and an agent 
in the northeast cell of the neighborhood are both facing the N cell. The resolution of the 
situation, according to the MHA update rules, is for agent a to remain in place and randomly 
choose a new direction. To apply this logic, we define a function that recognizes this pattern and 
determines the result, which is for the agent to remain in place and randomly choose a new 
direction. This is implemented by the following Mathematica statement, which consists of a 
user-defined function called walk that operates on the sequence and updates the agent at the 
current site: 
 

walk[{1,a___},0,_,_,_,{4,___},_,_,_,_,_,_,_] := {RND, a} Rule 1 
 
where (on the right side) RND specifies a randomly assigned direction, and a is the agent 
expression with its full set of attributes, which are unchanged by walk. 
 

A total of 28 possible combinations of agent and neighborhood patterns exist. An update 
rule is defined for each possibility. The update rule states how a cell’s contents should be 
updated depending on whether an agent occupies the cell and the status of the surrounding 
neighborhood. Seventeen rules are applicable to cells containing agents. Sixteen of the rules 
result in the agent’s staying in its current position and randomly updating the direction it is 
facing. One rule, Rule 4, is applicable for the agent to move out of its cell. Rules 1 to 16 cover 
the cases in which an agent is facing an empty cell and another agent is also facing that cell. 
Then the agent maintains its current cell position. For example, for agents facing north, the set of 
four update rules is as follows (similar rules are specified for agents facing the other three 
directions in Rules 5 through 16 and are not shown here):  

 
walk[{1,a___},0,_,_,_,{4,___},_,_,_,_,_,_,_] := {RND, a} Rule 1 
walk[{1,a___},0,_,_,_,_,_,_,{2,___},_,_,_,_] := {RND, a} Rule 2 
walk[{1,a___},0,_,_,_,_,_,_,_,{3,___},_,_,_] := {RND, a} Rule 3 
walk[{1,a___},0,_,_,_,_,_,_,_,_,_,_,_] := 0   Rule 4 

 
Otherwise, the agent stays in its current location and randomly updates the direction it is 

facing. This is Rule 17:  
 

walk[{_,a___},_,_,_,_,_,_,_,_,_,_,_,_] := {RND, a}  Rule 17 
 

Rules 18 through 28 apply to empty cells with contents 0. If a cell is unoccupied and two 
or more agents are facing the cell, the cell remains empty. These are Rules 18 through 23.  
 

walk[0,{3,___},{4,___},_,_,_,_,_,_,_,_,_,_] := 0  Rule 18 
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Otherwise, if a cell is unoccupied and a single agent is facing the cell, the agent moves 
into the cell, Rules 24 to 27.  
 

walk[0,{3,a___},_,_,_,_,_,_,_,_,_,_,_] := {RND,a}  Rule 24 
 

Otherwise, if a cell is unoccupied, the cell remains unoccupied, Rule 28:  
 

walk[0,_,_,_,_,_,_,_,_,_,_,_,_] := 0    Rule 28 
 

The update rules are applied to the entire society by defining a function called GN. GN 
takes each cell and creates a data structure called walk introduced above, consisting of the cell 
contents and the cell neighborhood. The update rules defined above are then automatically 
matched and applied to the cell, updating its contents. A time step consists of applying the 
function GN to all the cells in the society in a single statement: 
 

newSociety = GN[walk, society]; 
 

A complete simulation consists of applying the GN function repeatedly for each 
simulation period. A simulation can be efficiently implemented by using Mathematica’s 
functional programming capabilities by recursively applying the Nest function: 
 

simLength=50; 
finalSociety = Nest[ GN[walk, #]&, society, simLength+1]; 

 
which simulates each cell being updated for each of 50 periods. Figure 6 shows the original 
society and the society after applying the update rules to all agents for 100 generations.  
 

(a) (b) 

FIGURE 6  Mobile heterogeneous agent society simulation — (a) initial distribution 
of agents, (b) simulation results after 100 generations 
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In principle, it should be possible to implement the MHA simulation in MATLAB. To do 
so would require defining data structures for agents and attributes, defining neighborhood update 
rules on the basis of the full set of neighborhood configuration possibilities, reasoning about 
numeric rather than symbolic variables, and using procedural programming constructs (for loops, 
etc.) instead of functional programming constructs. It is not clear how the symbolic 
programming constructs of SMT or Maple could be used to facilitate the agent-based simulation. 
 
 
Social Network Topology 
 

The extensions from the grid topology to the network topology are straightforward in 
Mathematica (Gaylord and Davis, 1999) and similarly in MATLAB. Common network 
topologies used in agent-based simulation are shown in Figure 7. Mathematica has excellent 
built-in packages for graph generation and analysis. Extensions to modeling social networks 
require the use of more complex data structures than the matrix structure used for the grid 
representation.  
 

In Mathematica, a network representation consists of combining lists of lists or, more 
generally, expressions of expressions, to various depths. In MATLAB, this involves combining 
cell arrays or structures in various ways. For example, in Mathematica, an agent would be 
represented explicitly as an expression that includes a head named agent, a sequence of agent 
attributes, and a list of the agent’s socially connected neighbors: 
 

agent[sequence of agent attributes, {neighbor 1,… neighbor i,… neighbor n}] 
 

The list of neighbor references in the agent expression consists of pointers to the 
expressions for the agent’s neighbors. Agent pointers could be numeric or strings in MATLAB 
and Mathematica or symbolic (functions) in Mathematica.  
 
 

 

regular graph 

 

small-world network 

 

random graph 

FIGURE 7  Neighborhood topologies for network-based agent simulation (For agent-based 
simulations that define agent relationships on the basis of networks, connectivity defines the 
scope of agent interaction and locally available information.) 
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Social network interaction and social mechanisms between agents are defined to operate 
on the agent expression. Access to an agent’s neighbors and attributes (including the neighbors 
of the neighbors) is provided by the list of pointers to the agent’s neighbors. Dynamic social 
networks, which are networks that are formed and change during the simulation, would be 
implemented by manipulating the list of neighbors during the simulation on the basis of the 
current state of the agents and the simulation environment. Generating a neighbor list that 
consists of all agents with a particular attribute value determined dynamically during the 
simulation is an example.  
 

Figure 8 shows an example of a dynamic network agent simulation using this technique 
and rendered in Mathematica. In this model, agents are represented as: 
 

individual[ 
name,  
coord[{x-coord, y-coord, z-coord}],  
resources,  
variable based on neighbor attributes, 
 
Neighbor list: { 
{neighbor 1, relationship attributes}, 
{neighbor 2, relationship attributes}…,  
{neighbor N, relationship attributes} 
},  
other agent attributes and relationships ] 

 
 

FIGURE 8  Dynamic network agent simulation 
rendered in Mathematica 
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The society is defined as the list of individual expressions. Term replacement is used to update 
the entire society, as in the grid-type model. For example, an agent’s attribute relating to its 
neighbors’ attributes is updated with the mean value for all its neighbors as follows: 
 

updatedSociety = society /.  
individual[individualID_, loc_, resources_, meanNeighbors_, 
neighborsL_]  
:> individual[individualID, loc, resources, 
Mean[neighborsL[[All,2]]], neighborsL] 

 
This single Mathematica statement updates the entire society using the term replacement 

operator :>. This particular style of agent-based social simulation, which Mathematica allows, 
consists of a two-step process: (1) defining agents as abstract data types, independent of 
implementation, and (2) defining functions or methods that operate on the agents and any other 
data types in the model. This modeling approach is similar to that taken in object-oriented 
programming. Maeder (2000) provides an extensive discussion of agent data types and object-
oriented programming in Mathematica. However the Mathematica implementation is structured; 
the same specification would result at the modeling level, through the Unified Modeling 
Language (UML) for example (Booch et al., 1998). This implementation-independent model 
description could be the basis for communicating and implementing the same model in a variety 
of object-oriented, large-scale toolkits, such as Repast (Collier and Sallach, 2001), MASON 
(GMU, 2003; Luke et al., 2003), or Swarm (Burkhart et al., 2000).  
 
 

SUMMARY AND CONCLUSIONS 
 

Computational mathematics systems such as Mathematica and MATLAB can be 
alternatives or supplements to agent-based model development in the social sciences. These 
packages and others like them are fully integrated development environments offering numeric 
and symbolic computing capabilities. Their interpretative nature, ease of data import and export, 
and seamless integration of graphical capabilities provide immediate feedback to users during the 
model development process. This feature makes them particularly useful as learning tools as well 
as rapid prototype development tools. Besides the traditional form of social simulations based on 
differential or difference equations (as in Systems Dynamics), Mathematica and MATLAB 
facilitate the development of agent-based social simulations based on grid-type or social network 
topologies of agent interaction. Both Mathematica and MATLAB are continuing to rapidly 
develop. New releases with significantly improved capabilities occur, at the minimum, on an 
annual basis. The emphasis is on integration with other computing environments, ease of use for 
users, and expansion of technical capabilities.  
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DATA FARMING REPAST MODELS 
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ABSTRACT 
 

This paper briefly describes efforts to integrate Repast into the Project Albert data 
farming environment. The Marine Corps Warfighting Laboratory’s Project Albert is a 
research and development effort with the goal of developing the process and capabilities 
of data farming  developing data sets through utilization of massive computation. Data 
farming is a decision support methodology that applies high-performance computing to 
modeling to examine and understand the landscape of potential simulated outcomes, 
enhance intuition, find surprises and outliers, and identify potential options. Data farming 
is made possible, in part, by the exploitation of high-performance computing assets and 
methods. To leverage these assets, we developed a suite of entity-based combat models 
for Project Albert that allow for rapid changes to entity characteristics and behaviors 
quite amenable to, and intentionally designed for, rapid, repeatable concept exploration. 
However, Project Albert does not currently possess a fully generalizable framework in its 
suite of models. Invariably during a modeling effort, interest in exploring a new 
phenomenon arises or in representing an additional behavior that has not previously been 
addressed  the very essence of an exploration. Repast, as a fully generalizable 
framework with its emphasis on agent-based modeling and simulation, affords Project 
Albert the flexibility that it currently lacks to explore new phenomena and problem 
spaces as they emerge. 

 
Keywords: Data farming, Repast, high-performance computing, XML, XPath 

 
 

INTRODUCTION 
 
 This paper briefly describes initial efforts to integrate Repast  the REcursive Porous 
Agent Simulation Toolkit (North, 2002)  into the Project Albert data farming environment. 
The Marine Corps Warfighting Laboratory’s Project Albert is a research and development effort 
with the goal of developing the process and capabilities of data farming  developing data sets 
through utilization of massive computation (Barry et al., 2004). A representative implementation 
of this process, namely, data farming the Repast demonstration, Heatbugs, is presented.  
 
 Data farming is a decision support methodology that applies high-performance 
computing to modeling to examine and understand the landscape of potential simulated 
outcomes, enhance intuition, find surprises and outliers, and identify potential options 
(Brandstein and Horne, 1998). Data farming is the method by which potentially millions of data 
points can be explored and captured. Akin to data mining, data farming incorporates feedback to 
inform the subsequent collection of more data points and a more comprehensive exploration of 
the parameter space. To glean insight from these potentially massive compilations of data, 
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Project Albert is also developing and employing a wide range of data exploration and data 
visualization tools and methods. 
 
 

DATA FARMING 
 
 The metatechnique of data farming is made possible by recent technical advances in three 
areas (Horne, 2001): (1) complex adaptive systems models, which have the promise of capturing 
the aspects of adaptability, nonlinear interactions, feedback, and self-organization; (2) computing 
power, which enables us to generate the large volume of data needed to adequately represent vast 
spaces of possibilities; and (3) our ability to organize, synthesize, and visualize scientific data. 
 
 Data farming was first developed and used at the Marine Corps Combat Development 
Command in late 1997. It can be thought of as nothing more than putting the technical advances 
described above to work to engage the scientific method. The essence of data farming is to grow 
more data in particular, focused areas of interest. This growth within the specific definition of a 
particular model might be in the form of more runs or a different preparation of the sample space 
to include different parameters, finer gradations of parameter values, or greater ranges. After the 
execution of samples and analysis using data visualization and search methods, the data farmer is 
free to grow more data in interesting areas, integrate with information from other tools, prepare a 
different scenario using the same model, select another model, or any combination of these 
possibilities that he or she thinks might lead to enhanced decision support. 
 
 
Tools of Data Farming 
  
 Data farming is made possible, in part, by the exploitation of high-performance 
computing assets and methods. To leverage these high-performance computing assets, Project 
Albert developed a suite of entity-based, combat models that allow for rapid changes to entity 
characteristics and behaviors, quite amenable to, and intentionally designed for rapid, repeatable 
concept exploration. At this point, the reader might logically ask the question: “So, why 
Repast?” 
 
 
Why Repast?  
 
 To date, Project Albert does not possess a fully generalizable framework in its suite of 
models. Invariably during a modeling effort, interest in exploring a new phenomenon arises or in 
representing an additional behavior that has not previously been addressed  the very essence of 
an exploration. Repast, as a fully generalizable framework with its emphasis on agent-based 
modeling and simulation, will afford Project Albert the flexibility that it currently lacks to 
explore new phenomenon and problem spaces as they emerge. Our initial efforts to integrate 
Repast into the Project Albert data farming environment are described below in an example 
using the Repast demo, Heatbugs. 
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IMPLEMENTING DATA FARMING IN REPAST 
 
 Our approach relies on two related technologies: XML and XPath. XML is the eXtensible 
Markup Language developed by the World Wide Web Consortium.1 As the name implies, XML 
is a language where the user can define, within the rules of the specification, the naming, 
structure, and content of individual entities within that language, thus making it extensible. 
XPath is the XML Path Language.2 Basically, an XPath is structured like file paths in the 
Windows or Unix operating systems. We give more details on the use of XPath in the Heatbugs 
example below.  
 
 Our approach works by constructing two XML-structured files: a model “scenario” file 
and a study file. The scenario file contains all of the parameters that the model developer decides 
are appropriate inputs for his or her model and acts as a template or specification of allowable 
parameter changes. An instance of a scenario file is called an “excursion,” with specific values 
for each parameter in the file. The excursion file is then passed to the model as input, along with 
a random seed, and an individual replicate, an excursion file with a specific random seed, is 
executed by invoking a command line call (no GUI). In Repast terminology, we have divided the 
Repast parameter file into two separate files: an excursion file, which indicates parameter 
settings for an individual run, and a study file, which indicates how the parameters are changed 
for separate runs (i.e., determining the batch operations).  
 
 The study file is a structured XML file that contains information about the user; the 
model; lists of random seeds to use; computing environment (e.g., local or distributed); and the 
specific data farming experiment, including number of replications, parameter bounds, and the 
desired data farming algorithm. The entries in the study file can be broken down into two 
classes: those for documentation purposes, like user and model used, and those that specify the 
conditions for the computer experiment, such as the data farming algorithm and the parameter 
bounds. We give an example of how to specify the parameter bounds below. 
 
 The software we developed currently implements four types of data farming algorithms: 
(1) gridded data farming, or simple parameter sweeps using a min/max/delta specification; 
(2) Cartesian product generation, which is a parameter sweep wherein the user indicates the 
specific values to use for each parameter; (3) specification runs desired in a comma-separated 
file, with each row indicating a setting of all the parameters for an excursion and each column 
indicating the individual parameter values; and (4) an evolutionary programming algorithm. The 
user can also group variables such that all the variables in the group take on the same values for a 
specific excursion (also called lock-stepping), in effect treating the group as one variable. These 
four types cover a broad range of experiments; however, users can also write and use their own 
data farming algorithm (e.g., a different evolutionary or search algorithm than the one currently 
implemented). 
 
 Our data farming software takes as input these two files, the excursion file and the study 
file, and conducts the batch runs, which can be run either on a single machine or over a cluster of 
machines. When using a cluster of machines, the software generates individual excursion files 
and then distributes the individual runs over the machines in the cluster. We have used Condor 

                                                 
1 The current official XML specification can be found at http://www.w3.org/XML/. 

2 The specification for XPath can be found at http://www.w3.org/TR/xpath. 
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(http://www.cs.wisc.edu/condor/) as our distributed computing mechanism. When using a single 
machine, the software generates individual excursion files and then sequentially executes the 
individual runs. 
 
 

DEMONSTRATION WITH HEATBUGS 
 
 To illustrate the approach, we use as an example a conversion of the Repast Heatbugs 
parameter file, depicted in the XML file in Figure 1. More complicated XML structures are 
possible, but this simple example serves our purpose. 
 
 An XML format is composed of a number of elements, where each element has a name 
and can have optional attributes. Each element has element start tags and corresponding element 
end tags; the start tags are structured in the form <TagName...>, where the ellipsis indicates an 
optional listing of attribute-value pairs, and the end tags are in the form <\TagName>, with a 
backslash before the TagName and no attributes. Although it is a very basic XML-formatted file, 
it is sufficient for our purposes. Element tags are also nested; there must be a complete start-end 
set of tags nested inside another set of start-end tags, as shown in Figure 1 by the EvapRate tag, 
which is nested within, or surrounded by, the Heatbugs tags. The first line, <?xml version=“1.0” 
encoding=“UTF-8”?>, indicates that this is an XML file and uses a special format for that line 
indicated by the <?xml ... ?> pairing of character sequences. The next line, <Heatbugs 
version=“1.0”>, is the root element of the XML input file. “Heatbugs” is the name of this 
element, and it has an attribute called “version,” with the value of this attribute set to “1.0.” We 
envision using this structure for all Repast model input files.  
 
 This simple example has only nine elements. The name of each element reflects the name 
of an associated model input parameter and has a value associated with it, the float or integer 
value to use for that parameter at model initialization (the terminology used here is a 
simplification of the actual XML structure but suffices for our use). This example would 
constitute an entire Heatbugs scenario file. More type checking could be added, such as adding a 
parameter “type” (e.g., integer or float, by inserting a type attribute with the Element name, for 
example, <EvapRate type=‘float’>, so that error checking could be done on reading the file).  
 
 

FIGURE 17  Heatbugs XML scenario file 

<?xml version=“1.0” encoding=“UTF-8”?> 
<Heatbugs version=“1.0”> 

<DiffusionConstant>1.0</DiffusionConstant> 
<EvapRate>1.0</EvapRate > 
<MaxIdealTemp>31000</MaxIdealTemp> 
<MaxOutputHeat>1000</MaxOutputHeat> 
<MinIdealTemp>17000</MinIdealTemp> 
<MinOutputHeat>3000</MinOutputHeat> 
<NumBugs>100</NumBugs> 
<WorldXSize>100</WorldXSize> 
<WorldYSize>80</WorldYSize> 

</Heatbugs> 
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We could also develop an XML Schema for the scenario file to provide additional validation of 
the input file, but that is beyond our current discussion and implementation. 
 
 Now that we have defined the scenario file, we need to construct our experiment using 
the study file. As an example, we use a gridded or parameter sweep algorithm to illustrate how 
the parameters and the bounds on those parameters are specified in the study file.  
 
 Figure 2 shows an XML snippet from the study file detailing the dimensions, that is, the 
set of parameters that define the farming region. For a parameter sweep, this set is just a list of 
the parameters along with their associated upper (MaximumValue) and lower (MinimumValue) 
bounds and a step size (Delta value). For this example, the six runs listed in Table 1 would be 
conducted, with the number of replications indicated in the study file. 
 

The type and name attributes, along with the XPath element, are the same for all types of 
data farming algorithms. These indicate the specific parameters to be modified. The other items 
in this example are specific to the type of algorithm, that is, (<MaximumValue>, 
<MinimumValue>, and <Delta>). The type attribute can be either “float,” “integer,” or “string,”  
 
 

FIGURE 18  Dimensions specification 
 
 

TABLE 1  Parameter levels for the six runs 

 
Excursion Number 

 
EvapRate 

 
NumBugs 

   
1 1.0 100 
2 1.0 150 
3 1.0 200 
4 2.0 100 
5 2.0 150 
6 2.0 200 

<Dimensions> 
  <Variable type=“float” name=“EvapRate”> 
    <XPath>/Heatbugs/EvapRate</XPath> 
    <MaximumValue>2.0</MaximumValue> 
    <MinimumValue>1.0</MinimumValue> 
    <Delta>1.0/Delta> 
  </Variable> 
  <Variable type=“integer” name=“NumBugs”> 
    <XPath>/Heatbugs/NumBugs</XPath> 
    <MaximumValue>200</MaximumValue> 
    <MinimumValue>100</MinimumValue> 
    <Delta>50</Delta> 
  </Variable> 
</Dimensions> 
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depending on the type of parameter in the scenario file. The string type can be used to define 
categorical parameters. The name attribute is specified by the user and is just a short name that is 
used in the header of the output file. There are no restrictions for composing this string. The  
user can either place “:” between strings to make it easier to read or use spaces. Thus, 
‘name=“Heatbugs:EvapRate”’ is a legitimate name. 
 
 The remaining step is to construct the XPath for each of the parameters. The XPath is 
very easy to determine for our purposes, as the scenario files are reasonably structured. The 
XPath is a string that, when evaluated, actually points to a section of text in the scenario file. In 
our case, it is a particular value that we want the software to modify. Using the Heatbugs 
example above, the XPath for the EvapRate parameter is simply “/HeatBugs/EvapRate.” Each 
“/” indicates a drop in the tree hierarchy of the XML input file, with the last node pointing to the 
location of the value indicated by the XPath. Other XPath functions are also allowed, further 
increasing the flexibility in uniquely specifying the set of parameters. 
 
 In summary, the data farming software takes as input the scenario file and the study file. 
The software then constructs an excursion file for each combination of parameter settings as 
indicated by the algorithm and the dimensions specification. It does this by taking the scenario 
file, making a copy, modifying the parameters indicated by the XPath in that file, and writing out 
a new excursion file. For our example above, we would have six files created, where the 
EvapRate and the NumBugs parameters would be as shown, and the remaining parameters would 
be set at the values indicated in the original scenario file (they do not get modified). The software 
then constructs command line calls for each of the six runs and either distributes the runs over a 
cluster or conducts the runs sequentially on a single machine. 
 
 

SUMMARY 
 

This paper briefly describes our first efforts at integrating Repast into the Project Albert 
data farming framework with an example using the Repast demo, Heatbugs. The Marine Corps 
Warfighting Laboratory’s Project Albert is a research and development effort with the goal  
of developing the process and capabilities of data farming — developing data sets through 
utilization of massive computation. Data farming is made possible, in part, by the exploitation of 
high-performance computing assets and methods. However, Project Albert does not currently 
possess a fully generalizable framework in its suite of models. Repast, as a fully generalizable 
framework with its emphasis on agent-based modeling and simulation, affords Project Albert the 
flexibility that it currently lacks to explore new phenomena and problem spaces as they emerge. 
The Repast community can also benefit by exploiting the capabilities of the Project Albert data 
farming environment. 
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DISCUSSION: 
 

TOOLKITS 
 

(Thursday, October 7, 2004, 3:15 to 4:45 p.m.) 
 

Chair and Discussant:  Michael J. North, Argonne National Laboratory 
 
 
NetLogo:  Design and Implementation of a Multi-agent Modeling Environment 
 

Michael North:  In this session on toolkits, Seth Tisue will talk about NetLogo. 
Following that talk, Seth and Chick Macal will discuss mathematics and MATLAB. Finally, 
Steve Upton will talk about data-farming Repast models. First, I’d like to introduce Seth Tisue. 
I’ve known him for many years. He is the lead developer of NetLogo at Northwestern 
University. 

 
Seth Tisue:  Thanks, Michael. I’m Seth Tisue. The inventor and author of NetLogo is 

Uri Wilensky. He may be coming to some talks tomorrow, so if you’re hoping to check in with 
him, he may be here tomorrow. I work in Uri’s research group at Northwestern University, 
which is called the Center for Connected Learning and Computer-based Modeling. We’re jointly 
based in two departments: at the School of Education and Social Policy and at the Department of 
Computer Science. We’re also associated with Northwestern’s new institute, NICO, the 
Northwestern Institution for Complexity, which has just started up. It was publicly announced 
for the first time a couple weeks ago. 

 
The name of my talk is “NetLogo: New Developments,” but I’m mindful that some of 

you may not know about NetLogo. So in the first part of the talk, I’ll fairly quickly cover the 
basics of NetLogo. I’ll then talk about work that we’ve recently completed and released; I’ll also 
explain what we’re working on now and what we expect to be working on soon. I’ll be trying to 
convey where NetLogo is positioned in the design base of possible tools for computer-based 
modeling and why we think that’s a good place for us to be. I’ll talk about what we’re doing to 
try to spread out in that design space, so to speak, to make NetLogo a good choice in a wider 
range of situations. 

[Presentation] 
 

All of our papers are online. We have two papers about NetLogo as a research tool. The 
first is more introductory, less technical; the second is more technical. We also have lots of 
papers available about our work on NetLogo in schools. 

 
North:  Thank you, Seth. I have two quick questions, and then we’ll open the discussion 

for questions from the audience. First, you mentioned for the license that there are no restrictions 
on use. I remember reading a license a couple of weeks ago. Is that true for noncommercial and 
commercial use or …. 

 
Tisue:  Yes. The wording on the current license is confusing. The intent is definitely to 

have no restriction on use, either commercial or noncommercial. That’s not as clear from the 
wording as it should be.  
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North:  Right. Here’s the reason why. I don’t want to embarrass you, but I’ll take the 
opportunity anyway. The licenses I read, at least a few weeks ago, said that commercial users 
should contact Uri Wilensky for licensing terms.  

 
Tisue:  That’s for redistribution of NetLogo itself or for distribution of the modified 

version. But if you’re using NetLogo — building models with it — there are no restrictions. 
Actually, you should let everybody know that. I know how the license sounds, and it’s not how it 
was intended to sound, so you should let everybody know that you interpreted it in the way that 
I’ve always interpreted it.  

 
North:  Exactly, that’s right. I’ll let him know that. My second question is how extensive 

is the GIS support? I thought that was a very interesting feature. In other words, is it built in 
where you point it at a file and it’ll load it, or do you need to do other things to add to the 
system? 

 
Tisue:  There’s no GIS support per se built in. What’s new in the last year is that the 

fundamental capabilities are now there so that users can build GIS support themselves.  
 
Craig Stephan:  Craig Stephan, Ford Motor Company. Not to embarrass you further, but 

I’ll take the opportunity, too. Strictly from the standpoint of the user, can you compare how 
NetLogo is with respect to something like Repast, in terms of both its strengths and its 
weaknesses? And as long as Michael [North] is standing right behind me, I’ll ask him if he wants 
to chime in. 

 
Tisue:  Okay. Let’s see, that’s a big question. NetLogo’s biggest strength is that you can 

write models and you can understand models without learning Java. You do have to learn 
NetLogo, but learning NetLogo’s a much smaller pill to swallow than learning Java. So that’s 
really the biggest advantage. Of course, Repast can also do things that NetLogo can’t do yet. It’s 
more flexible in many ways, and it also has specific support for doing network modeling, which, 
again, is something that’s now possible by using our basic capabilities, but we haven’t yet added 
capabilities that specifically help you with it. 

 
North:  We have time for one more question… 
 
Matthew Koehler:  Matt Koehler from MITRE. I’m curious about the controlling API. 

Does that allow NetLogo to run as a batch, in batch mode? 
 
Tisue:  You can run it in batch amount if you use X-11 with a virtual frame buffer. Do 

you know what that is, or should I translate that? 
 
Unidentified Speaker:  But it’s easy. Don’t worry. 
 
Tisue:  Yes, so you can run it from the command lines. The graphical user interface 

actually must be present, but you can use X-11 to fool it into thinking there’s a GUI there. And 
I know that’s possible because people are doing it. 

 
North:  I’d like to thank Seth again. 
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Agent-based Modeling and Social Simulation with Mathematica and MATLAB 
 

Charles Macal:  When we began the process of putting together this conference — Dave 
Sallach, Michael North, and I — we had the notion that theory can work together with toolkits 
and methods, and that those, in turn, can work together closely with applications, and further that 
these three areas can benefit in a dynamic way from progress in each area. We’re now turning to 
the applications part, and some of the issues that I’m going to discuss — just to put down some 
framework for discussion or ways of thinking about applications that we’ll be seeing in the rest 
of the conference — are very similar to or at least overlap with some of the issues we’ve already 
discussed in the theory areas and in the methods and toolkit areas, as well. 
 

[Presentation] 
 

Unidentified Speaker:  These are really big issues to think about. The other issue is that 
some of these models can be appreciated at multiple levels of granularity. So one has to decide, 
for example, what level of granularity you want to start on and which to finish on. 

 
Macal:  Thank you for your comments. The problem’s even worse than I thought, based 

on what you’ve said. Not only that, what you’re suggesting is that the trajectory is path 
dependent; it depends on where you start. I’m astounded by the complexity of it. In all 
seriousness, these are good things to sort out and get on the table. That’s all we can do right now: 
attain consciousness. 

 
Unidentified Speaker:  Some models are set up to be added to incrementally, just like 

the others. You can’t add big clumps, and therefore things are going to be much harder.  
 
Macal:  Right. What you’re suggesting is there’s a discreteness to going through the 

trajectory. And, yes, that’s unfortunate, too. It’s almost a model design issue. The question is a 
natural one. Where do you take that? Is there a notion of where you go with it? Does it make 
sense to go anywhere, or is it an end in itself? With regard to a lot of questions about 
applications, they come from different directions, and at some level, they aren’t relevant from 
one type of model to another. If we have a better idea, I think it will be constructive. 

 
Unidentified Speaker:  Is it possible we could think about this a’la Karl Popper? Is your 

model falsifiable at some point? Could you pile on a whole preponderance of evidence that 
would say it’s working, but then throw in a couple of wrenches and show that it’s not working 
and there’s something severely wrong with your model? 

 
Macal:  We could do that. That sounds pretty good — to develop some framework or 

structure for doing that. But I’d like to make another point. Suppose we have a model. 
Traditionally, we’ve always done a few discrete runs with the model. But now we have 
computational power to essentially search through all parameter spaces of important assumptions 
that are in the model and create what I guess Steve Bankes would call landscapes produced by 
the behaviors of your model. What are all the behaviors? What are all the kinds of results your 
model can produce? Then the question is whether we have all the mechanisms in the model to 
represent reality. I think we still don’t understand, for our models in general, all the behaviors 
they’re capable of producing. We just play around with them and discover interesting things, 
some of which may be falsifiable simulation runs or something like that. 
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David Sallach:  I’m David Sallach from Argonne National Laboratory. What you are 
showing is that however much we would like to bracket or hold off the complexity of the world 
that we live in, the closer that we get to applications, the harder that is to do. And, as we have 
found throughout this conference, however much we might like to debate the simplicity-
complexity discussion, it keeps catching up with us and inveigling us in it again. I would like to 
relate that to the earlier discussion between BDI [Beliefs, Desires, and Inventions] and DBO 
[Desires, Beliefs, and Opportunities] that was going on. 

 
I think that the idea of opportunities strengthens some of that basic mechanism. But one 

of the things that we can see from adding opportunities is that they are inherently linked with the 
larger world. It’s some kind of opportunity that presents itself for a time period that requires 
certain prerequisites and so forth. There’s a relationship between what we presume about the 
world and the opportunity structure that’s inherent in it. What we can also see is that this is true 
about beliefs and desires and intentions as well. There are beliefs about the world, and they can 
exist at various levels of abstraction. There are desires for something in the world that may be 
more or less specific. They may be quite general: for success, honor, food, or whatever. So it 
seems to me that what you’re suggesting is that we must, in some way, address the knowledge 
representation issue of the nature of the larger reality in which we’re enmeshed. It brings us back 
to Herbert Simon — that perhaps our decisional processes are simple, but we live in a complex 
environment. Therefore, one of the issues that is always implicitly on the table is how we control 
the representation of the complexity in which we’re embedded. 

 
Macal:  That point is well taken, David. We should think about these things in an explicit 

and in a conscious way and see if these two extremes that I’ve created, or taken positions on, 
have a lot more in common than I’ve suggested. 

 
Kostas Alexandridis:  I’m Kostas Alexandridis from Purdue. There is something I 

would like to propose. It’s not enough to just think about the structural complexity of our models 
because we understand that complexity. However, there is another process going on: how people 
outside our own understanding as researchers conceive of those models. There was a very 
characteristic example, which I would call a very complex model but with a simply understood 
representation, a year ago in an experiment where people produced a highly complex model, but 
it was very easily understood by their own people, by the communities. There are other models 
that are relatively simple in terms of assumptions but that end up not being very well understood 
by the broader user community. That kind of complexity has to be taken into account at some 
point. 

 
Macal:  I would agree. I think that one of the promises of agent modeling is that it’s easy 

to understand the agent behaviors that we include because they could be simple rules or 
whatever. The complexity comes necessarily as a mechanical process, just from the computer 
applying these simple rules in agent relationships over and over again. So there’s really almost 
nothing left to explain when the complex results come out. If you agree with the simple rules that 
are included for the agents, you get complex behaviors. The other situation — of complex 
models producing simple results — is interesting, but I’m not sure how that relates to agent 
modeling in particular, unless we have complex agents in complex models and somehow the 
answer is the same all the time. But that sounds like an equilibrium model as opposed to one 
that’s rich in its dynamics of interaction.  
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John Sullivan:  I’m John Sullivan from Ford Motor. It seems to me the whole objective 
here is to build a model that gets at the essence of the question at hand. And presumably the 
model is being built to address a particular question and not to describe the world. I would like to 
ask Mike Macy (because he made a remark earlier this morning that you can prove right models 
wrong and wrong models right) to elaborate on what he meant by that, in the context of where 
we are with these models in describing the question at hand. 

 
Macal:  I would just like to add a note to what you said. You described the second way 

of using models. It’s perfectly legitimate, valid, and of great interest to use a model strictly to 
create an insight with which you could do anything you’d like, such as designing a laboratory 
experiment to see if that effect is observed in the real world. It’s knowledge for the sake of 
knowledge, which could ultimately lead to an application. But is that a question that Michael 
[Macy] should answer. 

 
Michael Macy:  Well, it turns out that the question I was going to ask was exactly on 

that point. Suppose that I’m being consulted by the Department of Education about what we 
should put into kids’ textbooks. I have to choose between a group that’s advocating 
multiculturalism and a group that’s advocating sort of an older 1950s, 1960s, early 1970s 
approach that focuses on color blindness or ethnic blindness. I look at the Schelling model, and it 
tells me I should not use multiculturalism because that promotes ethnic awareness, which will 
get you segregation, whereas if I promote color or ethnic blindness, you won’t get segregation. 
That’s what the model predicts. So the model gives me a policy recommendation, even without 
any specificity in terms of trying to match it with real-world data. 

 
I might go into the lab and design an experiment in which we test people. We give people 

a stimulus. In one case, we promote multiculturalism, and we give them a multicultural message. 
In the other case, we give them a liberal, ethnic blindness message, which makes them think 
about some attribute other than ethnicity. We prime them to get them to not think about it. Then 
we put them into a checkerboard and let them move around, and we see which one produces the 
segregation. It seems that this approach would inform policy in a way that I would perhaps trust 
more than I would an agent model that was extremely complex that I didn’t really understand. 
Moreover — here’s the thing I really worry about — what do we do about unobservable 
behavioral parameters? The key one to look at very carefully is that a lot of our stochastic 
models use a cumulative logistic function: one over one plus e to the minus x, m, where x is a 
propensity that comes out of the model. It doesn’t matter what it is; x is a propensity. And m is 
the slope parameter of the function, of the sigmoid. 

 
We can find x; we can measure the propensities. We can even get pretty good information 

about the distribution, so we can know what the variance is and so on. It’s really hard to measure 
people’s m’s. It’s hard to know whether they’re using the hard limiter function or whether it’s 
linear. And even if we could find that for the mean of a population, good luck trying to find what 
the distribution of that looks like across the agents. I don’t think you’ll find either one. 
Moreover, we don’t know anything about the correlation between x and m. We just aren’t going 
to know that. Yet it doesn’t do you any good to know x if you don’t know m. Trying to get these 
agents to look like real people is a tough assignment. I would love to do it, but I just despair. 

 
Macal:  Well, I’m in your camp, Michael. I’m despairing, but I’m pressing on anyway. 
 
Macy:  I still think we could do the policy recommendations. 
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Macal:  But how? How can we do that if the model’s no good? 
 
Macy:  Somebody should do this.  
 
Macal:  That’s the good use for essentially an insight coming out of a model. The model 

may not be ready for prime time. That’s not your fault. It could be that the model’s just getting 
skyrocketed into the policy domain. That’s a very natural process because the policymakers want 
the answer today. 

 
Nick Gotts:  I’m Nick Gotts of Macaulay Institute. On your diagram and in a number of 

the questions, there’s been an assumption that you start with a simple model and make it more 
complicated. That’s not always the way it should go. You should be prepared to move up and 
down the scale of complexity. When you find some interesting phenomenon, one of the first 
things you should do is start taking things out of the model and see how long it survives because 
it may just be a bug. 

 
Macal:  Exactly. That’s a very good point — a constructive way to do modeling, in the 

sense that in fact, it’s a natural thing, too. Once you’ve got the observed effects in a very 
complicated model, the question occurs:” Can I throw out these assumptions and this module and 
find this didn’t matter much? And can I even mechanically identify those factors that don’t count 
much? It’s the scaffolding of the model. 

 
Claudio Cioffi-Revilla:  I’m Claudio Cioffi-Revilla from George Mason University. I’ve 

got 5 minutes of notes, but I’ll just pick the 15 seconds that I wanted to introduce them with. I 
hope I’m attributing this right. George Box, statistician, said this in the context of statistical 
models, but I think it applies here: All models are wrong, but some are useful. 

 
Macal:  John Sterman has a quote like that, too. I think he just says all models are wrong, 

period. There’s a paper on that. 
 
Cioffi-Revilla:  Thirty years ago, when I was starting out in my career, I did the 

following exercise. I was deeply interested in mathematical models in international relations. 
There were no agent-based models at that time, unfortunately. But I did a huge survey of the 
literature in the whole field, going back to Day 1 — to Richardson and even earlier work that I 
was able to track down. I came up with a few hundred models that spanned everything — from 
set theoretic models to games, decisions, differential equations, stochastic processes, and the full 
panoply of mathematical structures. I had a matrix with all kinds of mathematical structures in 
rows, and it had different topics or behaviors — from arms races to international organizations, 
foreign policy cognitions, all kinds of things like that, and substantive domains — in columns. 

 
Today, I would say the number of practitioners in this field is between about 500 and 

1,000 globally. I think we’ll cross the 1,000 threshold in a few years, but now we’re probably 
just below it. So one day this type of inventory will be impossible to carry out. It might be 
possible because of co-authorships. Also, the actual number of individual, distinct models out 
there is probably on the order of 100 or in the low hundreds, perhaps. I did it 30 years ago, and 
I’m not going to do it again, but it is worthwhile because it gives the topology of applications 
and uses of different kinds of models where it’s very easy to discover areas that, unless you do 
this systematically, we might miss in what we’re actually doing and accomplishing collectively. 
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And it might be something worthwhile to look at. It would be, in fact, a way to populate that 
two-dimensional diagram. 

 
Macal:  Yes, I think that would be useful and possible, especially now with the 

automated information Webs that are out there, to just grab all those, whether they’re historic or 
current. 

 
Spiro Maroulis:  I’m Spiro Maroulis from Northwestern University. When you had the 

graph up about the detail versus behavior at the end, I was thinking that there are two types of 
detail — detail in factors and detail in actors — and that their implications with regard to validity 
or credibility in the policy world may be different. Maybe they actually go in different directions, 
so if I have detailed factors and I can map them to empirical results, I get more credible. But the 
more complicated my explanation about the heuristics people use becomes, I may lose credibility 
or the model may become less powerful. I just wanted your comments on that. 

 
Macal:  You have to have a story as to how the model maps into the world — whether 

a model models the agents or the process or models or the whole model in general — whatever is 
needed to establish credibility. It’s usually discrete elements at which credibility is in question. 
And if credibility can be established, they just say that your model’s fine. But there are a few 
different things to focus on. You have to articulate and have a story; that’s just part of the art of 
modeling. Plus, we have developed computers that some day can generate stories. Maybe that’s 
something we should work on: generate! Here’s the model, and out comes a story, instead of a 
Java dock or something (i.e., here’s the story you should use to explain what’s in my model). 

 
Unidentified Speaker:  That’s sort of the ultimate in the narrative simulation I talked 

about. That’s actually a technique in semiautomatic versions that we’ve used to convince people 
that certain things are working properly. 

 
Luis Antunes:  I’m Luis Antunes of the University of Lisbon. I just want to make a small 

comment along the lines of Michael’s comment. I think it gets even worse because your vertical 
line in the axis isn’t really there. It’s kind of fuzzy because the real world is not available to us. 
So your observations depend on models, also. Many times, it would be useful to consider those 
models explicitly (e.g., when you have what you call raw data that are not raw data; they depend 
on someone measuring). All information, of course, is mediated, and mediated through 
something we can call a model, as well. 

 
Macal:  Yes. The real picture would be the real world — something we don’t know and 

cannot attain. And even if we did, in our model, we wouldn’t even know it. It would be like 
simulating the universe with a universal computer. 

 
Why don’t we continue the discussion about applications in light of some of these ideas? 

Please be kind to the developers of the applications. When you develop an application, you are 
open to an enormous amount of blind sides, weaknesses, what-ifs, and things like that. 

 
Unidentified Speaker:  And plead for understanding. 
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Data Farming Repast Models 
 

Keven Ruby:  Thank you. Steve Upton has a very interesting project that, as I 
understand, is with the Marine Corps using Marine Corps data in a military environment. 

 
Steve Upton:  I’m giving this brief for Matt Koehler, so I’m not actually working on this 

project. If you have any detailed questions about what’s going on, you’ll have to wait for the 
paper or send an e-mail to Matt. 

 
As Keven mentioned, we’re doing this work for the First Marine Expeditionary Forces, 

or 1MEF, which is in Fallujah. Colonel Stanley is the G2 or the intel individual at 1MEF. A 
small cadre of 1MEF folks resides at Camp Pendleton, and Matt is trying to continue this work 
going while the main force is in Fallujah. We’re trying to look at a particular application. Gary 
Horn, Phil Barry, and Matt are all with the MITRE Corporation. Brian’s actually with 
Widdowsons at the Maui High Performance Competing Center; like myself, Adam Forsyth is 
with Referentia Systems. Adam is from Australia and has worked with the Australian army. So 
we have lots of military experience. I’m a retired Marine, so that helps. I know a little bit of 
something about the domain, not necessarily about the model. 

 
First, I’ll give short introduction about ‘Albert’ and then get into the SASO model, which 

stands for Stability and Support Operations. It’s basically the winning-the-peace part. We did all 
the war; now we’re trying to win the peace in Iraq. That’s just one application. Some work 
occurred before the Iraqi War, so you can see that this has actually been of interest to all the 
military for some time. In fact, some of the work that we mentioned on Thursday (i.e., with the 
Germans) talked about the many peacekeeping operations, specifically at the elections in 
Kosovo. They developed a model called Pax to look at that. It’s the same kind of interesting 
arena. 

 
[Presentation] 

 
Ruby:  As we transition to the next speaker, let’s take a question. 
 
Scott Christley:  Scott Christley from University of Notre Dame. This comment might 

be more relevant to your earlier talk with the data farming, but one of the purposes you’re doing 
that is to find outliers — those special scenarios that occur. If you’re generating lots of data, how 
are you actually finding those outliers without brute force? What are you using as a trigger to 
find those things? 

 
Upton:  Yes. A lot of data farming involves the use of different algorithms. As I 

mentioned, we have Design of Experiments to find those evolutionary algorithms, and a lot of it 
is just brute force. So there is a low base-rate problem. We normally do a set of replications on 
that because there’s a lot of stochasticity. Even though you did 1,000 replications, there’s one out 
of 1,000 that was of interest: how do you find that? So, yes, those are some of the ideas we’re 
looking at now. 
 
 



 

 

 



 

 

 
 



223 

 

REPAST REVOLUTION: 
AN OVERVIEW OF NEW REPAST DEVELOPMENTS 
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W. MACIOROWSKI, Argonne National Laboratory, Argonne, IL 
 
 

ABSTRACT 
 

Repast is a widely used framework for developing agent-based models. Repast includes 
components for developing agents and creating agent environments, as well as initiating, 
executing, and tracking simulations. Recently, several new enhancements have been 
added to the Repast system: multilingual model development, greatly expanded built-in 
features, and full geographical information systems (GISs) support. Historically, Repast 
has used the Java environment, but now Repast has been ported to the Microsoft.NET 
framework. This complete conversion, called Repast .NET, contains virtually all of the 
functionality of Repast for Java (Repast J) and is written in pure Microsoft C#. True to 
the Microsoft.NET approach, complete Repast .NET models can now be written in the 
user’s choice of C#, Managed C++, or Visual Basic. Repast .NET is fully integrated with 
Microsoft Visual Studio and includes Enterprise Templates and examples for C#, 
Managed C++, and Visual Basic. Continuing this multilingual theme outside of the 
Microsoft.NET framework, Repast for Python (Repast Py) is a newly rebuilt visual model 
construction environment that uses Python scripting to define agent behaviors and 
environmental responses. Repast Py users can work with a point-and-click interface along 
with Python coding to create complete cross-platform models on any operating system, 
including Microsoft Windows, Mac OS, and Linux. Furthermore, Repast Py models can 
be automatically exported to Repast J models with a few mouse clicks. Repast also 
includes enhanced functionality, such as fully integrated systems dynamics modeling, 
linear programming, neural networks, and genetic algorithms. These powerful functions 
can be used for complete models or for individual agent behaviors. Repast has a new 
visual point-and-click framework to execute Monte Carlo simulations. The Repast family 
also now has full integration with ESRI ArcGIS and open source GIS. The new Repast 
GIS feature allows agents to be automatically created from, to be immediately displayed 
on, and to directly interact with real GIS maps as easily as standard grids. These and 
other new Repast developments are discussed. 
 
Keywords: Agent-based modeling and simulation, toolkit, library, Repast 
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INTRODUCTION 
 

The Recursive Porous Agent Simulation Toolkit (Repast) is one of several agent 
modeling toolkits that are available. Repast borrows many concepts from the Swarm agent-based 
modeling toolkit (SDG, 2004). Repast is differentiated from Swarm since Repast has multiple 
pure implementations in several languages and built-in adaptive features, such as genetic 
algorithms and regression. For reviews of Swarm, Repast, and other agent-modeling toolkits, see 
the surveys by Serenko and Detlor (2002) and Gilbert and Bankes (2002). Also, see the toolkit 
review by Tobias and Hofmann (2003), who reviewed 16 agent modeling toolkits and found that 
“we can conclude with great certainty that according to the available information, Repast is at the 
moment the most suitable simulation framework for the applied modeling of social interventions 
based on theories and data.”  
 

Repast is a free open source toolkit that was originally developed by Sallach, Collier, 
Howe, North, and others (Collier et al., 2003). Repast was created at The University of Chicago. 
Subsequently, it has been maintained by organizations such as Argonne National Laboratory. 
Repast is now managed by the nonprofit volunteer Repast Organization for Architecture and 
Development (ROAD, 2003). ROAD is led by a board of directors that includes members from a 
wide range of government, academic, and industrial organizations. The Repast system, including 
the source code, is available directly from the Internet. 

 
 

GOALS 
 

Repast seeks to support the development of extremely flexible models of living social 
agents, but it is not limited to modeling living social entities alone. From the ROAD home page:  
 

Our goal with Repast is to move beyond the representation of agents as discrete, 
self-contained entities in favor of a view of social actors as permeable, 
interleaved, and mutually defining; with cascading and recombinant motives. We 
intend to support the modeling of belief systems, agents, organizations, and 
institutions as recursive social constructions. 

 
At its heart, Repast toolkit version 3.0 can be thought of as a specification for agent-

based modeling services or functions. There are three concrete implementations of this 
conceptual specification. Naturally, all of these versions have the same core services that 
constitute the Repast system. The implementations differ in their underlying platform and model 
development languages. The three implementations are Repast for Java (Repast J), Repast for the 
Microsoft.NET framework (Repast .NET), and Repast for Python Scripting (Repast Py). Repast J 
is the reference implementation that defines the core services. In general, it is recommended that 
basic models can be written in Python using Repast Py due to its visual interface and that 
advanced models be written in Java with Repast J or in C# with Repast .NET. 
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REPAST’S ROOTS 
 

Repast 3.0 is based on Repast 2.X. Repast 2.0 included a variety of features: 
 

• Fully object-oriented 
 
• Fully concurrent discrete event scheduler that supports both sequential and 

parallel discrete event operations 
 
• Built-in simulation results logging and graphing tools 
 
• Range of two-dimensional agent environments and visualizations 
 
• Dynamic access for users to modify agent and model properties at run time 
 
• Social network modeling support tools 
 
• Available on virtually all modern computing platforms, including Windows, 

Mac OS, and Linux 
 
• Various agent templates and examples; however, the toolkit gives users 

complete flexibility as to how they specify the properties and behaviors of 
agents 

 
 

REPAST 3.0 OVERVIEW 
 

Repast 3.0 builds on earlier releases and has a variety of features:  
 

• Various agent templates and examples; however, the toolkit gives users 
complete flexibility as to how they specify the properties and behaviors of 
agents 

 
• Fully object-oriented 
 
• Fully concurrent discrete event scheduler that supports both sequential and 

parallel discrete event operations 
 
• Built-in simulation results logging and graphing tools 
 
• Automated Monte Carlo simulation framework 
 
• Range of two-dimensional agent environments and visualizations 
 
• Dynamic access for users to modify agent properties, agent behavioral 

equations, and model properties at run time 
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• Libraries for genetic algorithms, neural networks, random number generation, 
and specialized mathematics 

 
• Built-in systems dynamics modeling 
 
• Social network modeling support tools 
 
• Integrated geographic information systems (GISs) support 
 
• Fully implemented in a variety of languages, including Java and C# 
 
• Able to be developed in many languages, including Java, C#, Managed C++, 

Visual Basic.Net, Managed Lisp, Managed Prolog, and Python scripting 
 
• Available on virtually all modern computing platforms, including Windows, 

Mac OS, and Linux (platform support includes both personal computers and 
large-scale scientific computing clusters) 

 
 

SELECTED HIGHLIGHTS OF REPAST 3.0 
 

The Repast system has two layers. The core layer runs general-purpose simulation code 
written in Java. This component handles most of the “behind-the-scenes” details. Repast users do 
not normally need to work with this layer directly. The external layer runs user-specific 
simulation code written in one of several languages. This component handles most of the 
“center-stage” work, and Repast users work with this layer. Basic models can be written in 
Python, and basic or advanced models can be written in Java with Repast for Java or any 
Microsoft.NET language. 
 

Repast 3.0 introduces many new capabilities beyond those in Repast 2.X. In particular, 
Repast 3.0 is multilingual. 
 

Repast Py is useful for learning Repast and for rapidly prototyping models. Repast Py 
models can be automatically exported to Repast J with a few mouse clicks. Repast Py is shown 
in Figure 1. 

 
Repast J is useful for experienced modelers. Repast J produces cross-platform models. 

Repast J is shown in Figure 2. 
 
Like Repast J, Repast .NET is useful for experienced modelers. Repast .NET allows 

models to be developed in many languages. Repast .NET is shown in Figure 3. 
 

Repast 3.0 integrates GIS modeling with agent-based simulation. Repast 3.0 works with 
ESRI ArcGIS and the free and open source Open Map system. The Repast GIS tools make it as 
easy to create GIS models as it is to create grid models. 
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FIGURE 1  Repast Py 
 
 

FIGURE 2  Repast J within the free and open source Eclipse development environment 
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FIGURE 3  Repast .NET within the Microsoft Visual Studio 
.NET development environment 

 
 

Repast 3.0 integrates Systems Dynamics modeling with agent-based simulation. Repast 
Systems Dynamics equations are specified using simple strings such as those shown in Figure 4. 
Equations can be updated dynamically at run time. 
 

Repast 3.0 includes a point-and-click Monte Carlo simulation framework. The interface 
is shown in Figure 5. This framework automates the execution of parameter sweeps and 
stochastic replications. 
 

Repast 3.0 integrates several adaptation tools. Genetic algorithms are available in all 
Repast languages by using a special edition of Java Genetic Algorithms Package (JGAP). 
Automated regression tools are available in all Repast languages Neural networks are available 
in Repast J only using the Java Object Oriented Neural Engine (Joone). An example model 
showing the use of Repast 3.0’s adaptation tools is shown in Figure 6. 
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FIGURE 4  Repast 3.0 systems dynamics model with an equation highlighted 
in the upper left 

 
 

FIGURE 5  Repast 3.0 Monte Carlo simulation framework 
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 FIGURE 6  An example model showing the use of Repast’s adaptation tools 
 
 

SUMMARY 
 

Repast 3.0 builds upon earlier releases. Repast 3.0 has all of the features of the earlier 
releases to make upgrading easy. Repast 3.0 offers many exciting new capabilities, including 
multilingual support; integrated GIS support; integrated Systems Dynamics modeling; 
automated, point-and-click Monte Carlo simulation; and libraries for genetic algorithms, neural 
networks, and regression. 
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REPAST FOR PYTHON SCRIPTING 
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ABSTRACT 
 

Repast for Python Scripting (Repast Py) is a rapid application development tool for 
producing Repast simulations. By using a point-and-click, component-based interface, 
users can easily construct a model and then use Python scripting to define model-specific 
agent behaviors. Repast Py is the next generation of Repast visual development tools, 
incorporating a streamlined user interface, improved Python language support, and the 
latest improvements to Repast. In particular, Repast Py can produce GIS-based models, 
and it integrates well with the new System Dynamics equation support. Finally, 
Repast Py now provides the ability to export Repast Py models to Java, allowing users to 
then work in the traditional Repast for Java environment. An overview of the tool and 
these new features is presented. 
 
Keywords: Agent-based modeling and simulation, Repast, rapid application 
development, Python 

 
 

INTRODUCTION 
 

Repast for Python Scripting (Repast Py) is a rapid application development (RAD) tool 
for producing Repast simulations. Repast Py provides the ability to create three different model 
types: a GIS (geographic information system)-based model in which agents can be generated 
from GIS features and can interact with a GIS-based landscape and topology; a network-based 
model in which agents are typically nodes in a network and can manipulate the network 
topology; and a grid-based model in which agents reside in and interact with a grid topology. In 
addition, it is possible to create and use a generic-type agent in each of the three model types. 
These model components are manipulated via a point-and-click user interface. The actual user-
specific agent behavior is written in a special subset of the Python language,1 allowing for full 
access to the various extensions and packages of the Java language and, more important, to the 
full Repast framework. The end result of this model specification and Python Scripting is a fully 
executable Repast model that behaves on the byte-code level just as a traditional Repast model 
written in Java. This paper is an overview of Repast Py, focusing on its use of a component 
model to produce a Repast simulation, on how agent behavior is defined in Python scripts, and 
on some of the new features added in this version. 
 
 

                                                 
* Corresponding author address: N. Collier, 9700 S. Cass Avenue, Argonne, IL 60439; e-mail: ntcollier@anl.gov. 

1 For further information on Python, see the Python Software Foundation Web site. “An Introduction to Python” 
can be found at www.phython.org/doc/Introduction.html. 
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COMPONENT MODEL 
 

As mentioned above, Repast Py produces a Repast simulation; that is, it produces a 
simulation that follows the Repast notion of how to organize a software-based agent simulation. 
Typically, the so-called model part of the simulation is responsible for initializing the agents and 
any other required elements and defining what should occur every time step of the simulation. 
The agents themselves then perform the actual behavior that drives the simulation. For example, 
a GIS model would be responsible for creating various agents from a shapefile specification, 
associating those agents with the topology in which they operate, and defining what agent 
behaviors should occur each time step of the simulation. The agents then would perhaps forage 
the landscape looking for food. 
 

Repast Py produces this type of simulation by building a description of the model and 
agents out of various components. The resulting composite description produced by these 
components is rich enough to compile into the actual compiled Repast simulation.2 Each 
component can be thought of as providing a generic description of some piece of the final 
product. Repast Py contains three different types of components, each corresponding to what 
piece of the compiled simulation they produce. Model producers are responsible for producing 
the description of the compiled model; agent producers are responsible for producing the 
description of the compiled agents; and the last type of producer is responsible for producing 
additional Repast objects, such as charts and data recorders. These generic descriptions provided 
by each of the producer components are then specialized to the current task by setting the value 
of one or more of the component’s properties. A trivial example of this task is the “display 
name” property that is common to all the model-producing components. The value of this 
property determines the simulation name that is displayed when the compiled model is executed.  
 

Figure 1 illustrates what these components and their properties look like in Repast Py. 
The left side of the screen below the toolbar is the component tree, and the table on the right side 
is a list of the currently selected component’s properties and their values. The environment 
component sits at the top of tree, and its properties are primarily concerned with the global 
compilation environment. The next component in the tree is the model producer. There is one of 
these for each type of model (GIS, network, and grid). As mentioned above, a Repast model is 
responsible for initializing agents and constructing the schedule for what happens each time step 
of the simulation. The model producer component’s properties are thus concerned with those 
responsibilities. Below the model producer component are two agent producer components. The 
top one, “ZipRegion,” is selected and its properties are shown on the right. Notable in its 
properties is the “Data Source.” Here, the user can specify a shapefile whose features will 
become agents with the appropriate attributes. In addition, the agent producer components (as 
well as the model producer components) have an actions property in which behavior can be 
defined with a Python script. (For more on this subject, see the next section.) The last component 
in the tree is a producer for a sequence graph. This producer describes a chart that plots some 
user-specifiable value versus simulation time. 
 

                                                 
2 It is important to note that the user constructs a description of a Repast simulation and not of the compiled 

output. The user does not need to know that she is creating the byte-code representation of a Java class. 
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FIGURE 1  Components and properties in Repast Py 
 
 

In sum, Repast Py produces a compiled Repast simulation consisting of a model and one 
or more types of agents. It does this by allowing the user to create an abstract composite 
description of such a Repast simulation. The components of this description are each responsible 
for producing a description of a piece of the Repast simulation — the model, the agents, charts, 
and so on. The description that each component produces is specialized by setting the values of 
that component’s properties. The end result is a composite description that can be compiled into 
an executable Repast simulation. 
 
 

AGENT BEHAVIOR 
 

In Repast Py, agent behavior (as well as model behavior) is defined by using a special 
subset of the Python language. A subset is used because the entire Python language is not 
necessary for specifying agent behavior. For example, such things as class and function 
declarations or the dynamic manipulation of a class structure are not necessary when defining an 
agent’s behavior. This subset is “special” because it integrates well with Java, and thus with the 
Repast framework as a whole.3 As a result, it is easy to use pieces from the Repast framework 
when scripting agent behaviors and to compile these Python scripts into Java byte-code when 
producing the compiled simulation. 
 

These agent behavior scripts are defined though an agent producer component’s action 
property (Figure 1). This property is essentially a list of the actions (Python scripts) that the 
produced agent can perform. For example, one of these actions may define a “look for food in 

                                                 
3 Note that this “special subset” is not Jython, the Java port of Python, which achieves excellent integration 

between Python and Java (integrating Java into Python) but not between Java and Python (integrating Python 
into Java). Repast Py, unfortunately, requires both. 
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the immediate area and eat it” behavior. The agent producer defines the action for all the agents 
of the type described by the agent producer. However, each agent once created and running 
inside the simulation has its own copy of the action; thus, the actual performance of the action, 
the actual behavior of the agent, depends on the state of that particular agent. For example, if the 
action branches on location, it is the current location of the individual agent executing the action 
that makes the difference. 

 
Actions are edited in the actions editor shown in Figure 2. This “step” action defines the 

main behavior for an agent in a GIS-based, Schelling-type simulation, where the agent will move 
to some unoccupied region if some fraction of agents in neighboring regions are not of its type. 
The Java integration is exemplified here in the “self.region.getNeighbors().size()” call, which 
returns a Java List and then the size() method is called on that List. Calls to Java objects are 
seamless in this way. It is also possible to iterate over Java collections in a Python style, as seen 
in the “for” loop above. Finally, an agent’s action may call other actions defined in that agent. 
The “self.move()” call in the above is just such a call in that it executes the move action defined 
in this agent.  
 

The user has full control over the time step at which these actions will execute and the 
order in which they execute relative to other actions scheduled for the same time step. The time 
step at which an action can execute is specified in the Schedule property of a component, as seen 
in Figure 3. 
 
 

 

FIGURE 2  Repast Py Actions Editor 
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FIGURE 3  Schedule Editor 
 
 

The user has full access to the features of the traditional Repast scheduler and is able to 
specify the tick (the time step) at which an action should be executed; the interval of execution 
(every tick, at an specific interval, at a single tick, and so on); and whether the action should 
execute after (i.e., last) all other actions not scheduled to execute “last.” As a convenience, some 
actions are scheduled automatically, although the user has the opportunity to override this 
automatic scheduling. The step action above, for example, is automatically scheduled to execute 
every tick. This ensures that when the simulation is run each agent executes its primary behavior. 
 

The full view of what actions are scheduled when and how they are scheduled relative to 
each other is provided by the master schedule property in the model producer component 
(Figure 4). 
 

Here we see that at every tick beginning at tick one every VectorAgent will execute its 
“step” action and the GISModel will execute its “updateDisplay” action. The order in which 
these execute relative to each other can be changed by selecting one of the individual actions and 
moving it up or down with the blue arrows. By using these two properties, the schedule and the 
master schedule, the full richness of the traditional Repast scheduler is available in Repast Py. 
 
 

NEW FEATURES 
 

Repast Py is a significant upgrade to its ancestor application, SimBuilder. Among the 
new features added to Repast Py is support for GIS-based models. This support mainly consists 
of integration with popular GIS packages, such as ArcGIS and OpenMap. By using this new 
support, it is possible to create an agent description from a shapefile such that features specified 
in the shapefile become fields and accessor methods in the produced agent. For example, if the  
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FIGURE 4  Master Schedule Editor 
 
 
shapefile contains a feature called LandType, the produced agent will have a LandType field 
together with getLandType and setLandType methods. When the simulation is run and the actual 
agents are created, each record in the shapefile provides the data for an agent. So, if the shapefile 
has 600 records, then 600 agents are created. The selection of a shapefile is accomplished via the 
vector agent producer component’s data source property (see Figure 1). When a shapefile is 
selected, it is immediately interrogated and its features are displayed as shown in Figure 5. 
 

Integration with the various GIS packages is accomplished either directly through API 
(application programming interface) calls or through shared files. For example, in the case of 
ArcMap, both ArcMap and the Repast simulation produced by Repast Py will share the same 
shapefile. As the simulation progresses, the current values of the agents will be written back to 
that shapefile, and ArcMap will be updated. Provided that the shapefile has been loaded into 
ArcMap, the current state of the simulation, that is, the current state of the agents, will then be 
visible in the ArcMap display. Direct integration via API works much the same way, but the data 
are shared and updated through a direct call to the GIS package (e.g., OpenMap) rather than 
mediated through a shared file. 
 

Although GIS support is certainly the most significant new feature added to Repast Py, 
other new features have been added as well. It is now possible to work with multiple agent 
producers in a single Repast Py project and thus create a simulation with multiple different types 
of agents. An export to Java is now supported such that the description of the simulation created 
by Repast Py can be exported to Java and then worked on from there as a traditional Repast 
programming project. Finally, the old SimBuilder interface has been vastly improved in 
Repast Py. 
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FIGURE 5  Data Source Editor 
 
 

CONCLUSION 
 

Repast Py is a component-based RAD environment for producing Repast simulations. It 
produces a composite description of a Repast simulation, and this description is then compiled 
into a traditional Repast simulation. Repast Py components are specialized by setting the values 
of their properties. Where generic behavior is not sufficient, new behavior can be scripted by 
using a special subset of the Python computer language. These scripts are defined in a 
components “actions” property and have access to the Repast framework and to the myriad of 
Java packages. In addition, these actions can be easily scheduled to execute in a variety of ways 
in accordance with the Repast scheduling paradigm. Finally, many new features, such as GIS 
integration, have been added to Repast Py, making it a vast improvement on its predecessor, 
SimBuilder. 
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REPAST .NET 
 

J.R. VOS* and M.J. NORTH, Argonne National Laboratory, Argonne, IL 
 
 

ABSTRACT 
 

The advent of the Microsoft.NET framework has signaled the beginning of a new era of 
language interoperability. By using any language targeted at Microsoft’s Common 
Language Infrastructure (CLI), developers are assured that they can execute their 
software anywhere that Microsoft.NET is available. Individual project components can 
now be developed in the language most fitting the component’s design, without requiring 
extra work to interface with the rest of the project. Through this capability comes the 
additional advantage of ability leveraging skills and libraries that in the past may have 
been tied to specific languages. It is the combination of these features that make .NET 
business cases attractive. This naturally brought Repast into the .NET world through the 
production of Repast .NET. Repast .NET is a port of Repast for Java (Repast J) to the C# 
language and therefore the .NET framework. Repast .NET allows agent-based models to 
be developed in any .NET compatible language, including Managed C++, Visual Basic, 
C#, Lisp, Prolog, and Smalltalk, by using Repast J’s familiar application programming 
interface and functionality. Along with these features, Repast .NET provides integration 
into the main .NET development environment, Microsoft Visual Studio.NET, including 
complete Visual Studio templates. Finally, Repast .NET includes demonstration models 
written in C#, Visual Basic.NET, and Managed C++, illustrating the language 
interoperability of Repast .NET. 
 
Keywords: Agent-based modeling and simulation, Repast, .NET framework, toolkit, 
library 

 
 

INTRODUCTION 
 
 Since its initial release in 2001, Repast has been used by numerous research projects, 
from geopolitical boundaries (Cederman, 2002) to electrical markets (North et al., 2002) to 
artificial stock markets (Ehrentreich, 2002), and by numerous types of groups, including 
academic, commercial, and governmental. While these projects followed different development 
models, in the end their models have been implemented in Java since Repast itself was a Java 
library. In many cases, Java is a suitable development language; however, not everyone is 
capable of using Java, whether it is from a lack of Java programming skills or licensing issues or 
for other unknown reasons. For the former group, using Repast would require an investment of 
resources into developing Java capabilities, while the latter group may not have been able to use 
Repast at all. With the development of the non-profit Repast Organization for Architecture and 
Design (ROAD), however, comes the generalization of Repast from the Java implementation to 
the simulation framework. Through this comes the expansion of Repast from the Java world 
(Repast for Java, Repast J), into the .NET world with Repast .NET. 
 

                                                 
*  Corresponding author address: Jerry R. Vos, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, 

IL 60439; e-mail: jvos@anl.gov.  
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 Repast .NET is an implementation of Repast in the .NET environment and as such, any 
model using Repast .NET has full access to all the .NET capabilities, including a variety of 
programming languages to work with (particularly Managed C++, C#, and Visual Basic), full 
language interoperability (allowing use of any .NET components in any .NET language), a full 
set of framework classes (from collections to XML handlers), and a managed runtime (with 
features such as garbage collection, interpretation, and security measures). Repast .NET 
originated as a port of Repast J, containing virtually all of Repast J’s functionality (with an 
emphasis on the core functionality), written in C#. Repast .NET closely follows Repast J, 
keeping uniformity whenever possible. 
 
 This paper introduces Repast .NET, beginning with a brief history of the .NET 
framework, along with details on some of its benefits and a more thorough explanation of 
Repast’s expansion to the .NET world. Next is a description of the goals of the Repast .NET 
project and a summary of the current state of Repast .NET. The paper concludes with a set of 
examples illustrating the use of Repast .Net. 
 
 

THE .NET FRAMEWORK 
 
 
.NET History 
 
 .NET1 originated as a commercial development by Microsoft. When Sun introduced Java 
in 1995, Microsoft did not have an equivalent product. Java had (and still has) a wealth of 
features that have led to its strong presence, especially in the enterprise Web sphere and Internet 
in general. At the time, Microsoft recognized this and initially worked with Sun and Java, 
reaching an agreement to build their own Java runtimes, compilers, and class libraries and to 
distribute Sun’s. However, in this agreement Microsoft’s Java was to keep compatibility with 
Sun’s Java; initially it was compatible, but over time the two diverged. In the end, there was a 
series of legal suits that the companies settled in 2001. This resulted in a financial settlement for 
Sun and technology sharing agreements between the two companies (Gilbert, 2003). During the 
litigation, Microsoft was not complacent, and it developed another managed environment, the 
.NET environment. 
 
 In June 2000, Microsoft announced its .NET framework. This was to provide integrated 
networking, a managed runtime environment, and a hierarchical set of framework classes, along 
with a new programming language, C#, that closely mirrors Java. While initially .NET was to be 
a commercial product, Microsoft chose to open the framework and the C# language’s standards, 
submitting them in conjunction with Hewlett Packard and Intel to the Ecma International 
standards organization. The components of the .NET runtime were ratified in December 2001 as 
ECMA 335 (ECMA, 2002a) and the C# language as ECMA 334 (ECMA, 2002b). After this, the 
standards were submitted to the ISO/EIC group and were ratified in 2003 as ISO/EIC 23271 (the 
runtime) and ISO/EIC 23270 (C#). The first actual implementations of these standards were 
released by Microsoft in 2002. Today the second generation of the standards is under 
development, updating both the runtime and C#.  
 

                                                 
1  While the .NET term itself refers to any member of a set of Microsoft software, in this paper it refers specifically 

to the .NET framework (generally the .NET runtime environment). 
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.NET Description 
 
 There are a few key concepts related to the .NET runtime environment; the first is the 
Common Language Infrastructure (CLI). The CLI is the runtime specification describing the 
main parts of the .NET environment: the format of the .NET assemblies (the compiled code and 
metadata, equivalent to a Java jar); the functions of the .NET virtual machine; and the virtual 
machine’s instruction set, called the Common Intermediary Language (CIL).2  
 
 Unlike Java’s bytecode, the CLI instruction set was developed to be independent of the 
high-level languages reduced to it. While C# was the primary language explicitly designed for 
the .NET environment, it is not in any way uniquely set up to work in the .NET environment. 
Any language with a compiler that generates CIL code can both run under the .NET runtime and 
interoperate with any other .NET-compatible language. Since all the languages and data types in 
the end are reduced to the same intermediary language, data and functionality are automatically 
exchangeable among the different .NET languages, without additional work being done by the 
developers.3 
 
 The intermediate language was developed to be generic enough to work with multiple 
programming paradigms. Its foundation is an object-oriented architecture (as is Java), but it is 
built with generic typing and supports such features as tail-recursion. Another large difference 
between this intermediary language and Java’s bytecode is the ability to perform true memory 
manipulation (including true pointers) through regions of unsafe code.4 The combination of these 
features allows for a variety of languages to be implemented for this runtime, including the 
current Microsoft .NET languages — C#, Managed C++, and Visual Basic.NET — along with 
the non-Microsoft implementations, including Smalltalk (S#), Prolog (P#), and Lisp (DotLisp).5  
 
 
CLI Implementations 
 
 Currently, the main CLI implementation is Microsoft’s .NET runtime. This is Microsoft’s 
core .NET environment and is the most complete implementation so far. However, an important 
point is that Microsoft’s .NET only runs under Windows (specifically Windows 98+). There are 
other CLI implementations, however, including two from Microsoft. 
 

                                                 
2  At one point, the intermediate language was called Microsoft Intermediary Language (MSIL, pronounced 

“missil”), but for standardization reasons this was changed to CIL; therefore, MSIL is synonymous with CIL. 

3  A good example of this is the ability to create a base class in Managed C++, subclass it under C#, and instantiate 
it under Visual Basic.NET. 

4  This may be viewed as a security risk; however, applications or code marked as unsafe will run under a different 
set of configurable rights then normal managed code, allowing for minimization or elimination of these risks. 

5  While it is possible to implement non-Java languages on the Java virtual machine, the Java virtual machine is not 
built for this, complicating the development and integration. For more information, see sourceforge.net/projects/ 
dotlisp, www.dcs.ed.ac.uk/home/stg/Psharp, and www.smallscript.com. 
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Microsoft’s other runtime implementations are the .NET Compact Framework built for 
Windows CE and the shared-source6 Rotor implementation. Rotor was developed by Corel for 
Microsoft and runs under Windows XP, FreeBSD, and Mac OS X. This implementation includes 
a full implementation of the runtime and C# specifications but does not include extensions such 
as Windows Forms, thereby preventing graphical user interface (GUI) development in it. Outside 
of Microsoft, there are some open-source implementations of the specifications, including 
Ximian/Novell’s Mono and the GNU foundation’s dotGNU. Mono is the more developed of the 
two, having a majority of the core features already implemented (including most of the runtime 
specifications and a working C# compiler); however, the .NET compatible GUI application 
aspects are still lacking. The good news is that one of Mono’s goals is to be compatible with the 
.NET implementation and therefore the .NET windowing framework; therefore, .NET 
applications are expected to be truly portable in time. 

 
 

REPAST .NET 
 
 
Repast .NET Goals 
 
 Repast .NET is meant to replicate the functionality of Repast J under the .NET 
framework. Repast .NET is not a replacement for Repast J; it is a new member of the  
Repast family and a parallel development to Repast J. Providing the Repast library under the 
.NET framework allows agent-based models to be developed under a variety of languages  
by using the Repast application programming interface (API) and functionality and provides  
a different environment for agent-based model production outside of Java. The .NET 
environment’s managed runtime, class library, portability,7 language interoperability, support,8 
and standardization made it a good choice for a Repast implementation.  
 
 
Technical Description 
 
 Repast .NET was developed as a port of Repast J’s Java sources to C#. Choosing C# as 
the .NET destination language provided many benefits to the porting effort. C# shares a similar 
syntax as Java, allowing the Repast .NET code base to stay similar to its Repast J origins. This 
also allowed the use of Microsoft’s Java Language Conversion Assistant (JLCA), which helped 
to handle the rudimentary aspects of the Java to C# conversion.9 After the initial conversion with 
the JLCA, manual intervention was required for the more advanced features and code 
verification. 

                                                 
6  Microsoft’s Shared Source license releases the source code but does not allow for commercial products to be 

developed based on it, or redistribution of the source. See http://msdn.microsoft.com/library/default.asp?url=/ 
library/en-us/Dndotnet/html/mssharsourcecli2.asp. 

7  As mentioned previously, this portability is not yet fully developed. 

8  This includes its strong backing by Microsoft, its user base, and large amount of documentation, including Web 
sites, such as The Code Project (http://www.codeproject.com). 

9  http://msdn.microsoft.com/vstudio/downloads/tools/jlca/. 
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 During the port, care was taken to keep Repast .NET as similar to Repast J as reasonably 
possible. Repast .NET generally keeps the Repast J class hierarchy, field names, method names, 
constant locations, etc., only diverging when a compelling need arose, including 
incompatibilities with .NET or C#, or Java and .NET/C# inconsistencies. An example of a C# 
incompatibility would be method names that are the same as field names (valid in Java but not 
C#); in these cases, the field would be renamed. An example of an inconsistency is .NET using 
properties10 in place of getters and setters. Because care was taken to keep Repast .NET similar 
to Repast J, building a Repast .NET model is nearly identical to building a Repast J model; in 
fact, converting a Repast J model to Repast .NET generally only requires running the JLCA on 
the Java sources and minor changes to method names or method modifiers.11 This is illustrated 
later in this paper with Repast .NET examples. 
 
 
Repast .NET Functionality 
 
 Repast .NET currently supports all the core features of Repast J, including:  
 

• A fully functional multi-threaded scheduler; 
 
• The Repast base models, agent classes, and spaces; 
 
• GUI model manipulation and simulation control; and 
 
• Batch functionality. 

 
Repast .NET also includes noncore features, such as: 
 
• Repast charting capabilities (including snapshot output); 
 
• Data recording; and 
 
• Visual displays of agents, models, and spaces. 

 
 Finally, Repast .NET includes a port of the Colt random number generation library used 
by Repast J. It is important, however, to note that the random number sequence generated by 
Colt is not the same in the .NET environment as in the Java environment. This arises from 
mathematical differences between the two environments (see the appendix).  
 
 Together, these features allow for full agent-based models to be built under Repast .NET. 
There are, however, some features that are not present in Repast .NET that are present in 
Repast J, particularly geographic information system (GIS) capabilities. Because Repast’s GIS 
was developed concurrently with Repast .NET, the functionality port was not done, since the 
code base was not stable enough to convert. Future Repast .NET and Repast J development 
features will be synchronized. 

                                                 
10  Properties are a .NET feature pairing together a getter and setter into one logical unit. For more information, see 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vcwlkSimplePropertiesTutorial.asp. 

11  For instance, marking a method as overriding a parent class’s methods. 
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Visual Studio Integration 
 
Repast .NET is also fully integrated into the standard .NET development environment, 

Visual Studio.NET, through Visual Studio templates. These templates range from single agent 
and model classes to full Repast modeling projects, complete with documentation and notes on 
where to implement an agent’s logic. By using these templates, modelers can automate the 
generation of boilerplate model and agent code and concentrate on implementing agent  
logic. Templates are available for the main .NET languages: C#, Managed C++, and Visual 
Basic.NET. 

 
 Finally, Repast .NET includes example models written in C#, Managed C++, and Visual 
Basic. Repast .NET also includes an example called RocketBugs that illustrates the integration of 
those same three languages all in the same model. 

 
 

REPAST .NET EXAMPLES 
 
 

HeatBugs 
 

 It is fitting to introduce Repast .NET through the canonical HeatBugs agent-based 
simulation. The Repast .NET implementation of HeatBugs is merely a port of the Repast J 
HeatBugs model (which is a port of the Swarm HeatBugs Model). HeatBugs involves a group of 
agents (HeatBugs) that generate heat into a space (HeatSpace). The HeatBugs have an output 
heat and an ideal heat, and they move about the HeatSpace attempting to reach their ideal 
temperature, while their heat is diffused through the HeatSpace. Repast .NET contains multiple 
implementations of the HeatBugs model, with different versions being written in C#, Managed 
C++ (CPPBugs), and Visual Basic (VBBugs). Of course, each of these languages uses a different 
syntax in its implementations; however, the way each language interfaces with Repast and its 
functionality is identical to each other and to Repast J.  

 
As Figures 1 and 2 show, the implementations under Repast .NET and Repast J are 

virtually identical, outside of some syntactical differences. Both sets of code are shown in  
 

 
 

public void step() { 
 // Diffuse the heat 
 space.diffuse(); 
 // Iterate through the agents 
 for (int i = 0; i < heatBugList.size(); i++) { 
  HeatBug bug = (HeatBug) heatBugList.get(i); 
  bug.step(); 
 } 
 // Update the displays 
 space.update(); 
 dsurf.updateDisplay(); 
} 

FIGURE 1  Selection of HeatBugs model code from Repast J  
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C# 
public virtual void step() 
{ 
 // Diffuse the heat 
 space.diffuse(); 
 // Iterate through the bugs (agents) 
 foreach (HeatBug bug in heatBugList) 
 { 
  bug.step(); 
 } 
 // Update the displays 
 space.update(); 
 dsurf.updateDisplay(); 
} 
 

Managed C++ 
void CCPPBugsModel::step() 
{ 
 // Diffuse the heat 
 space->diffuse(); 
 // Iterate through the bugs (agents) 
 for (int i = 0; i < heatBugList->Count; i++) 
 { 
  CHeatBug *bug = dynamic_cast<CHeatBug *>(heatBugList->Item[i]); 
  bug->step(); 
 } 
 // Update the displays 
 space->update(); 
 dsurf->updateDisplay(); 
} 
 

Visual Basic.NET 
Public Overridable Sub steppingFunction() 
    ' Diffuse the heat 
    space.diffuse() 
    ' Iterate through the bugs (agents) 
    For Each bug As VBBug In heatBugList 
        bug.steppingFunction() 
    Next bug 
    ' Update the displays 
    space.update() 
    dsurf.updateDisplay() 
End Sub 
 

FIGURE 2  Selection of HeatBugs model code from Repast .NET 
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compatible development environments. This step method is called each simulation step and both 
updates the simulation’s displays and causes the agents to act. The similarities continue when 
displaying HeatBugs. Figure 3 illustrates the similarities between the Repast J and Repast .NET 
user interfaces. 
 
 
Mousetrap 
 
 The next illustration of Repast .NET’s features is in the Mousetrap model. The 
Mousetrap model is meant to illustrate nuclear fission by having each mouse trap represent a 
radioactive atom. When each atom is hit by a neutron (ping-pong ball), a fission reaction occurs 
releasing two more neutrons. The model itself is built to execute each ping-pong ball, hitting a 
mouse trap as a new event in the schedule. Therefore, each time a ping-pong ball hits a mouse 
trap two more events are scheduled. Repast .NET handles this without a problem, illustrating the 
fully functional scheduler. Figure 4 illustrates the similarities between the Repast .NET and 
Repast J scheduling mechanisms. 
 
 This example only shows one of the possible ways of scheduling an action. Repast .NET 
supports all the Repast J scheduling options. This example shows a given event class instance 
scheduled at a specific time with a specific order, but the other scheduling methods, such as 
scheduling an event based on an agent and a method name,12 may also be used. 
 
 
Sugarscape 

 
The final ported Repast J example model in this paper is an implementation of Axtell and 

Epstein’s Sugarscape (Epstein and Axtell, 1996). This model simulates tribes of agents moving  
 
 

Repast J Repast .NET 

  

FIGURE 3  Repast J and Repast .NET HeatBugs model 

                                                 
12  For instance, schedule.scheduleActionAt(12.0, agentN, “actionMethod”). 
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FIGURE 5  Repast .NET sugar space 
 

Repast J Repast .NET 
 
public void scheduleTrigger(double time,  
                                             MouseTrap mt) 
{ 
    TriggerAction ta = new TriggerAction(mt); 
 
    schedule.scheduleActionAt(time,  
                                                     ta,  
                                                     Schedule.LAST); 
  } 

 
public virtual void scheduleTrigger(double time,  
                                                       MouseTrap mt) 
{ 
     TriggerAction ta = new TriggerAction(this, mt); 
 
     schedule.scheduleActionAt(time,  
                                                      ta, 
                                                     Schedule.LAST); 
} 
 

FIGURE 4  Repast J and Repast .NET Mousetrap scheduling 
 
 
about on a (as the authors term it) “bagel-shaped” (toroidal) planet collecting resources (sugar). 
Compared with the previous two models, this model is unique for two reasons: (1) the 
Sugarscape model loads the contents of its space from a file and (2) because it uses two forms of 
graphs supported by Repast. Figure 5 illustrates the sugar space as implemented in Repast .NET. 
 
 Repast .NET is capable of producing all of the graphs produced in Repast J through the 
use of the ZedGraph library (zedgraph.sourceforge.net). With this library, Repast .NET can 
generate sequence graphs (graphs displaying linear data), plot graphs (graphs displaying specific 
points), histograms (with modeler-specified or dynamic bins), and network graphs (displaying 
statistics about a network). The Sugarscape model uses both a sequence graph and a histogram 
(Figure 6). 
 
 
RocketBugs 
 
 RocketBugs, the final example, is unique 
from the other demos in that each of the key 
components of the model is implemented in a 
separate programming language. The model itself is 
a special case of the HeatBugs model, in that the 
agents initially are not allowed to travel down or to 
the right, and the agents have a low output heat and a 
low input heat. This causes the bugs to all head in a 
nearly linear northeast pattern until a “RocketBug” is 
added to the simulation.  
 
 A RocketBug is an agent that has either an 
extremely high output heat and an extremely low 
(negative) ideal temperature13 (a fire bug), or an 
extremely low output heat (negative) and an 
 
                                                 
13  The temperature the bug is attempting to reach. 
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Sequence graph Histogram 

  

FIGURE 6  Repast .NET Sugarscape graph examples 
 
 
extremely high ideal temperature, creating bugs that are hot or cold addicts. This causes the 
RocketBug to move at a high (relative) speed, leaving a tail of hot or cold behind it (hence the 
term RocketBug).  
 
 The RocketBugs model was developed in Microsoft’s three primary .NET languages, 
Managed C++, C#, and Visual Basic. The space that the agents travel in was written in Visual 
Basic, the RocketBug agent written in C++, and the RocketBugs model class written in C#. By 
merely adding a reference to the other projects in the development environment (done in the 
same way as referencing any other .NET assembly), the languages automatically interoperate 
with one another. This does not impose any extra performance penalty since each language in the 
end is reduced to the same intermediary language.  
 
 The three classes used by this example model are the CRocketBugsSpace, CRocketBug, 
and CRocketBugsModel.14 Figure 7 shows the code from the CRocketBugsModel class that sets 
up the model by creating the space and the agents. 
 
 This method uses both the RocketBugs’ space and the RocketBugs’ agent, again, 
showing that they are used just as though they would have been written in C#. 
 

Figure 8 shows the method that adds heat to the CRocketBugsSpace. As previously 
mentioned, and as the syntax shows, this method was written in Visual Basic. 
 
 The final excerpt from the RocketBugs model is from the CRocketBug class. This class 
was written in Managed C++, which is C++, but runs under the managed .NET environment. 
This allows use of the full functionality of C++, but with the addition of a few extra  
 

                                                 
14  C is a class prefix. 
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/// <summary> 
/// Builds the space/world and the agents (bugs) 
/// </summary> 
public override void buildModel() 
{ 
 base.buildModel(); 
 
 space =  
  new CRocketBugsSpace(diffusionConstant,  
     evapRate, worldXSize, worldYSize); 
 world =  
  new Object2DTorus(space.SizeX, space.SizeY); 
  
 for (int i = 0; i < numBugs; i++) 
 { 
  int idealTemp =  
    Uniform.staticNextIntFromTo( 
      minIdealTemp, maxIdealTemp); 
  int outputHeat =  
    Uniform.staticNextIntFromTo( 
      minOutputHeat, maxOutputHeat); 
  int x, y; 
   
  do  
  { 
   x = Uniform.staticNextIntFromTo(0, space.SizeX - 1); 
   y = Uniform.staticNextIntFromTo(0, space.SizeY - 1); 
  } 
  while (world.getObjectAt(x, y) != null); 
   
  CRocketBug bug =  
   new CRocketBug(space, world, x,  
       y, idealTemp,  
      outputHeat, randomMoveProbability); 
 
  world.putObjectAt(x, y, bug); 
  base.agentList.Add(bug); 
 } 
} 

 

FIGURE 7  The RocketBugs model building method, written in C# 
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Public Sub addHeat(ByVal x As Integer,  
                  ByVal y As Integer, ByVal heat As Integer) 
 Dim heatHere As Long = Convert.ToInt64(Me.getValueAt(x, y)) 
 
 If (heatHere + heat <= maxHeat) Then 
  heatHere += heat 
 Else 
  heatHere = maxHeat 
 End If 
 
 If heatHere < -maxHeat Then 
  heatHere = -maxHeat 
 End If 
 
 Me.putValueAt(x, y, heatHere) 
End Sub 

FIGURE 8  The method to increase the heat in the RocketBugs space, written in 
Visual Basic.NET 
 
 

keywords that can create garbage-collected, bounds-checked code. The excerpt in Figure 9 
shows the setXY method and an excerpt from the agent’s step method; both using normal C++ 
syntax. 
 
 

CONCLUSIONS 
 
 The development of Repast .NET, along with Repast for Java and Repast for Python 
(Repast Py), presents modelers with a variety of environments and languages with which to 
implement their models. Repast .NET allows agent-based models to be built and run entirely 
outside of the Java environment,15 thus lessening Java requirements from agent-based modeling.  
 
 Repast .NET in its current state supports the development of full agent-based models. 
This support includes a fully implemented multithreaded scheduler, basic agents and spaces for 
them to occupy, runtime manipulation of agents and models, graphical data display, automated 
data recording, and batch run capabilities based on parameter files. Each of these components is 
developed using the preexisting interfaces and methodologies implemented under Repast for 
Java, allowing anyone to apply Repast J knowledge directly under Repast .NET. 
 
 In the future, the Repast .NET project will implement the full functionality of Repast J, 
including GIS support. Repast .NET will continue to include the new features of Repast J, but it 
has the capability to expand outside of what is possible under the Java environment. 
 
 

                                                 
15  Albeit, replacing them with CLI requirements. 
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void CRocketBug::setXY(int x, int y) 
{ 
 this->x = x; 
 this->y = y; 
 world->putObjectAt(x, y, this); 
} 
  
void CRocketBug::step() 
{ 
 long heatHere = (long) space->getValueAt(x, y); 
  
 if (heatHere < idealTemp) 
 { 
  unhappiness = (double) (idealTemp - heatHere) / CRocketBugsSpace::MAX; 
 } 
 else 
 { 
  unhappiness = (double) (heatHere - idealTemp) / CRocketBugsSpace::MAX; 
 } 
  
 int type = (heatHere < idealTemp) ? CRocketBugsSpace::HOT : CRocketBugsSpace::COLD; 
 System::Drawing::Point p = space->findExtreme(type, x, y); 
  
 if (Uniform::staticNextFloatFromTo(0.0f, 1.0f) < randomMoveProb) 
 { 
  p.X = x + Uniform::staticNextIntFromTo(- 1, 1); 
  p.Y = y + Uniform::staticNextIntFromTo(- 1, 1); 
 } 
  
 if (unhappiness == 0) 
 { 
  space->addHeat(x, y, outputHeat); 
 } 
 else 
 { 
  int tries = 0; 
   
  if (p.X != x || p.Y != y) 
  { 
   // get the neighbors 
   int prevX = SimUtilities::norm(x - 1, xSize); 
   int nextX = SimUtilities::norm(x + 1, xSize); 
   int prevY = SimUtilities::norm(y - 1, ySize); 
   int nextY = SimUtilities::norm(y + 1, ySize); 
    
   while ((world->getObjectAt(p.X, p.Y) != NULL) && tries < 10) 
   { 
    int location = Uniform::staticNextIntFromTo(1, 8); 
     
    switch (location) 
    { 
… 

FIGURE 9  An excerpt from the RocketBug agent class, written in C++ 
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APPENDIX:  
 

MATHEMATICAL DIFFERENCES BETWEEN JAVA AND .NET 
 
 

 While testing the .NET port of the Colt library, we found differences in the handling of 
floating point numbers. Under multiple iterations, the numbers produced under the .NET 
environment and the Java environment will differ. As such, it may not be possible to directly 
compare results obtained in a Repast J model with a Repast .NET model. As an illustration of 
this, we present the programs in Figure A.1, which perform the same sequence of iterated 
mathematical operations in C# and in Java, but produce different results, as shown in Table A.1. 
 
 

C# Java 
 
static void Main(string[] args) 
{ 
      double d = -9877654028.9998812381111; 
 
      for (int i = 0; i < 178; i++) 
      { 
            d /= 7.65E-3; 
            d /= 8713E6; 
            d *= 1.29E-3; 
            d *= 9.21E10; 
            d = Math.Sin(d) / Math.Cos(d); 
            d = d + 1.99E-3; 
            d = d - 7.34123E4; 
 
            d = d = d; 
 
           Console.WriteLine(d); 
      } 
} 

 
public static void main(String[] args) 
{ 
            double d = -9877654028.9998812381111; 
 
            for (int i = 0; i < 178; i++) 
            { 
                        d /= 7.65E-3; 
                        d /= 8713E6; 
                        d *= 1.29E-3; 
                        d *= 9.21E10; 
                        d = Math.sin(d) / Math.cos(d); 
                        d = d + 1.99E-3; 
                        d = d - 7.34123E4; 
 
                        d = d = d; 
 
                       System.out.println(d); 
            } 
            System.exit(0); 
} 
 

FIGURE A.1  Java and C# mathematical comparison programs 
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TABLE A.1  Mathematical discrepancies between Java  
and C# 

 
Iteration 

 
C# Numbers 

 
Java Numbers 

 
Difference 

 
1 

 
-73412.972620 

 
-73412.972620 

 
0.000000 

…    

4 -73386.507620 -73386.507520 -0.000103 

…    

9 -73414.186190 -73413.585040 -0.601150 

10 -73414.961470 -73412.439040 -2.522433 

11 -73411.687570 -73415.200370 3.512797 

12 -73412.197200 -73412.175170 -0.022033 

…    

34 -73413.049490 -73412.628820 -0.420674 

35 -73411.238070 -73257.794460 -153.443608 

36 -73411.033460 -73410.378680 -0.654776 

37 -73409.114890 -73413.154200 4.039305 
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REPAST FOR GIS 
 

R. NAJLIS* and M.J. NORTH, Argonne National Laboratory, Argonne, IL 
 
 

ABSTRACT 
 

A wide range of spatial applications require geographic information system (GIS) 
functionality, such as natural resource management, social interactions, communication 
networks, and public infrastructure. As such, GIS functionality must be available to 
Repast users. The latest version of Repast allows users to work directly with GIS in their 
models. The overall goal is to make maps as easy to use as grids; the new integration of 
GIS into Repast achieves this goal. The implementation focuses on allowing users to 
access and display GIS maps and data. Users now have access to GIS programming 
interfaces that allow them to perform GIS queries, such as finding relative object 
locations and distances. This capability allows users to develop agent behaviors based on 
the spatial relationships among agents. Users can automatically create agents by using 
GIS data and by updating GIS data based on attributes from agents, including updating 
agent locations. Furthermore, Repast has the ability to display GIS data by using both 
open source software and ESRI ArcGIS via the new Repast Agent Analyst extension. Our 
implementation strategy involves separating the file input and output concerns from 
display operations. GIS data are handled through a GIS file handling system, while 
display is handled through rendering systems associated with each GIS.  
 
Keywords: Agent-based modeling and simulation, Repast, GIS, geographic information 
systems 

 
 

INTRODUCTION 
 
 There is a great deal of interest in the integration of geographic information systems 
(GISs) and agent-based modeling systems (ABMSs) (Brown et al., 2005; Parker, 2004; Torrens 
and Benenson, 2004; Gimblett, 2002; Parker et al., 2002; Westervelt, 2002). Potential 
applications for such integrated models include land use models, natural resource management, 
social interactions, communication networks, and public infrastructure. For agent-based 
modelers, this means adding the ability to have agents that are related to actual geographic 
locations. For GIS users, this means adding the ability to model the emergence of phenomena 
through individual interactions of features on or related to a GIS over time and space. 
 

A range of software applications are often described as GIS. Some, such as ESRI ArcGIS 
(www.esri.com) and TNT products from MicroImages (www.microimages.com), provide a great 
deal of analytical capability in addition to the ability to view and edit geographic data. Others, 
such as OpenMap (www.openmap.bbn.com), GeoTools (www.geotools.org), and JUMP 
(www.vividsolutions.com/jump), are essentially map viewers with limited analytical capabilities. 
They can display data and work with information about area, extents, and relationships among 
geographical objects. 

                                                 
*  Corresponding author address: Robert Najlis, 9700 South Cass Avenue, Argonne, IL 60439; e-mail: 

rnajlis@anl.gov. 
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The current implementation of GIS in Repast is focused on two systems: ESRI ArcGIS 
and OpenMap. The type of integration between Repast and these two systems is different. Repast 
has shapefile integration with ArcGIS and native Java integration with OpenMap. Shapefile 
integration is similarly a looser coupling based on sharing of files, with Repast having the ability 
to tell the GIS to update data based on the files that Repast has written out. Native Java 
integration is a tighter coupling, with both systems being written in Java, and the source code has 
been integrated, so there is full access to the GIS code from within Repast. These two approaches 
will be elucidated further in later sections. 
 
 

DATA REPRESENTATIONS 
 

A GIS contains multiple layers of data. A layer is made up a number of elements. For 
example, a layer might contain a number of trees that represents a part of a landscape (Figure 1). 
Each tree in the layer would be a GIS feature. Each feature in the layer has two aspects to it, its 
geographical coordinates and the data associated with it. A common format for storing this 
information is the shapefile. A number of files are associated with the shapefile format: (1) the 
shapefile (.shp), which stores the geographical information needed to display the feature (x,y,z 
coordinates of vertexes and edges of the geometric shapes); (2) the database file (.dbf), which 
stores the data records for the feature; and (3) the index file (.shx).  
 

GIS store data about layers in data base files, with each record in the file referring to a 
feature in the GIS. ABMSs handle data differently. While a GIS is layer centric, an ABMS is 
agent centric. Thus, each agent stores data about itself individually. However, there is in fact a 
large amount of overlap. For instance, each agent type has the same types of data, just as each 
layer type in a GIS has the same types of data. Thus, an agent type in ABMS can be seen as 
similar to a layer in a GIS, and each agent in ABMS is similar to a feature in GIS. 
 

GIS data can be translated directly into agents or into other data objects that the agents 
use or know about. For example, given a model where agents are landowners, the GIS data might 
relate to the land parcels that the agents own. Land parcel data would then be read into ABMS 
for use by landowners. 
 
 

 

FIGURE 1  Sample of GIS type data, representing a 
layer of data in the GIS. Other layers might include data 
on soil type and other environmental factors. Together, 
these layers could be used to model an environmental 
system. 
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An ABMS updates one agent at a time. In one time step, some or all of the agents might 
be updated. A GIS display, on the other hand, updates a whole layer at a time. Even though not 
all of the features may have changed, generally the whole layer will be redrawn. This means that 
although only some agents of a given type may have been updated in the ABMS, in order to 
update the GIS, all agents of that type have to be sent to the GIS so that the GIS can properly 
update itself. 
 
 

OVERVIEW OF USE 
 

There are two general classes of tasks that need to be handled for Repast to work with a 
GIS. One is reading and writing data. The other is working with the GIS to coordinate the 
display of the GIS with updates to ABMS data. In the Repast-GIS integration, these tasks are 
generally broken up into two different classes, a data class and a display class.  
 

The data class allows data to be read into Repast from the GIS and written out from 
Repast into a GIS format. Agents can easily be created from GIS data by specifying functions in 
the agent class that correspond to the fields in the GIS data. Similarly, in order to update the GIS 
data based on the agents, a corresponding function has to be specified in the agent class. For 
example, if there is a field in the GIS data called Landuse, the agent would need functions called 
setLanduse() and getLanduse() in order to read and write this data field. The setLanduse() 
function allows the data from the GIS file to be set in the agent, and the getLanduse() function 
allows the data from the agent to be used in updating the GIS data file (Figure 2). 
 

Display classes vary with the GIS being used. Nonetheless, they all allow Repast to 
update the GIS display so that the display of the GIS can correspond to the data of the ABMS. 
 
 

SHAPEFILE INTEGRATION 
 
 Shapefile integration means that while Repast and the GIS use the same shapefile, they 
have very limited interaction with each other. The shapefile is loaded into the GIS, and Repast is 
used to read the shapefile data. Agents are created using these data, and the data are updated 
from the agents, as described above. In order to update the GIS display, the data must first be 
written out to file, and then the GIS can be notified to update its display by reading the newly 
written (updated) shapefile data. Repast’s integration with ESRI ArcGIS via the Agent Analyst 
extension is an example of this. With shapefile integration, the display class only allows for the 
display to be updated. It does not provide a means for Repast to interact with the application 
programming interface of the GIS being used for display.  
 
 
Java Integration 
 
 Java integration means that a Repast program can have full interaction with the GIS:  
 

• The shapefile is loaded into Repast.  
 
• The GIS is launched from within Repast.  
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FIGURE 2  GIS data in ABMS (TreeAgent is the agent type and is akin to a 
layer in GIS.) 

 
 

• Shapefiles are added to the GIS from Repast.  
 
• Layers are added to the GIS based on agent definitions.  
 
• Updating of layers is also based on agent definitions.  
 
• Agents are created from and written to shapefiles in the same manner as with 

shapefile integration.  
 
Of course, layers can also be added and based on the shapefile as well, and in this way be used in 
the same manner as shapefile integration. Thus, while the data integration remains the same, 
there is a much tighter integration on the display end. Repast users can have full access to the 
GIS being used for display, thus allowing them to get information about agents on the map, such 
as location, distance from other geographic objects (including geographically represented 
agents), and more. 
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CONCLUSION 
 
 There are two levels of integration of Repast and GIS, and there are different types of 
GISs available. The choice of integration type and GIS to use depends on the needs of the 
project. For example, if the project requires analysis on data during the run of the model, it might 
be appropriate to use ArcGIS. In this case, the data would be loaded into ArcGIS and run in the 
model. The model could be paused, and ArcGIS could be used to analyze the data as needed. On 
the other hand, if what is needed is the ability to update data quickly, query the GIS about agent 
spatial characteristics during the run of the model, and use that information from within the 
model itself, then it might be more appropriate to choose Java integration, such as that of Repast 
and OpenMap. 
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DISCUSSION: 
 

NEW REPAST DEVELOPMENTS 
 

(Thursday, October 7, 2004, 5:00 to 7:00 p.m.) 
 

Chair and Discussant:  T. Howe, The University of Chicago 
 
 
Repast for Python Scripting 
 

Tom Howe:  Our next speaker is Nick Collier who’s going to talk about Repast for 
Python scripting. 

 
Nick Collier:  I’m going to talk about Repast.Py, which is Repast for Python scripting. 

First, I want to apologize because my slides are not very colorful, but mostly, I just want to 
introduce you to the tool, show a few demos, answer your questions about it, and talk about its 
architecture. There’s not time to go into the internal details. I would really like feedback on it 
after you use it — either good or bad. So I encourage you to download it when it becomes 
available next week. 

 
[Presentation] 

 
Steven Upton:  On the Python you’re using, is it Python as the language? Are you not 

doing any compiling into Python or any of that kind of stuff? Is it just the subset of the language 
that you’re using and then interpreting within Repast? 

 
Collier:  No. It compiles the Python into Java byte code and creates Java classes 

eventually. 
 
Upton:  That leads me to the second question. When you write/generate Repast.Py and 

you convert that to Repast.Java with all the code in Java, can I go in there and manipulate the 
Java code? 

 
Collier:  No. Well, if you did the export, it decompiles the byte code into Java. That’s the 

idea. So the end result of a RepastPy compilation is typically a model class that is just like a 
Repast as if you’d written one in Java, but it’s a model dot class, and an agent class, and it’s in a 
byte code. That’s the class representation. 

 
Upton:  I don’t get any source code in Java. 
 
Collier:  If you do, the compile doesn’t produce that. But if you export to Java, it 

compiles it and then decompiles the byte code back into Java source code. That works, actually, 
surprisingly well. Sometimes you may look at it and say that you know a machine generated that 
Java, but almost always you look at it and see what it’s doing. That’s not a problem. 

 
Unidentified Speaker:  Basically, what you do to export is get Java. Your source file has 

more complicated behavior. 
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Collier:  Right. 
 
Greg Madey:  So RepastPy is a Java program? 
 
Collier:  Yes. 
 
Madey:  So it also is compatible on all Java. 
 
Collier:  Yes, it’ll run anywhere Java runs. 
 
Unidentified Speaker:  I have a brief question about the size of a GIS file. Sometimes 

you get a GIS file and it’s very, very large in terms of bytes or megabytes. When we saw that 
example, everything seemed to be one SBP file that you clicked that opened everything. So I was 
wondering, does your GIS file get ported into that SBP? 

 
Collier:  No. The SBP file just contains a description of the data source property, and that 

part of that description is the file name and path of where to find the GIS file. 
 
Unidentified Speaker:  Oh, so you do still keep your … 
 
Collier:  Yes. If you work on your GIS model, you’d have to give someone all  

the GIS … 
 
Steven Guerin:  ESRI now has Python in our GIS. Any ideas of using Repast further out 

and making it more embedded into GIS tools? 
 
Collier:  We’ve been working very closely with ESRI. It’s very interesting to get agent 

modeling embedded into the ArcGIS product and the good number of people who are familiar 
with RGIS. It’s basically what we call an enterprise geographical information system. We’ve 
developed a tool called Agent Analyst, which is a model tool for ESRI. It’s a point-and-click tool 
that’s actually inside the ESRI environment. 

 
I don’t know how many people have heard of model tools inside of ESRIs. It’s a brand 

new thing for ArcGIS, Version 9. Yes, you have suffered at the hands of the model tool — 
getting this, helping develop it. I was one of the coders. 

 
Can you show the model tool? Yes. This is actually some of my code in the model tool, 

so we’ll find out if it works. I’m on the hook if it doesn’t work. You’d better click it right, Bob. 
I’m kidding. Bob has done a great job and put in a lot of extra effort to get this done. It’s 
integrated on a point-and-click basis in ESRI now, so if you do a couple of clicks, it will create a 
Repast model and run it in ArcGIS. Bob can also show that in a few minutes. 

 
I’ll just show this quickly. This is the exported code. There are a few strange things, but 

it’s no big deal. It’s a comment. You can get rid of it. But for the most part, it looks clear enough, 
and it’s formatted and looks like a Java file. You could work with it. 

 
Claudio Cioffi-Revilla:  It crossed my mind as I was looking at what you’re doing here 

that we’ve got a couple of clients in Houston who have fallen in love with a graphical 
representation tool called Spotfire. It’s a high-end, pretty expensive, very sophisticated tool for 
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graphical representation of large volumes of data. The lights are dimming in Houston as they 
load everything they’ve got into Spotfire and run around and build models. Any thoughts about 
extending beyond Repast in terms of hooking up with representation tools? 

 
Collier:  I’ll just give a short answer. That’s very interesting to us. I have not heard of 

that specific product, but that overall process is something that we’re involved in. We should 
probably talk off line about that, but we’re very open to these things. Fundamentally, Repast is a 
free, open-source environment. Everything we do, we set up so that it can be done free. For 
instance, obviously ArcGIS is a high-priced commercial product. I think it’s worth the money 
because it’s a very, very high quality system. At the same time, I can say that everything is 
OpenMap here as well, and so that’s all free, open source — actually part of the Repast 
download next week. Yes, thanks, Claudio. But in any case, we always make sure that we make 
it available for the free and open-source community. That’s a big part, but we are willing. We 
also, for instance, work with ESRI. We have equivalent functionality available, so we’d be 
interested in this type of thing for other tools as well. 

 
Howe:  Thank you, Nick.  
 
 

Repast .NET 
 

Tom Howe:  Our next talk will be entitled Repast.NET and the presenter will be 
Richie Vos. 

 
Jerry Vos:  I’m Jerry Vos, otherwise known as Richie Vos. I’ll be going over the Repast 

.NET today. 
 

[Presentation] 
 

Unidentified Speaker:  I hope this isn’t a totally naïve question. Is it possible to start out 
with something in Repast.Py and then later try to bring maybe some C++ code, Legacy code, 
from some other thing, into the model? Can that be done in .NET? Can you take Repast code into 
.NET? 

 
Vos:  As in Repast.Java? 
 
Unidentified Speaker:  Yes. 
 
Vos:  The direct answer is no; however, the nice thing is that there’s this thing called the 

Microsoft Java Language Conversion Assistant. That was a big thing used in the actual .NET 
port. If you do have Java code, this converter allows you to go from Java to C#. It actually does a 
pretty good job. It converts most of the rudimentary stuff. Microsoft did not make a C#-to-Java 
converter if you’re looking for that. But if you do generate, and you build the model in RepastPy, 
and you output it in Java, you technically can then run it through the Java converter and have a 
.NET model pretty well set up. 

 
Guerin:  Is Python in .NET as well? Some people have been messing with that; is that 

also an option? 
 



264 

 

Collier:  There’s a new port of Python called Iron Python done by Jim Hugunin. He 
originally wrote Jython, and there was an original port of Python to .NET that was basically a 
disaster. They didn’t do it correctly, so this guy said that he wanted to do it to show that you 
can’t do it — to show that .NET is terrible for scripted languages, and he did it. It turned out 
great. That’s at point 6 or something now, but supposedly it’s going to make it to point 1. Now 
he’s working for Microsoft, so hopefully, it’ll keep going. 

 
Vos:  Yes, and if you look on Google for .NET languages, you’ll get a whole list of them. 

It includes some of the Python stuff and some of the other languages also that we had listed. 
 
Unidentified Speaker:  Virtually every language that’s ever been used. 
 
 

Repast for GIS 
 
Howe:  I want to thank everybody who’s here for staying for this marathon session to see 

what new capabilities the Repast library has. We’re going to finish up this evening’s discussion 
with a talk by Robert Najlis about the GIS — or geographic information system — capabilities 
that have been added to Repast. 

 
Robert Najlis:  Repast for GIS: First, who here is familiar with GIS, has used one? Or 

who hasn’t — maybe I should ask that. Oh, you have not. Okay. I was just wondering how much 
time to spend on the differences in data representation between GIS and ABM. They’re a little 
different. Then we’ll get into how to use it and the couple of different types of integration later. 

 
[Presentation] 

 
Unidentified Speaker:  Do you have a pop-up model? 
 
Najlis:  Do we have time for that? Okay. Which is that, in the model? 
 
Unidentified Speaker:  This is brand new in the ArcGIS, the same product. We basically 

can click and drag model construction, or we can use Repast to build it. We can throw out the 
Repast model and let them work together on a visual basis. So that’s how it builds into an Agent 
Analyst system. Agent Analyst is a specialization of Repast3. It’s the system you see here that 
allows us to just integrate not only with several Repast models but with other ArcGIS tools as 
well. 

 
Najlis:  This actually is already ready. 
 
Unidentified Speaker:  Yes, it was released on Friday. 
 
Unidentified Speaker:  Which company is able to link agent properties with GIS? Can 

you do that? 
 
Najlis:  Yes. Are you saying that if I have some agents made from a shape file, can I …? 

Yes, let me talk about that. 
 
Unidentified Speaker:  … that you get not from the GIS, but to the agent classes. 
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Najlis:  Yes. 
 
Unidentified Speaker:  If you could, in fact, have them mixing properties, like GIS with 

additional properties in other places, they could play with agents that didn’t come from the GIS 
at all. 

 
Unidentified Speaker:  So the agent knows where, in fact, to reference to others’ 

echelon. 
 
Unidentified Speaker:  Yes.  
 
Najlis:  Once Eclipse [referring to problems with laptop] comes back I’ll show you. 

While we’re waiting, let me talk about something else. One nice thing about using ArcMap is 
that as you’re running the model, at any point during the model run, you can stop and do some 
analysis, and then you can go back and continue the model run. 

 
Unidentified Speaker:  ArcGIS is a powerful tool, but it is resource-intense. 
 
Najlis:  Yes. Now, let me show you this same model using OpenMap. One problem we 

had with OpenMap (Nick pointed this out) is that it tends to open the data in this map, the world 
map. And you just wonder where are my data. So, yes, it has a little feature now. 
 

[Presentation Continues] 
 

Unidentified Speaker:  Briefly, you can work in multiple shape files simultaneously, 
you can layer, and you can also change GISs. You have one line of code, so you could build a 
model with OpenMap. If you have ArcMap and change one line of code, it will run ArcMap 
instead. 

 
Najlis:  Yes, that’s right. And, in fact, you could use both at the same time, if you want. 

I’m not going to try that right now, but you could do that. 
 

[Presentation Continues] 
 

Brian Pijanowski:  I’ve been working in GIS for a long, long time. As a matter of fact, 
when I was here last year during the toolkit session, we were brainstorming, and I had a wish list, 
and GIS, neural nets, and … that caliber that was wrong. This is phenomenal. So I’m really 
excited. 

 
I have a question about functionality. A true GIS is not about spatial data; it’s about 

functionality; that is, what you did with it. It’s the analytical capabilities. This is where you could 
really move agent-based modeling forward, in my opinion, because you could have behaviors 
change as they move across the landscape. As they become closer to something, they have 
another set of actions. Is it possible to do that now? 

 
Najlis:  Well, you can get the distance from another object, for example. Even with 

OpenMap, I can get the distance from another object on the landscape, even within a different 
layer. So as you’re getting closer, I can find the closest agent to me. I can find one within a 
certain distance. I can do all of that. So you have a lot of that capability. I think that you have 
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most of the capability that you will need for an ABM. There’s some. You don’t have the 
analytical capability on a GIS scale, where you can say that we have these data and we want to 
analyze this. But that’s usually something you would do off line. For almost everything you do 
on line, I think we have the capability to do that. 

 
Unidentified Speaker:  The best way to put it is that the new system you see here 

provides you with the tools to build those behaviors. An agent could find out how close it is to 
things, what’s nearby, whether it is approaching something, or whether something is 
approaching it. 

 
Najlis:  Yes. 
 
Unidentified Speaker:  And then at that point, those would become triggers for 

behaviors that you would code because that’s all here. 
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WELCOME 
 

S. GABEL, The University of Chicago 
 
 
On behalf of The University of Chicago, welcome to the Computational Social Theory 

session of the Agent 2004 conference entitled, Social Dynamics: Interaction, Reflexivity and 
Emergence.  
 

I would like to thank the organizers for inviting me again to introduce a session. It is a 
great pleasure to be here and to see first hand how the Agent conference is flourishing. 
 

As I said last year, my academic training is in literature and is entirely nontechnical, and 
since I teach subjects like Homer and Aristotle, my presence here then and today may require a 
bit of explanation. Over the last two years and more, I have been working with old colleagues in 
the university and new colleagues at Argonne National Laboratory  Tom Wolsko, Chick 
Macal, Mike North, David Sallach, and others  to help build new collaborations and foster new 
exchanges among social scientists on campus and between them and the scientists at Argonne 
who are active in computational social science. In the process, I have had to try to understand 
what a complex adaptive system is and what in the world folks mean by agent-based simulations. 
I can only repeat what I said last year: I am getting there slowly. 
 

Last year I spoke very briefly about how Aristotle’s 2,000-year-old analysis of the 
distinctive properties of good drama shone some light into my own murky understanding of what 
a simulation is. I was charmed when I realized that, since antiquity, simulations have been 
thought to be a mode of investigating reality. But I was even more surprised that many of the 
scientists present were also charmed by the thought. Now that Chick has asked me to come back 
and open a session, I have to assume he was wondering whether I had the nerve to claim that 
Aristotle has anything to teach us about computational social theory. 
 

Well, perhaps, but I cannot judge. Let me share a few new thoughts about some other 
work by Aristotle in the hope something emerges. 
 

First, a brief bit of background. Aristotle’s two most widely read treatises are entitled 
Politics and Nicomachean Ethics. The first investigates the nature, origin, and evolution of 
human communities; the second investigates agents, their goals, and their interrelationships. The 
two treatises each reference the other, but neither comes first. If politics is the “chicken,” ethics 
is the “egg.” Communities emerge from aggregated households (the “oikos” from which the 
word economics comes), grow, and take on the characteristics of the people who make them up. 
Conversely, communities have a decisive role in constructing value, socializing individuals, and 
instilling good habits in the young so that they can become self-directing, free agents. This may 
seem trite to us now, but centuries passed before anyone treated these subjects with comparable 
rigor.  
 

One of the things that makes Aristotle’s Ethics rewarding to study  and perhaps 
relevant to computational social science  is that it works on two levels that are in tension with 
one another. One level investigates the ideal society’s socially constructed goals and what is 
meant by the idea of a person who has learned to become a fully realized, ideal human agent. 
Aristotle’s notion of character is famously expressed in terms of virtues  which are conceived 
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as states intermediate between extremes. So, courage is a virtue  a component of being an 
agent who is free to make good choices. Courage is between reckless indifference to pain and 
death and paralyzing fear of them. Courage can be and, indeed, must be learned, which implies 
there must be teachers and social support for the learning of courage. If someone has courage, he 
or she will infallibly have the correct attitude and feelings when faced with threats. That is what 
it means to HAVE courage or to be a courageous character. And so on for other virtues. 
 

But midway in the treatise, Aristotle completes that investigation of virtues and begins to 
look at the different reasons in the real world that human agents fail to be ideal  fail to make 
the choices that will allow them to achieve even their own modest goals, much less those goals 
that are most admirable or valued by others (one of which is to educate others and improve 
community). The world is not perfect, and neither are human agents, and Aristotle understands 
well the challenge of constructing theories that, as he says, “save the appearances,” that is, don’t 
treat the messy facts as inconvenient exceptions safely ignored. 
 

A second thing that makes Aristotle rewarding is that he is NOT a moralist: there are no 
laws in his book, no rules to follow (for example, you will find in Aristotle very few statements 
such as “never tell a lie”). But without hard and fast rules, it turns out to be extraordinarily 
difficult for an agent to do the “correct” or right thing under any give circumstance. Everything 
 everything  depends on the unique situation, and the ability to perceive what its salient 
features are. 
 

What I mean to suggest by these very, very brief comments is that Aristotle, to a 
remarkable degree, noticed and embraced the deep complexity of the world he observed. In this 
way, he broke with his teacher, Plato, who insisted that reality should cohere in internally 
consistent ways and was best understood in terms of eternal ideas, roughly analogous to 
mathematical entities. Aristotle, I am suggesting, absorbed what he learned from his teacher  
the interest in ideal cases; then, without rejecting what he had learned, he transformed it by 
turning his attention to the complexities and gradations he found in the observable world.  
 

My real reason for drawing on Aristotle this morning is twofold. First, it seems to me that 
it’s a good thing for all of us to remain aware of the intellectual genealogies of our disciplines. 
Today’s science and scholarship  even cutting-edge science  represent a branch of a tree that 
is very old, with deep roots. And some of the problems we try to understand today are problems 
humans have been thinking about for a long time. Second, it seems to me quite likely that the 
tools you work with in your field will have a great deal of resonance and utility for scholars in 
fields other than those represented here today. For example, I think it would be fascinating to re-
read Aristotle alongside someone who was attempting to schematize and code his account of an 
agent in a Greek city-state. So, I would like to encourage you to get ready to encounter other 
visitors like me, aliens from the library who are intrigued by the work you are doing. Be patient 
with us: I think we may have more in common than we know. 
 

I wish you all a stimulating and productive day. 
 
 



 

 
 



 

 
 
 



275 

SOCIAL LIFE FROM THE BOTTOM UP:  
AGENT MODELING AND THE NEW SOCIOLOGY* 

 
A. FLACHE,† University of Groningen, Netherlands 

M.W. MACY, Cornell University, Ithaca, NY 
 
 

ABSTRACT 
 

In the social sciences, agent-based computer modeling is a new approach that aims to 
model theoretically how complex social macrodynamics emerge from the interactions of 
autonomous, yet interdependent individual actors (“agents”). We describe the main 
principles of agent-based computer modeling as applied to social sciences and discusses 
its relationship to the theory building strategy of methodological individualism. We argue 
that agent-based computer modeling offers to methodological individualists a tool that 
allows combining the rigor of formal modeling with more freedom in the choice of 
behavioral assumptions than previous elaborations of methodological individualism do, 
in particular formal game theory. We illustrate this with a comparison of game theoretical 
and agent-based models of emergent social order. We review, in particular, contributions 
that address the effect of relational stability, network structure, and network dynamics on 
spontaneous social order. We also address models that explore variations in behavioral 
assumptions, such as effects of different specifications of learning behavior, or effects of 
individual altruism on social outcomes. We conclude with a set of methodological 
principles that agent-based modelers should adhere to in order to fully exploit the 
potential of this method for social theory. 
 
Keywords: Agent-based modeling, computational modeling, social order, game theory, 
methodological individualism 

 
 

1  INTRODUCTION 
 

What do flocks of birds, traffic jams, fads, forest fires, riots, Internet search engines, and 
residential segregation have in common? The answer is self-organization. There is no leader bird 
who choreographs the dancelike movement of a flock of geese. There is no supervisor in charge 
of a riot. There is no librarian in a back room at Google headquarters who is busily classifying all 
of the Internet Web sites in a digital version of the Dewey decimal system. There is no 
conspiracy of bankers and realtors who are assigning people to ethnically homogenous 
neighborhoods. 
 

                                                 
*  Much of the material in this paper also appears in German in Kölner Zeitschrift für Soziologie und 

Sozialpsychologie, forthcoming. This paper also elaborates material in Macy and Willer (2002), and we wish to 
acknowledge the important contributions to the ideas presented here. The first author wishes to acknowledge 
financial support for this work provided by the Netherlands Organization for Scientific Research (NWO) under 
the Innovational Research Incentives Scheme (VIDI). 

†  Corresponding author address: Andreas Flache, University of Groningen, Grote Rozenstraat 31, 9712 TG 
Groningen, Netherlands; e-mail: a.flasche@rug.nl. 
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Traditionally, sociologists have tried to understand social life as a structured system of 
institutions and norms that shape individual behavior from the top down. In contrast, a new breed 
of social modelers suspect that much of social life emerges from the bottom up, more like 
improvisational jazz than a symphony orchestra. People do not simply play parts written by elites 
and directed by managers. They make up their parts on the fly. But if all the people are flying by 
the seats of their pants, how is social order possible? 
  

New and compelling answers to this question are being uncovered by social theorists 
using an innovative modeling tool developed in computer science and applied with impressive 
success in disciplines ranging from biology to physics: agent-based computational modeling 
(ABCM). It is agent-based because it takes a model of the autonomous yet interdependent units 
(the “agents”) that constitute the social system as a theoretical starting point. It is computational 
because it formally represents and encodes the individual agents and their behavioral rules in a 
computer program so that the model dynamics can be deduced by step-by-step computations 
from given starting conditions.  
 

ABCM was originally developed in computer science and artificial intelligence as a 
technology to solve complex information processing problems on the basis of autonomous 
software units. Each of these units can perform its own computations and have its own local 
knowledge, but the units exchange information with each other and react to input from other 
agents.  
 
 The approach was soon applied to problems involving the complex social dynamics that 
are of key interest to sociologists: notably emergent social norms, social structure, and social 
change. Norms emerge in ABC models without central coordination from individual actors 
(e.g., organizational elites). In fact, compliant individuals may not even need to be aware of the 
norm. Every individual appears to adhere to a global “consensus” on how to behave  a 
consensus that a Parsonian functionalist might regard as the basis of the orderly behavior of the 
individuals. Yet this consensus is entirely an emergent property of the population, and it does not 
exist at the level of individuals, who may not even be aware that the population exists. They are 
aware only of their immediate neighbors.  
 

Can social scientists learn something from models of self-organized behavior developed 
for understanding computer networks, bird flocks, or chemical oscillators? We believe they can 
for several reasons. First, agent-based computational (ABC) models show how very simple rules 
of local interaction can generate highly complex population dynamics that would be extremely 
difficult (if not impossible) to model by using traditional methods. Second, these models show 
how Durkheimian “social facts” can emerge sui generic at the population level, even when these 
properties do not exist at the individual level. Third, these models can be used as virtual 
laboratories, to reveal the micro mechanisms responsible for highly complex social phenomena. 
 

Agents have four defining characteristics: autonomy, reactivity, proactivity, and social 
ability (Gilbert and Troitzsch, 1999; Wooldridge and Jennings, 1995). Autonomous agents have 
control over their own goals, behaviors, and internal states. Reactive agents perceive and adapt to 
their environment. Proactive agents have the heuristic ability to solve problems in order to attain 
individual goals. Finally, agents with social ability have the capacity to influence other 
interdependent agents in response to the influences that are received.  
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 Long before the advent of ABCM in the 1990s, the central ideas that underlie its theory-
building strategy were introduced in sociology by methodological individualism. (See Udehn 
[2002] for a recent review article.) According to methodological individualism, the phenomena 
that sociologists study (e.g., norms, social or cultural differentiation, social networks, income 
inequality) can be explained as the macro consequences of the actions of autonomous but 
interdependent, purposively acting individuals (cf., Wippler and Lindenberg, 1987) who are, in 
turn, restricted in their actions by the macro conditions they collectively create (e.g., Coleman, 
1990). The modelers’ characterization of agents as autonomous, reactive, and proactive is clearly 
consistent with the individual-level models advocated by adherents of methodological 
individualism (e.g., Lindenberg, 2001). Until recently, however, the analytical complexity of 
modeling numerous interdependent individuals led adherents of methodological individualism to 
adopt highly stylized models of individual behavior that allow the application of standard 
mathematical solution methods. Most prominently, utility maximization was used as a basis for 
neoclassical equilibrium analysis in the rational choice approach (cf., Voss and Abraham, 2000). 
These rational choice models are clearly agent based, but they do not need to be computational. 
What, then, can ABCM contribute to methodological individualism? 
 
 The answer is that computational modeling uses numerical integration to relax the 
mathematical restrictions that are needed to guarantee analytical solutions. At the same time, 
ABCM is a formal method that deduces, in a systematic and rigorous way, macro-level 
implications from assumptions about micro-level behavior.  
 
 ABC models are increasingly used to address some of the most compelling questions in 
sociology, such as the emergence and dynamics of cultural differentiation (e.g., Mark, 2003; 
Axelrod, 1997), social network structures (e.g., Klüver and Stoica, 2003; Stokman and 
Zeggelink, 1996), cooperation in terms of norm compliance and collective action (Mosler and 
Brucks, 2003; Macy, 1990), fairness norms in bargaining (Vetschera, 2003), and cooperation in 
dyadic social exchange (Macy and Flache, 2002). 

 
The rise of ABCM in sociology reflects the increasing demand for such an approach. The 

reason is that many sociologists share the individualistic perspective that social phenomena can 
be properly understood as a (possibly unintended) consequence of the purposive behavior of 
individual social actors. At the same time, there is an increasing awareness that the apparatus of 
analytical equilibrium solutions imposes restrictions in the theoretical formulation of agent 
behavior that are not justified substantively, or are at least questionable, in light of recent 
advances in experimental work, mainly in behavioral game theory (Camerer, 2003) and 
contemporary theories of “social rationality” (Lindenberg, 2001; Boudon, 1996). These studies 
contradict utility maximization by pointing to nonlinearities and discontinuities in choice 
behavior (e.g., frame switching) that make it very difficult, if not impossible, to straightforwardly 
derive analytical equilibrium solutions from corresponding models of individual decision 
making. These developments suggest that human social decision making may be best described 
by a set of behavioral heuristics that do not necessarily maximize individual decision outcomes 
(e.g., Fehr and Gächter, 2000), may change across decision contexts (e.g., Todd and Gigerenzer, 
2003; Vanberg, 2002), or are sensitive to “irrelevant” social cues that affect how a particular 
situation is framed or perceived (e.g., Lindenberg, 2001).  
 
 Recent advances in evolutionary game theory (e.g., Bendor and Swistak, 2001), formal 
theories of learning in strategic interaction (e.g., Fudenberg and Levine, 1998), and socio-physics 
(e.g., Helbing and Huberman, 1998) have successfully incorporated individual decision 
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heuristics into equilibrium analysis. However, to make analytical treatment possible, these 
approaches still need to impose strong restrictions on network structures. Almost all game 
theoretic applications need to assume either a complete graph or a random graph (actors interact 
with randomly chosen partners) to keep models tractable.  
  

ABC models provide a way out of the dilemma by relaxing the heroic assumptions of 
rational choice theory while preserving the power to model social life as it emerges out of a 
multitude of local interactions, embedded in highly structured networks, with clustering, bridge 
ties, etc. The steep decline in the cost of powerful desktop computers has made this technique 
more accessible to many sociologists than the analytical mathematical models based on 
traditional rational choice theory.  

 
Paradoxically, the enormous speed and power of these computers also pose a danger. 

Effectively unlimited computational power removes physical constraints on the elaboration of 
the models, allowing researchers to write “realistic” models of enormous complexity. It is 
relatively easy to write a program that includes a long list of plausible elaborations, such as 
Younger’s models of hunter-gatherer societies, which include intricacies such as when agents 
fall asleep and what is needed to wake them (Younger, 2004). It is far more difficult to analyze 
results in order to understand the mechanisms that generated them and their relevance when 
questions are theoretical. Without a proper methodology of systematic experimentation and 
model analysis, ABCM-based sociological theorizing may end up losing all deductive power, 
because model creators may not be able to develop any solid intuition or explain their models’ 
behavior independently from the details of a particular implementation and execution on a 
computer. Without systematic knowledge about the underlying causal mechanisms, one cannot 
rule out the possibility that the results are nothing more than artifacts of particular modeling 
technologies or even bugs in the source code. Accordingly, this paper concludes with 
recommendations for a rigorous methodology of agent-based theoretical research in the social 
sciences.  
 
 ABCM in sociology is a rapidly progressing field. It is impossible to consider all of its 
contributions adequately in one overview article, so this paper focuses on documents that address 
a fundamental sociological problem: emergent social order and its micro-level foundations. The 
following recent overviews of this field complement this paper: Gotts et al. (2003); Sawyer 
(2003); Macy and Willer (2002); and Moretti (2002).  
 
 The discussion here proceeds as follows. Section 2 addresses the relationship between 
ABCM and methodological individualism. Section 3 discusses ABCM in the theoretical research 
of emergent social order. Section 4 focuses on methodological issues. Finally, Section 5 
concludes with an outlook on future research directions and possible contributions of ABCM to 
sociological research.  
 
 

2  ABC MODELS AND METHODOLOGICAL INDIVIDUALISM IN SOCIOLOGY 
 
 The paradigm of methodological individualism can be traced back to classical social 
thinkers like David Hume, Adam Smith, and, later, Schumpeter and Hayek (cf., Udehn, 2002; 
Voss and Abraham, 2000). Homans (1974) introduced methodological individualism into 
sociology. He argued that while social facts (i.e., regularities on the macro level) can change 
across situational and historical conditions, their explanations can be systematically derived from 
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an invariant (“sub-institutional”) common core based on the behavior of individual actors. Many 
sociologists followed Homans’ proposal for basing the theoretical analyses of macro phenomena on 
a model of individual behavior. However, it was soon argued that descriptively realistic 
psychological theories of action are too complex to use for analyzing collective phenomena 
(Coleman, 1990; Wippler and Lindenberg, 1987, pp. 13−21).  
 
 Despite this argument, social scientists were reluctant to abandon the individualist 
principle. They recognized that assumptions about individual interests cannot readily be 
transformed into social outcomes without a detailed analysis of the interaction between 
individual members (Coleman, 1990, p. 22). This is illustrated by a wide range of paradoxical 
phenomena for which individual intentions produce unexpected results, such as these: 
 

• The “bystander problem,” in which everyone observing or hearing the cries 
for help of a crime victim assumes that someone else will come to his or her 
rescue.  

 
• “Rational herding,” in which everyone crowds into an inferior restaurant 

because each person assumes that the food must be great if so many people 
want to be there. 

 
• The “free rider problem” in which a collective action fails when everyone 

prefers to “let George do it.” 
 
• Overcrowding, caused by subjectively higher chances of being successful in 

the competition for scarce resources.  
 
Not being discouraged, adherents of the individualistic approach found a solution for the 
complexity problem in the method of neoclassical economics: utility maximizing (Coleman, 
1990, p. 14). In Coleman’s orthodox version of the “rational choice” perspective, analytic 
tractability is obtained through the explicit introduction of the notion of goal maximization in 
combination with the heuristic principle of a uniform human nature in terms of universal ultimate 
social goals that all individual actors aim to maximize (Voss and Abraham, 2000). These 
assumptions give the theory its deductive power, because when an individual’s goals are known, 
the actions taken are those that are most efficient in terms of achieving the goals from the 
individual’s perspective. In this way, the model allows deduction even when individual 
interdependence and micro-macro relationships are taken into account. Individual decision 
making can be represented in terms of mathematically tractable maximization problems, because 
the theory implies that individual actions eventually lead to equilibrium outcomes, in which all 
individuals maximize their utility given the rational (i.e., utility maximizing) behavior of all 
other individuals. General statements about the properties and conditions of such equilibrium 
outcomes can then often be derived with standard mathematical methods without the need to 
compute step-by-step the actual dynamics through which the equilibrium arises. Formal game 
theory allows the pure model to be elaborated so as to address decision making under uncertainty 
and strategic behavior (Fudenberg and Tirole, 1991).  
 
 Until recently, rational choice theorists have tended to downplay concerns about the 
cognitive plausibility of utility maximization. Researchers readily admitted that “real” individual 
decision making can be described better by a set of “boundedly rational” or “intendedly rational” 
heuristics than by perfect rationality (Coleman, 1990, pp. 14−15). At the same time, it was 
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argued that this did not compromise the analysis of regularities at the aggregate level (Hechter, 
1988, pp. 31−33; Coleman, 1987, p. 184; Wippler and Lindenberg, 1987). These authors stressed 
that micro deviations from rational behavior fail to affect macro regularities, because deviations 
may be unsystematic “random errors.” Moreover, theorists referred to “backward-looking” 
mechanisms supposedly underlying real decision making (e.g., learning, imitation, and selection 
pressures in the competition to reproduce and propagate). They argued that these adaptive 
mechanisms and environmental constraints compel actors to behave as if they were fully rational 
decision makers with unlimited calculating power and perfect information.  

 
This confidence is now being shaken by repeated demonstrations that global properties 

that emerge from local interaction can be highly sensitive to details in the specification of the 
micro model of goal-directed decision making (e.g., Flache and Hegselmann, 1999a,b).  

 
Concerns about the robustness of rational choice explanations with regard to variations in 

behavioral plausibility have been behind efforts to develop more cognitively realistic models of 
the actors (Lindenberg, 2001; Boudon, 1996). However, by abandoning the deductive precision 
of utility maximizing behavior, these efforts faced the same dilemma as the one that was behind 
orthodox rational choice models in the first place. On one side, more sophisticated micro-level 
models prevent the possibility of modeling the complexity of the emergent system. On the other 
side, models of heuristic decisions by adaptive actors cannot be implemented by using the 
analytical tools imported from economics and classical game theory. The need for a new tool 
was growing at the same time that advances in computational technology were making one 
widely available. 
 
 

3  EMERGENT SOCIAL ORDER  
 
 One of the first questions that agent modelers attacked was the old problem of social 
order. In individualistic theorizing, the classic problem of social order is represented as the 
questions of how and under what conditions cooperation can be attained in a social dilemma. A 
social dilemma (Dawes, 1980) arises when cooperation is Pareto efficient but may nevertheless fail 
because individuals fear being “suckered” or are tempted to exploit the willingness of others to 
cooperate.1 Societal problems that have been described as social dilemmas include lack of trust in 
business transactions, the free-rider problem in work groups, failure of collective action, and 
declining social solidarity in societies undergoing modernization.  
 

Traditionally, sociologists have explained social order as the result of top-down enforcement 
of norms and laws by formal institutions (cf., Gouldner, 1960; Hechter, 1988). However, choice 
theorists noted the circularity of this explanation: norms, laws, and institutions of social control 
presume the very social order that they are supposed to explain (e.g., Oliver, 1980). The challenge is 
to explain the emergence of cooperation and social norms from the bottom up, through self-
organizing individual interactions.  
 

Rational choice theory has explanations of successful cooperation without either altruism 
or global (top-down) imposition of control (for a recent overview, see Voss, 2001). Orthodox 
game theoretical approaches based on rational choice assumptions emphasize two key 

                                                 
1 See Raub (1988) for a more precise game theoretical definition on the basis of what Harsanyi (1977) calls 

“problematic social situations.” 
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conditions: relational stability and network structure, particularly the clustering of social 
networks (more precisely, the proportion of closed triads). According to game theoretical 
analyses, the mechanism that makes relational stability important is conditional cooperation in 
repeated interactions (Friedman, 1971). Intuitively, if there is sufficient interest in the long-term 
gains derived from ongoing cooperation, then rational participants may refrain from the 
temptation to choose a “hit-and-run” strategy because it may disrupt relationships with other 
conditional cooperators. Analyses of the effects of network structure also rest on the logic of 
conditional cooperation, but they extend it to reputation mechanisms (Raub and Weesie, 1990; 
Buskens, 2002). Here, conditional cooperation extends to the universal strategy to cooperate only 
with other players as long as one has not received third-party information that indicates past 
uncooperative behavior. Given sufficiently clustered communication networks, the expectation 
that others will adopt such a strategy deters players from building up a bad reputation. Further 
elaborations showed that the individual rationality of conditional cooperation generalizes to 
collective action problems with a large number of participants (e.g., Taylor, 1987; Raub, 1988), 
and to games with imperfect information, where agents may have only distorted information 
about others’ past behavior (e.g., Bendor and Mookherjee, 1987; Flache, 2002) or may lack 
knowledge about their preferences (e.g., Buskens, 2003). However, as group size and noise 
increase, conditional cooperation tends to become less viable.  
 
 Criticism of game theoretical explanations of emergent order has focused on three related 
issues: implausible behavioral assumptions, indeterminacy, and coordination complexity. 
Although behavioral implausibility can be troublesome in some applications, it has proven very 
useful in the study of social order. The reason is not the “as if” principle (i.e., people behave as if 
they were rational). It is rather the “what if” principle, or perhaps one might call it the “even if” 
principle. Even if individuals were perfectly rational, and even if social order was in everyone’s 
rational self interest, there is no guarantee that it would be obtained. If mechanisms that might 
allow perfectly rational maximizers to escape the social trap could be identified, we could then 
test them to see whether they were also effective with actors whose rationality was constrained 
by cognitive limitations. 
 
 Ironically, the weakness with analytical game theory is the inability to identify those 
mechanisms. The central solution concept of game theory, Nash equilibrium analysis, tells us if 
there are any strategic configurations that are stable, and if so, how they are characterized. 
Knowing that a configuration is a Nash equilibrium means that if this state is obtained, the 
system will remain there forever, even in the absence of an enforceable contract. However, even 
when Nash can identify a unique equilibrium, this does not tell us whether this state will ever be 
reached, or with what probability, or what will happen if the equilibrium should be perturbed. 
Nor does the Nash equilibrium explain social stability among interacting agents who are 
changing strategies individually, yet for whom the population distribution remains constant, as in 
a homeostatic equilibrium. Put differently, the Nash equilibrium explains social stability as the 
absence of individual change, not as a dynamic balance in a self-correcting distribution of 
evanescent individual strategies, each of which influences others in response to the influence that 
it receives. 
 

Moreover, in most games, Nash cannot identify a unique solution. Some social dilemma 
games, such as Chicken or Stag Hunt, have three equilibria, and game theory cannot tell us 
which one will be obtained. Worse yet, if these games are repeated by players who care about 
future payoffs in an ongoing relation, the number of Nash equilibria becomes indefinitely large 
(even in Prisoner’s Dilemma, which has a unique equilibrium in one-shot play). This problem of 
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indeterminacy is known as the “folk theorem” of the theory of repeated games. The theorem 
asserts that “if the players are sufficiently patient then any feasible, individually rational payoffs 
can be enforced by an equilibrium” (Fudenberg and Tirole, 1991, p. 51) in an indefinitely 
repeated social dilemma game. When games have multiple equilibria, Nash equilibrium analysis 
cannot tell us which will be obtained or with what relative probability. Nor can it tell us much 
about the dynamics by which a population of players can move from one equilibrium to another. 

 
Game theorists have responded to the problem by proposing procedures that can winnow 

down the set of possible equilibria. For example, the solution set can be narrowed by identifying 
equilibria that are risk dominant (every player follows a conservative strategy that earns the best 
payoff that he or she can guarantee for himself/herself), payoff dominant (no other equilibrium 
has a higher aggregate payoff over all players), Pareto dominant (every other equilibrium is less 
preferred by at least one player), trembling-hand perfect (strategies remain in equilibrium even if 
one player should accidentally deviate from equilibrium behavior), and subgame perfect (the 
strategy profile constitutes a Nash equilibrium in every subgame). However, these equilibrium 
selection methods are theoretically arbitrary (e.g., there is no a priori basis for payoff-dominant 
or risk-dominant behavior), and they often disagree about which equilibrium should be selected 
(e.g., in Stag Hunt, payoff dominance and subgame perfection identify mutual cooperation, while 
risk dominance points to mutual defection). 
 

In sum, although in principle, it can be rational to cooperate in an ongoing social 
dilemma based on reciprocity, the choice between many possible equilibrium solutions makes 
coordination on one of them too complex to be attained. So how can cooperative solutions ever 
emerge from the interactions of autonomous social agents? This question has inspired a range of 
ACBM studies that explore the structural conditions in which adaptive actors might find their 
way out of social traps. Not surprisingly, these studies often focus on the two conditions 
identified by analytical game theory: relational stability and network clustering.  
 
 
3.1  Relational Stability 
 

The classic study of emergent order without rational actors is Axelrod’s (1984) evolution 
of cooperation. Axelrod tested whether relational stability can foster cooperation based on 
reciprocity, even when individual agents lack the capability to make strategic choices. He 
assumed a population in which individual agents represent “hardwired” behavioral strategies that 
interact with each other. The strategies were designed by game theorists for winning a 
tournament in which every agent had to play repeated rounds of a dyadic Prisoner’s Dilemma 
game with each of the other members of the population. At each round, each player knew the 
moves of the partner in all of the previous rounds. The winner was one of the simplest strategies 
submitted, “tit for tat” (TFT), which cooperated on the first move and thereafter copied the 
partner’s previous move. 
 
 Rather than assuming that individuals rationally calculate the optimal strategy, Axelrod 
modeled the selection of strategies on the basis of competitive pressures operating at the 
population level, a principle imported from evolutionary biology. These pressures favor survival 
and physical replication of strategies that are successful across all games in which they are 
played in comparison with the population average. In human social life, Axelrod argued, such 
pressures may arise when learning individuals imitate strategies they have observed being used 
by successful role models.  
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Axelrod’s computational experiments showed that the game theoretic solution of 
conditional cooperation is highly robust, even for players who expend minimal cognitive 
resources in making decisions. Moreover, consistent with game theoretical analysis, the 
experiments showed that conditional cooperation flourishes only if there is an opportunity for 
repeated interaction, so reciprocators can benefit from the cumulative payoffs for mutual 
cooperation, while more aggressive strategies gain only a “quick hit” that cannot offset the long-
term losses caused by the disruption of the exchange relationships with conditional cooperators. 
However, the evolutionary findings contradict the game theoretic prediction that conditional 
cooperation requires an indefinite endpoint, or else players will arrive at defection through a 
process of backward induction.2 Laboratory experiments show that human behavior does not 
confirm the game theoretic prediction of backward induction; instead, defection becomes more 
frequent as the end approaches. That pattern is also consistent with Axelrod’s model, which 
predicts greater cooperation the longer “the shadow of the future.” 
 
 In sum, ACBM has played a key role in demonstrating that relational stability promotes 
emergent social order. These studies have extended analytical game theory by showing that 
(1) social order based on conditional cooperation can arise in a lay population that lacks the 
cognitive sophistication of highly trained game theorists and (2) conditional cooperation tends to 
decline as the end game approaches, a pattern observed in games played in lay populations but 
not in games played by game theorists. Axelrod’s study showed that cooperation based on 
reciprocity can thrive even in a highly competitive world. His work was highly influential far 
beyond the game theory community (Etzioni, 2001). It has triggered a number of follow-up 
studies that have supported and extended his findings (cf., Gotts et al., 2003).  
 

At the same time, Axelrod’s work has also motivated rejoinders by game theorists, such 
as Binmore (1998), who have identified two serious limitations in his original tournament: the 
dependence of his results on an arbitrary strategy set and the assumption of perfect information. 
Each of these limitations is examined here. 
 
 
3.1.1  The Strategy Set 
 

Axelrod attributed the remarkable success of TFT to three principles: being nice (never 
defect without provocation), being provocable (never let defection go unpunished), and being 
forgiving (always return to cooperation when the partner does so). Critics (e.g., Binmore, 1998) 
pointed out that the performance of any strategy in Axelrod’s tournament was an artifact of an 
arbitrary population of contestants. For example, if all of the other strategies played All-D, TFT 
would not have won.  
 
 Recognizing this limitation, Axelrod used a genetic algorithm (GA) in a follow-up study 
to see if TFT would emerge in an open-ended population in which strategies could evolve from a 
random start (Axelrod, 1997, pp. 14−29). The GA opens up the set of strategies that are allowed 
to compete by allowing “nature” to generate entirely new strategies, including some that might 
never have occurred to any game theorist. Genetic algorithms are strings of computer code that 
can mate with other strings to produce entirely new and superior programs by building on partial 

                                                 
2  Rational players will defect on their final move, since there is no fear of retaliation. Knowing the partner is 

certain to defect on the last move, there is no incentive to cooperate on the next-to-last, and so on, back to the 
first move of the game. 
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solutions. Each strategy in a population consists of a string of symbols that code behavioral 
instructions, analogous to a chromosome containing multiple genes. A set of one or more bits 
that contains a specific instruction is analogous to a single gene. The values of the bits and bit-
combinations are analogous to the alleles of the gene. A gene’s instructions, when followed, 
produce an outcome (or payoff) that affects the agent’s reproductive fitness relative to other 
players in the computational ecology. Relative fitness determines the probability that each 
strategy will propagate. Propagation occurs when two mated strategies recombine. If two 
different rules are both effective, but in different ways, recombination will allow them to create 
an entirely new strategy that may integrate the best abilities of each “parent,” making the new 
strategy superior to either contributing strategy. If so, then the new rule may eventually displace 
both parent rules in the population of strategies. In addition, the new strings may contain random 
copying errors. These mutations restore the heterogeneity of the population, counteracting 
selection pressures that tend to reduce it. 
 
 Working with computer scientist John Holland, Axelrod found several strategies similar 
to TFT that proved to be highly robust. These strategies resembled TFT in being provocable and 
forgiving, but they were also more predatory when paired with naïve partners. Other studies 
using GAs (Linster, 1992) and self-programmable Moore Machines (Probst, 1996) obtained very 
similar results. In Probst’s model, an agent could have up to 25 internal states, which represent 
the behaviors of cooperation and defection, respectively. Depending on the behavior of the 
opponent (cooperation or defection), the agent switches its internal state. Probst found that TFT 
was initially successful, but that in the course of evolution, a punctuated equilibrium arose in 
which cooperation collapsed for some periods, only to revive in others. Moreover, the 
experiments showed that an evolutionary “arms race” unfolded, in which the complexity of 
machines gradually increased in the course of evolution and TFT was eventually displaced by 
more aggressive, conditionally cooperative strategies. Like TFT, these strategies were able to 
build up cooperative relationships with partners found to be not easily exploitable. But unlike 
TFT, they had no qualms about exploiting naïve cooperators. 
 
 
3.1.2  Uncertainty and Tolerance 
 

While Axelrod’s original study assumed that players are perfectly informed about each 
others’ behavior throughout the history of their relationship, game theoretic analyses have 
suggested that uncertainty caused by imperfect information may jeopardize the viability of 
strategies based on reciprocity (e.g., Bendor and Mookherjee, 1987; Flache, 2002). For example, 
Bendor and Mookherjee (1987) looked for analytical solutions for repeated Prisoner’s Dilemma 
games in which players occasionally defect involuntarily, but their interaction partners do not 
know whether the defection was intended or not. The strategically rational response to such a 
“disturbance” is to become more tolerant of occasional defection in order to avoid a tragic cycle 
of mutual recrimination that no one wanted or intended. At the same time, rational players 
should not become too tolerant in order to credibly deter free riders. The dilemma over how 
much defection to tolerate becomes especially acute as the number of partners increases. In an  
n-way interaction, it becomes impossible to distinguish between predatory defection and 
retaliation against predators. Bendor and Mookherjee (1987) show that as the group size exceeds 
a critical threshold given by the payoffs, top-down sanctions against defectors become more 
efficient than bottom-up sanctions based on retaliation.  
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 Game theoretic analyses of conditional cooperation under uncertainty suffer even more 
from the problem of theoretical indeterminacy than studies that assume perfect information. 
Tolerant and forgiving reciprocity requires that players coordinate on compatible levels of 
tolerance and forgiveness. For example, when one player, after an accidental shock, returns to 
cooperation after three rounds of punishment, but the other player adopts the rule to impose four 
rounds of punishment, then cooperation can never be restored again because players continue to 
punish each other for punishment. Nash equilibrium solutions fail to explain how rational players 
can solve this problem of coordination on compatible norms.  
 

Meanwhile, computational studies have tested whether this coordination can evolve 
under selection pressures in a competitive environment among players whose decisions are 
hardwired rather than rationally deliberated (e.g., Kollock, 1993; Nowak and Sigmund, 1993; 
Lomborg, 1996). Broadly, these experiments confirmed the hypothesis that uncertainty favors 
“tolerant,” conditionally cooperative strategies that do not always retaliate after defection of an 
opponent. For example, Kollock (1993) found that in “noisy” environments (with mistakes and 
miscues), strict reciprocity is prone to needless recrimination that can be avoided by looser 
accounting systems.  
 

An interesting variation in this line of work showed that backward-looking strategies like 
Win-Stay, Lose-Shift (WSLS) are particularly effective in coping with noise (Nowak and 
Sigmund, 1993; Macy, 1996). With WSLS, behavior changes only if the partner defects. In 
contrast to TFT, where the partner is taught a lesson, with WSLS, lessons are learned from the 
partner. In a repeated Prisoner’s Dilemma under noise, the strength of these learning strategies is 
that they can avoid endless cycles of mutual punishment and find a way back to mutual 
cooperation after the relationship with a friendly opponent has been disturbed by a random 
shock. The reason is that dissatisfaction with the social costs of mutual defection leads 
backward-looking players to eventually offer an “olive branch” that allows them to break out of 
the cycle.  
 
 More recently, researchers have explored variations of TFT that combine looser 
accounting under uncertainty with selective partner choice. These studies relax a restriction 
adopted by most earlier work on emergent reciprocity: the absence of exit possibilities 
(i.e., possibilities to voluntarily leave the relationship). Computational analyses of exit effects 
(Schüssler, 1989; Vanberg and Congleton, 1992; Schüssler and Sandten, 2000) put the role of 
relational stability for emergent cooperation into perspective. The route to emergent order that 
these studies uncover is exclusion of defectors from relationships with cooperative partners, 
based on the principle “be cooperative, but leave any partner who defects.” When enough 
members of a population adopt this strategy, cooperative players stay in stable relationships, 
leaving defectors with no one but other defectors to have as partners. As a consequence, 
defectors perform poorly, and conditional cooperation thrives even under conditions of 
anonymity where unfriendly players can hide in a “sea of anonymous others” (Axelrod, 1984, 
p. 100) after they “hit and run.” Considering more complex agent architectures, Schüssler and 
Sandten (2000)  similar to Probst (1996) and Axelrod (1997) discussed above  show that 
under exit possibilities, more sophisticated and not necessarily strictly friendly strategies may 
survive under evolutionary pressure. In this study, the unfriendly players are successful when 
they cooperate if partners are found to not be exploitable but hit and run if a growing search pool 
suggests that new exploitable victims can be easily found. In further computational studies, 
researchers began to introduce uncertainty into the study of effects of exit mechanisms 
(Zeggelink et al., 2000; De Vos et al., 2001). Future work may use GAs to explore whether 
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complex exit strategies like the ones identified by Schuessler and Sandten can emerge from a 
random start. 
 
 
3.2  Social Structure and Emergent Order 
 

From a rational choice perspective, a central mechanism through which social networks 
affect emergent order is the diffusion of reputations (Coleman, 1990). Game theoretic 
elaborations predict that cooperation among rational actors increases with the number of 
potential partners who might hear about their reputation and with the decrease in the time it takes 
for this information to spread through the network (Raub and Weesie, 1990; Buskens, 2002). 
This implies that there is more cooperation in densely clustered networks and by incumbents 
with more central positions in a network. However, empirical tests of predicted effects of 
network characteristics on cooperative behavior in business relationships have only been 
moderately successful (Buskens, 2002).  

 
These game theoretic studies employ implausibly extreme assumptions about information 

and cognitive capacities. In particular, they assume that actors can anticipate perfectly how 
information about their present behavior spreads through the entire network on the basis of full 
knowledge of all relationships in the network, even those at a great distance from one’s own 
network position. A further problem is the standard assumption of fixed network structures. This 
assumption seems inconsistent with a rational actor perspective that implies that people break 
and make new ties to optimize their positions in the network. Despite the burgeoning literature 
on models of network dynamics in economics (e.g., Jackson, 2004), game theorists have been 
reluctant to tackle analytically the complex dynamics in which agents change both their behavior 
and their relationships simultaneously.  
 
 
3.2.1  Reputation and Network Clustering 
 

ABCM has been used to study reputation systems while addressing two problems: the 
need for more plausible behavioral assumptions and the need to model dynamic networks in 
which agents can change their relations as well as their strategies.  
 

Takahashi (2000) uses an evolutionary model to study the emergence of generalized 
exchange, in which agents give and receive help but not to and from one another directly. 
Takahashi challenges previous studies that assumed either altruism or centralized enforcement of 
the rules of exchange. He then uses an evolutionary model to show that exchange systems can 
self-organize on the basis of norms of generalized reciprocity (giving selectively to those who 
give to third parties). This approach is similar to reputation-based strategies in that players base 
their decision to cooperate on what they know about the target’s previous behavior with regard to 
third parties. However, the approach is different in that this knowledge is based on direct 
observation rather than diffusion of information in a network. 
 
 Takahashi programs agents with two genes. The first gene controls the amount the agent 
gives to others. The second gene controls reciprocity and is based on the recipient’s reputation 
for giving to others. The net benefits from giving and receiving determine each agent’s chances 
for reproduction. Reproduction copies the agent’s genes with a small probability of mutation. 
However, with only two genes, there is no need for recombination, so Takahashi does not use a 
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genetic algorithm. He found that a system of generalized exchange can evolve in a population 
that is initially not generous, when it is assumed that agents have perfect information about the 
past behavior of other agents. Takahashi then relaxes this assumption by positioning agents on a 
two-dimensional grid, restricting their knowledge, interaction, and reproductive competition to 
their close neighborhood. Takahashi uses a so-called Moore neighborhood, in which each agent 
has perfect information about eight potential exchange partners (instead of 19 as in the original 
experiment). Generalized exchange emerges within each of the overlapping neighborhoods, but 
Takahashi did not test to see if generalized exchange could evolve between members of different 
neighborhoods when reputational knowledge remains local.  
 

Castelfranchi et al. (1998) (see also Conte and Castelfranchi, 1995) examine the effect of 
reputations on the deterrence of aggressive behavior on a two-dimensional grid where agents 
compete locally for scarce resources and adaptation operates through evolutionary selection. 
They find that a cooperative strategy can thrive in a homogeneous population but suffers as 
contact with aggressors is increased. However, the aggressor’s advantage is diminished if agents 
can exchange information on the reputations of others. Saam and Harrer (1999) used the same 
model to explore the interaction between normative control and power. They find that systems of 
informal social control can tip toward either greater equality or inequality, depending on the 
extent of inequality at the outset.  
 

More recently, Younger (2004) comes to similar conclusions by using a model that aims 
to mimic food sharing in hunter-gatherer societies. Younger simulates societies that contain both 
sharing (normative) and stealing (aggressive) agents. The author compares regimes with and 
without communication of “normative reputation” in the group. Only sharing agents exchanged 
information on others’ behavior. Younger concludes that communication of reputations 
increased the viability of normative behavior because it enabled potential victims of theft to 
avoid predators and to exclude aggressive agents from sharing networks. While this result is 
generally in line with previous work, the complexity of Younger’s model makes it difficult to 
assess how much it depends on particular combinations of assumptions.  
 
 
3.2.2  Homophily and Social Order 
 

Homophily refers to the tendency for people to interact with similar others, expressed by 
the aphorism “birds of a feather flock together” (McPherson et al., 2001). Homophily increases 
the probability that agents interact with partners who use similar strategies (Cohen et al., 2001). 
This, in turn, promotes the evolution of strategies like TFT that do well when interacting with 
copies of themselves.  
 

Nowak and May (1992, 1993) illustrated in a series of papers how spatial clustering of 
cooperative players can make cooperation viable in a Prisoner’s Dilemma game even when 
interaction is not repeated. In these models, every agent is located in a cell on a two-dimensional 
grid and is either a cooperator or a defector. Agents play one round of Prisoner’s Dilemma with 
one of their neighbors, then they replace their strategy with that of the neighbor that earned the 
highest payoff in their neighborhood. The authors show that spatial clustering of cooperators 
causes defectors to perform poorly because they mostly interact with defectors, while 
cooperators are better off because they interact primarily with cooperative neighbors. The 
analyses also show that cooperation and defection can co-exist permanently in the spatial 
structure. The balance is maintained by the self-limiting logic of both strategies. If too many 
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players cooperate, remaining defectors increasingly benefit from exploitation of their cooperative 
neighbors and begin to replicate more quickly. Conversely, when defection spreads, cooperative 
agents in remaining clusters outperform the defectors in their neighborhood, because the latter 
suffer from mutual punishment with other defectors. This analysis of homophily effects has been 
further extended and confirmed in follow-up studies in which the level of homophilous 
clustering in spatial networks was directly manipulated (Eshel et al., 2000). 
 

Several recent studies also suggest that the viability of cooperation is greatly improved 
when populations can self-organize into locally homogeneous clusters. A series of papers 
elaborates a cultural similarity mechanism that is based on so-called “tag” mechanisms (Holland, 
1993; Hales, 2000; Riolo et al., 2001). Tags are initially arbitrary but observable cues or 
markings, like clothing or ethnic markers. This work studies how tags can sustain cooperation 
between self-interested agents on the basis of the willingness to transfer resources to those with a 
similar tag. As a consequence, the entire group benefits more than nonmembers and thus gets 
reproduced preferentially. While studies of tag-based cooperation suggest an explanation of 
norms of in-group altruism, robustness tests also demonstrate that this result may sensitively 
depend on a combination of very specific details of the replication mechanism and the 
mechanism through which targets of donations are selected (Edmonds and Hales, 2003).  
 
 
3.2.3  Emergent Order in Dynamic Networks  
 

Hegselmann (1996) (cf., Flache and Hegselmann, 1999a,b) addressed cooperation 
problems that occur in dynamic exchange networks, in which actors may change interaction 
partners and in which potential partners differ in their attractiveness as a result of variations in 
their material resource endowments (such as the tendency for firms to establish cooperative 
relationships with partners whose attractiveness reflects their technological resources and status 
within the industry, as observed by Podolny and Page [1998]). On the basis of standard game 
theoretic rationality, Hegselmann assumed that players cooperate conditionally in ongoing 
exchanges if they expect a relationship to last for a sufficient duration and if their partner is 
sufficiently attractive. Hegselmann then used cellular automata to model partner selection. In this 
framework, actors maintain a number of exchange relations simultaneously and can change all or 
at least some of their partners by migration to a new location on the cellular grid. Partner search 
is based on boundedly rational heuristics of myopic optimization, because of the great 
complexity of the decision problem actors face in searching for a partner in a continuously 
evolving network. Under a large range of conditions, a dense network of exchanges with a 
distinct segregation pattern arises, in which actors favor exchange with those who are similar in 
attractiveness. Actors who are most attractive form the core of the network, whereas the least 
attractive individuals are driven to the margin, where they find mainly unattractive members of 
their own kind to exchange with. Broadly, this onionlike pattern resembles the “Matthew 
principle” found in empirical research (Komter, 1996): “The less needy you are, the more likely 
you are to have an attractive exchange partner.” 
 

In a similar vein, Smith and Stevens (1999) model the formation of psychological support 
networks in which agents seek out relationships with others that will help them manage anxiety. 
In their model, agents decide with whom to form relationships through a process of assortative 
mating. The authors find that agents form relationships with partners who are similar to 
themselves in their ability to manage stress, creating homophilous clusters. In needy populations, 
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the support networks that form have stronger attachments but lower transitivity than they do in 
populations with less need for social support.  
 
 
3.3  Emergent Order and Micro-level Assumptions 
 

The previous section surveyed research on the effects of structural conditions on 
emergent cooperation. This section discusses studies that manipulate micro-level behavioral 
assumptions about how agents optimize outcomes (e.g., how agents learn) and the outcomes that 
agents aim to optimize (e.g., whether they optimize payoffs to self or others).  
 
 
3.3.1  Social Learning 
 

In the wake of Axelrod’s seminal study (1984), evolutionary game theory proposed an 
explanation of emergent social order without the need to assume sophisticated cognitive abilities. 
However, critics of evolutionary explanations have pointed out that genetic replication and 
selection may be an equally misleading template for models of adaptation at the cognitive level. 
For example, Chattoe (1998) has raised probing questions about modeling cultural evolution as a 
genetic analog. What is the mechanism that eliminates poor performers from the population and 
allows others to propagate? “Imitation of the fittest” may be more applicable than starvation and 
reproduction, but, unlike survival of the fittest, mimetic selection replicates only observed 
behavior and does not copy the underlying (unobservable) rules. Biological metaphors cover the 
importance of this distinction.  
 
 Concerns about the looseness of the evolutionary metaphor have prompted growing 
interest in relocating the evolutionary selection mechanism from the population level to the 
cognitive level. Reinforcement learning assumes that actors tend to repeat successful actions and 
avoid those that were not. This behaviorist principle was proposed by early adherents of 
methodological individualism (Homans, 1974). Hence, the more successful the strategy, the 
more likely it will be used in the future. This closely parallels the logic of evolutionary selection 
at the population level, in which successful strategies are more likely to be replicated (as a result 
of higher chances to survive and reproduce or greater social influence as a role model). And like 
evolutionary approaches, learning theories also avoid the criticism directed against game 
theoretic solutions based on perfect rationality. However, evolutionary models explore changes 
in the global frequency distribution of strategies across a population. In contrast, learning models 
operate on the local probability distribution of strategies within the repertoire of each individual 
member.  
 

Macy (1996) used genetic algorithms and artificial neural networks to compare the two 
levels of adaptation: individual-level learning and population-level evolution. Like a GA, an 
artificial neural network is a self-programmable device, but instead of using recombinant 
reproduction, it strengthens and weakens neural pathways to discover, through reinforcement 
learning, the optimal response to a given configuration of inputs (like the previous course of the 
game). Consistent with previous findings of Nowak and Sigmund (1993), Macy found that 
evolutionary selection favors, in the long run, backward-looking strategies similar to Win-Stay, 
Lose-Change. However, these strategies fail to emerge when agents have to discover them 
through experience; that is, when selection takes place at the agent level (based on learning) 
rather than the population level (based on evolutionary selection). Even cognitively sophisticated 
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agents have difficulty self-organizing backward-looking cooperation, because the complexity of 
coordination on the right strategy increases exponentially with the size of the strategy space.  
 

Agent models with simple reinforcement learning rules have been used in sociology and 
economics to identify conditions in which cooperation can emerge in social dilemmas (Roth and 
Erev, 1995; Erev and Roth, 1998; Flache and Macy, 2002; Macy and Flache, 2002). Following 
Rapoport and Chammah (1965), Macy (1989, 1990) used a Bush-Mosteller stochastic learning 
model of cooperation in Prisoner’s Dilemma based on reinforcement learning. Macy identified 
how reinforcement learning can lead agents into a self-reinforcing equilibrium of mutual 
cooperation. This equilibrium results when a combination of strategies yields payoffs that, for all 
participants, at least match their aspirations. This includes the possibility that both players 
receive less than their optimal payoff (such as the payoff for mutual cooperation in the Prisoner’s 
Dilemma game). Suppose two players in Prisoner’s Dilemma are each satisfied only when the 
partner cooperates, and each starts out with zero probability of cooperation. They are both certain 
to defect, which then causes both probabilities to increase (as an avoidance response). 
Computational experiments showed how this allows the players to escape the social trap through 
a chance sequence of bilateral moves. Macy (1990) showed that this principle of “stochastic 
collusion” generalizes from repeated dyadic to N-person Prisoner’s Dilemma games. These 
extensions also reveal that stochastic collusion depends on conditions that limit the complexity 
of the coordination problem. These conditions include (1) a high learning rate that limits the 
number of coordinated bilateral moves needed for players to “lock in” mutual cooperation, (2) a 
relatively small number of partners whose moves need to be coordinated (Macy, 1990), and 
(3) small-world networks (Watts, 1999) that minimize the average number of partners for each 
player yet still permit locally successful strategies to propagate. 
 

Subsequent studies showed that Macy’s findings for Prisoner’s Dilemma generalize to a 
larger class of social dilemma games (Macy and Flache, 2002). These studies also highlighted 
actors’ aspiration levels as a decisive condition for self-reinforcing cooperation. With a low 
aspiration level, learning actors settle too readily for outcomes with a low level of cooperation. If 
aspirations are too high, the reward for mutual cooperation may be too weak to sustain a self-
reinforcing equilibrium. In further research, Flache and Macy (2002) integrated two different 
specifications of the basic model of reinforcement learning: the Bush-Mosteller stochastic 
learning algorithm and the payoff-matching model of Roth and Erev (1995) that has recently 
received considerable attention in economics and game theory (cf., Erev and Roth, 1998). 
Computational experiments indicated that both specifications of reinforcement learning can 
generate cooperation through stochastic collusion. However, in the Roth-Erev mechanism, 
cooperation does not suffer nearly as much from high aspirations as it does in the Bush-Mosteller 
mechanism, but it suffers from low aspirations much more. 
 
 
3.3.2  Individual Preferences 
 

ABCM has revealed a possible flaw in the conventional wisdom inherited from classical 
authors, from Durkheim to Adam Smith, that altruistic moral sentiments entail higher levels of 
cooperation. Following Taylor (1987), altruism is specified as a utility function that takes into 
account the payoffs to oneself as well as those that accrue to one’s exchange partners. The 
Flache and Hegselmann (1999a) model of social support in an evolving network (see above) 
confirmed the conventional wisdom, but only to a point. 
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Consistent with previous studies, Flache and Hegselmann found that mutual support can 
arise on the basis of reciprocity between pure egoists. Also unsurprisingly, the experiments 
suggest that higher levels of altruism foster cooperation in social support relationships, because 
moderate altruistic sentiments increase the subjective gains that agents attain from mutual 
cooperation, and thus they compensate for the instrumental costs of support by altruistic benefits. 
However, the surprising result was that too much altruism can also reduce social support, when it 
pushes highly compassionate but needy members into mutual support relationships that would be 
avoided by their more egoistic counterparts. Given constraints on the number of simultaneous 
exchange relationships, these needy altruists crowd out stronger partners whose resources for 
providing support are then not optimally allocated to those who need them most. 
 

Jaffe (2002) likewise uses ABCM to test explanations of social order based on altruism. 
He asks whether and under what conditions society would be better off in aggregate economic 
terms, if altruism were more widely practiced among its members. Jaffe builds an agent-based 
model of a simple agricultural society. His model explores different types of conflicts between 
individual members and the group, by varying the degree to which altruistic acts benefit the 
recipient and harm the altruist. In computational experiments, the possible benefit of altruism on 
the aggregate wealth of society was assessed by comparing the overall efficiency of the system 
in accumulating aggregate utility in populations of altruistic agents, and with equivalent systems 
where no altruistic acts were allowed. The author concludes that there is no simple situation 
where altruistic behavior is beneficial to the group, and that in pure economic terms, altruism can 
even lower society’s level of aggregate wealth. Altruism was only efficient in terms of aggregate 
utility when altruistic acts were “synergistic” (i.e., increased the economic utility received by the 
beneficiary and thus his ability to make donations to himself in the future).  
 

In sum, agent-based models are a useful tool with which to explore the sensitivity of 
macrosocial outcomes to behavioral assumptions, such as bounded rationality or individual risk 
preferences (Flache, 2001). They can also be used to demonstrate robustness. A prominent 
example is Olson’s (1965) prediction that collective action declines with group size. 
Computational models showed that this effect of group size also holds for backward-looking 
learning actors (Macy, 1990) and for the forward-looking actors assumed in orthodox game 
theoretic analyses (Raub, 1988).  
 
 

4  METHODOLOGICAL PRINCIPLES 
 

ABCM searches for microsocial causal mechanisms that may underlie macro regularities. 
One advantage of this approach is that model specification is not restricted by the requirements 
of analytical solutions for system dynamics. At the same time, this is also a potential weakness, 
because researchers may be tempted to create models that are too complex to be understood 
independently from their particular implementation. Nothing is gained by modeling when 
explaining the dynamics of the model is as difficult as explaining the empirical phenomena 
addressed. The following set of methodological principles should avoid this problem. 
 

Start from a well-specified problem and theory. Computational experiments in virtual 
worlds provide a rigorous methodology for studying the effects of different micro foundations on 
macro dynamics. Following Colemans’s (1990) advice, agent modeling should be guided by the 
goal of predicting or explaining observable relationships between well-specified macro 
phenomena, such as the relationship between relational stability and cooperation in exchange 
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relationships. With such an approach, the research problem is clearly defined, and a natural link 
to empirical applications is given. However, the main task is theoretical: to find out how 
predictions may change across different sets of assumptions. Sawyers’ advice (Conte et al., 
2001) that prior sociological theorizing on empirical relationships serves as a useful starting 
point is good, because it provides observations and substantive ideas about underlying social 
mechanisms. The more clearly specified these ideas are, the more useful they can be as a 
guideline for subsequent ABC model building.  
 

The prescription to start from existing sociological theory contrasts with the method 
advocated by some agent modelers who start not from theory but from detailed, formalized 
descriptions of an observed phenomenon (cf., Conte et al., 2001) and then search for a model that 
can generate this empirical pattern. Such an approach is misguided for two reasons. First, there is 
likely to be an indefinitely large number of models that can generate any given set of 
observational data. “Growing” the pattern shows that an explanation is possible but does not tell 
much more than that. Second, even if only one model can generate the empirical pattern, the 
mechanism that is responsible is still unknown. This problem becomes especially acute as the 
complexity of the model increases. And the model is likely to become complex as new 
assumptions are added to allow the model to better fit the empirical data.  

 
Start it simple. Some agent modelers might regard the models reviewed here as being 

overly simplistic in their micro-level assumptions and prefer instead much more elaborate 
models of human cognitive processes (Conte et al., 2001), with situationally changing modes of 
cognition, such as repetition, imitation, deliberation, and social comparison (Jager et al., 2000). 
Pressure to make models more realistic (and agents more cognitively sophisticated) is misguided 
if models become so complex that they are as difficult to interpret as natural phenomena. When 
researchers must resort to higher order statistical methods to tease apart the underlying causal 
processes, the value of the experimental methods is largely undermined. Analysis of very simple 
and unrealistic models can reveal new theoretical ideas that have broad applicability, beyond the 
stylized models that produced them. Models should start out simple, and complications should be 
added one at a time, making sure that the dynamics are fully understood before proceeding. 
 

Experiment, don’t just explore. Agent-based modeling is an experimental tool for 
theoretical research. While important discoveries can be made by open-ended exploration of 
theoretical possibilities, researchers need to resist the temptation to become freewheeling 
adventurers in artificial worlds. Careful, systematic mapping of a parameter space may be less 
engaging, but it makes for better science. This requires theoretically motivated manipulation of 
parameters, based on careful review of current theoretical and empirical knowledge, and a clear 
statement of the hypotheses that guided the experimental design.  
 

Test robustness. Although simulation designs should use experimental rather than post 
hoc statistical controls to identify underlying causal processes, that does not mean researchers 
should avoid statistical analysis of the results. On the contrary, agent-based models, especially 
those that include stochastic algorithms, require replications that demonstrate the stability of the 
results. Where possible, replications should include variation in parameters that are theoretically 
arbitrary or of secondary interest. Researchers should then be careful to distinguish between 
experimental manipulations, where results are expected to change with the parameters, and 
robustness tests (or sensitivity analyses), where they are not (cf., Saam, 1999; Chattoe et al., 
2000).  
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Replicate results independently. Testing model implications empirically is only 
meaningful when modelers are reasonably certain that they validated the model (i.e., they know 
that they have implemented the theoretical assumptions that were intended). Edmonds and Hales 
(2003) point to a fundamental problem for the validation of computational models that can be 
implemented in different ways. The authors propose to replicate models by at least two 
independent implementations. In an instructive example, they show that their re-implementations 
of the Riolo et al. (2001) model of tag-based cooperation first revealed subtle differences 
between their results and those originally published. Subsequently, they could show how these 
differences could be explained by using a specific version of a reproduction mechanism that was 
consistent with the published original model description. However, it turned out that in this new 
version of the model, the conditions under which tag-based cooperation was viable were much 
more restrictive than claimed by Riolo and his coauthors. 
 

Compare and align models theoretically. Model replication helps to validate that an 
implementation represents the intended model. Model alignment (Axtell et al., 1996) aims at 
close comparison of different competing models of the same phenomenon. In model alignment, 
the goal is to identify the assumptions that cause differences in model behavior and separate 
them from model differences that are inessential for the results. Ideally, model alignment can 
lead to theoretical integration of competing designs as special cases of a more general model. For 
example, we showed above how Flache and Macy (2002) aligned and integrated the Bush-
Mosteller and the Roth-Erev implementations of stochastic learning. Clearly, for models of 
multi-agent dynamics, such analytical model alignment may not always be feasible. However, 
we argue that nevertheless, different conceptual models of the same phenomenon should be 
carefully compared with computational experiments to assess model robustness and identify the 
model features that are most important for differences in model results. Once these are found, 
researchers can abstract with more confidence from model details that have little effect on 
results.  
 

Test external validity. Virtual experiments test the internal validity of a theory, without 
which there is no need to test the external validity. However, this does not mean there is never 
such a need. ABCM is often used to grow familiar macrosocial patterns, as a way of identifying 
possible causal mechanisms (Epstein and Axtell, 1996). When this succeeds, researchers need to 
think about ways these mechanisms can be operationalized and tested in the laboratory or in 
natural conditions. An instructive example for such an approach can be found in a study by 
Mosler and Brucks (2003), which proposes a model of cooperative behavior in the exploitation 
of limited environmental resources. The authors move beyond previous work by integrating, in 
their individual-level model, cost-benefit-driven considerations of the ecological consequences 
of harvesting decisions with social-comparison-based normative evaluations of decision 
consequences. The authors then systematically match the parameters of their model to conditions 
manipulated in previous laboratory experiments with commons dilemmas. They argue that their 
model can replicate a large number of known empirical relationships. 
 
 

5  CONCLUSION 
 
 This survey of ABCM compared analytical and computational studies of emergent social 
order. This focus entailed neglecting other applications that are equally important and 
compelling, and these oversights should not be taken to suggest otherwise. In particular, 
modeling tools for the support of policy design were neglected. Examples include agent-based 
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computational models that predict large-scale traffic dynamics (Balmer et al., 2004) and the 
dynamics of natural resource utilization and conversation in a riverbed (Doran, 2001). These 
models resemble “microsimulations” that emerged in the 1970s (cf., Orcutt et al., 1986) in their 
use of observational data about individuals to forecast the state of the population. However, these 
studies move beyond traditional microsimulation by explicitly modeling individual decision 
makers as autonomous agents who actively pursue their own agendas and react to changes in 
their environment brought about by other agents. While this work can eventually be very useful 
for informing policy decisions, there is a concern (Doran, 2001) that the great complexity of 
these models makes it hard to appropriately test and verify them.  
 

ABCM is a powerful new technique for theory development guided by methodological 
individualism. The technique combines the rigor of formal model building with behavioral 
complexity that would not be possible with orthodox rational choice theory or game theory. 
Agent-based computational models provide an ideal testbed for deriving testable implications for 
macrosocial dynamics of behavioral principles, such as social rationality (Lindenberg, 2001) and 
“fast and frugal” decision heuristics (Todd and Gigerenzer, 2003). At the same time, these tools 
can also be used to perform computational experiments that test the effects of structural 
conditions, such as network structure. With the adoption of a standard methodology, ABCM will 
lead to significant advances in the bottom-up approach to the study of social life. 
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DISCUSSION: 
 

COMPUTATIONAL SOCIAL THEORY 
 

(Invited Speaker, Friday, October 8, 2004 - 8:45 to 9:45 a.m.) 
 

Chair and Discussant:  D. Zhao, The University of Chicago 
 
 
Social Life from the Bottom Up: Agent Modeling and the New Sociology 
 

Charles Macal:  Our next invited speaker, Michael Macy, is from Cornell University. 
He’s particularly well known in the fields of social simulation, social networks, social processes, 
modeling, and similar subjects. Our chair and discussant for this session is D. Zhao. Here’s 
Michael. 

 
Michael Macy:  Thank you very much. It’s a pleasure to be here. I want to thank the 

people who put this conference together and created this opportunity. 
 
Let me ask you to consider a flock of birds — of geese, perhaps — flying in tight 

formation. Collectively, they form the image of a single delta-shaped bird that moves as 
purposely as if it were a single organism. This idea of a flock and the motion of a flock may give 
us some insight into group processes among humans. 

 
[Presentation] 

 
D. Zhao:  It’s a very nice talk, but, I must say, the paper is even better. I was invited by 

David [Sallach] to discuss this paper. The first time I heard about agent-based models, I was 
introduced to them by David, but I never had a chance to read what exactly they are. After 
reading Macy’s paper and listening to his talk, I feel I know what they are. My understanding 
may be wrong, so I really want to discuss these models — to view them from all sides and see 
their extent. 

 
In my misunderstanding last year, I believed an agent-based model was something 

between an analytical model and a simulation model. An analytical model is really an analytic 
simulation model that simulates reality. Now I understand that the agent-based model is a type of 
analytical model. 

 
Before I listened to the talks, I struggled to determine the difference between an agent-

based model and a game theoretical model. Now I see that the agent-based model originates from 
the game theoretical model. It still is, by and large, a game theoretical model, but it is different in 
that it loosens the assumption about human models. The game theoretical model assumes 
humans make rational choices. 

 
So game theoretical models can play around with structures, where the information may 

or may not be perfect, or the chain of interaction may last so that cooperation becomes possible, 
or the number of people may be large so that cooperation becomes less likely, and so on. But 
they are not able to play around with the assumption about human beings. The agent-based 
models are much more flexible; human behavioral mechanisms and decision-making 
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mechanisms are all embedded into the models. These models are much more complex and can 
explore many more things. They are still analytical models and because they are, I agree with 
Macy’s comments, suggestions, and recommendations on the heart test model, bone test model, 
empirical cases, especially the cases where there was reformation — that ‘98 movement, the rise 
of the French Revolution, and so on. You test by conducting an experiment in nature, a test in a 
laboratory experiment, or a test by the logic itself. 

 
When you test in a laboratory experiment, it is hard to judge the importance of this 

model. There are so many different and interesting models like it, and some models are better 
than others. How do you judge which is the better model? 

 
I think that you should judge by using examples to see how the model’s base logic can 

capture the wide spectrum. Nevertheless, the real world does not actually work that way. That’s 
why I think Michael’s model and “tit-for-tat” models and past models, such as “free ride,” are 
interesting. Our society has so many mechanisms that work against getting a free ride. Any 
complex mechanism would fully expose itself. On the other hand, if you design a society in a 
certain way, like communism, and if everybody is paid less, it works. On the other hand, the 
entire evolution of protest in human society is that you’re always against the free ride — 
different organizational mechanisms. So the importance of the free ride province is that it 
captures so many things; nevertheless, it predicts nothing. So it’s important like the emperor’s 
new clothes. I think it’s an excellent model; it captures so many different things. It’s a crucially 
important model. But once you use this model to predict, actually, what … the clash of 
communism … it is the earth … it is because of the emperor’s new clothes. That’s completely 
wrong. I know there are some people who do it. The Marxism movement in China is because of 
the emperor’s new clothes. Suddenly people just have opinions, not choice. 

 
On the other hand, did this mechanism somehow work there? And where did this 

mechanism work, such as in a particular case, like working is more important in Germany than in 
China. Maybe it is. So the importance is that it gives illustrative examples that provide insight, 
but it should never be used to predict a new situation. Once you predict a new situation, many go 
to one problem. For example, I do most of the ethnographics, but there are so many people built 
around different game theoretical models and different agent-based models to try to predict 
movement. 

 
I tried different scenarios to predict why the Chinese student and the Chinese government 

eventually crashed into each other. They had different information, or they could not come close 
or did not have trust (even though the information comes close), or two sides had different 
behavior patterns. So it is important for the test to use a good example. The model should be 
judged not by how well it can predict empirical reality but by the importance of its assumption 
— by how much this assumption can capture a wide spectrum of phenomena so that you can use 
a wide spectrum of illustrative examples. 

 
So what is the biggest challenge? I think it is — because Macy claims this kind of 

competition — macro-sociology. Also, it’s a real approach from methodological individualism. 
 
So if you really want to use this approach of individualism, you should be looking at the 

hard chance of a human agent with behavior that can change the outcome. But with the 
emperor’s new clothes model, in the end you can change networks. You change it once you have 
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a particular kind of phenomenon. Then what you really proved is that its structure worked. You 
should really work harder, which I think you can. That’s the first thing I would suggest to you. 

 
Another thing on which to base the largest challenge is that to be in competition with 

macro-sociology, which is, not like what I see, competition of micro- and the meso-sociology, is 
to extend the model to predict the rise of stratification and rise of the state. That’s crucial because 
my understanding of human evolution is that it is not only evolution but also devolution. That’s 
why society can last so long:  all people want the collective power that is produced by society, 
but no people like distributed power. Once you have a society, you have a stratification system:  
some people get more, some people less — so people get a free ride. That’s why it lasts so long; 
it’s devolution. 

 
So, the key in most models, in essentially all models, is that you have rise orders:  rise of 

cooperation, rise of what I call the rank society, not a stratified society. So also, of course, it’s 
still useful to predict, analyze, simulate, stratify society. You presume that the other stratified 
society … [inaudible]. What’s going on? Actually, there’s no rupture that I can see. The rupture 
[comes from] the rise of stratification, of civilization, of states, and the rise of more complex 
problems. So that is a way to work: basically make the model and make the human agents more 
evenly flexible to make sure it’s more like individualism. Another is that to simulate this, it took 
not just the rise or the rank of societies, but the stratification of societies, the rise of stratified 
society. Those are my two recommendations. 

 
It’s excellent work. I’m not completely without any background on simulation and 

modeling. When I was an entomologist (not a sociologist at that time), I did some simulation 
modeling, but all on differential models — completely different. So I have experience. Thanks 
for giving me this opportunity. 

 
Macal:  Thank you very much. It’s our tradition to open the floor up for discussion and 

questions. We’ll have about 15 minutes for that.  
 
John Sullivan:  John Sullivan, Ford Motor Company. By way of comment, you were 

expressing the desire to see more work in which you compare modeling results with laboratory 
experiments. As a matter of fact, that’s already started. Economists Duffy and Brown have 
looked at the emergence of fiat currencies. Prior to their work came that of Keshi and Wright. So 
at least that work was starting. 

 
Elenna Dugundji:  Elenna Dugundji from the University of Amsterdam. I have what 

may be a controversial or devil’s advocate point. It’s about your eighth commandment, which 
was about truth and simplicity. In my opinion, it would be better to modify this slightly, and 
rather than saying that there’s truth in simplicity, if it’s in commandment form, you should begin 
with simplicity and not end with simplicity. The reason for this is that if you just say just truth 
and simplicity and leave it at that, it can be misinterpreted if it’s in commandment form because, 
for example, deterministic behavior by itself is simplicity, and it’s adding stochasticity that gives 
interesting results. 

 
Simplicity could be seen as global interaction structure, yet it’s the local interaction 

structure that gives interesting results. These cases of going from global to local and from 
deterministic to stochastic are actually not simplistic. Instead, the cases are becoming more 
complicated but interesting. 
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To continue a bit more, if you stay with very simple cases, you can get equilibria that do 
not exist in real society. So you think that you found a great result, but since this simplistic thing 
never really exists in real society, of what use is it? It’s the same kind of thing that was 
mentioned in the general game theory discussion, where you might get an equilibrium that is 
predicted, but you don’t know how often it occurs, or how long it takes to get there, or this kind 
of thing. So that’s why if I were to restate this, I would say begin with simplicity, so that you 
have a guideline, but then ask (I think this is what the commenter said) how much can 
assumptions capture. I think that’s a very good thought because if you begin with simplicity and 
then think you have some robust truth, it’s very important to make small modifications to that in 
different directions to see how robust that truth is. You do not want to promote a “great 
simplistic truth” that’s just meaningless for real life. So my point is to begin with simplicity and 
then test it. 

 
Macy:  I agree entirely with what you said, and I admire how much better you said it 

than I could have. Indeed, I was thinking precisely those thoughts as I was planning the slides 
and realizing I wasn’t capturing the nuance that you did — and I guessed that somebody would 
point this out to me. How can you say simplicity and stochasticity in the same set of 
commandments? You’re absolutely right. 

 
In the paper, we actually modified the military KISS principle, which says, “Keep it 

simple, son,” or “Keep it simple, stupid.” We changed it to the SIS principle, which is “Start it 
simple.” Then you add complications only as you fully understand the model that you have so 
far. And you add only those complications that are theoretically motivated. You resist the urge to 
be realistic just for realism’s sake. That’s really the spirit of that eighth commandment, and it’s 
always dangerous to write these things as commandments because it does obscure the very 
important point that you’re raising. 

 
Kostas Alexandridis:  Kostas Alexandridis, Purdue University. I’m not a social scientist. 

I think that many of us are involved in the natural sciences and are looking at cognitive domains, 
since we appreciate a little bit more the complexity that is associated with real-world 
phenomena. I’d like to think that starting from the complexity of the real world and trying to 
have simplicity emerge has value in itself. So, if we take the opposite direction to agent-based 
modeling, how do you propose that we bridge the gap with scientists who are involved in agent-
based modeling? 

 
Macy:  Well, I don’t know that I have any of those ultimate epistemological answers. At 

some point, the results of the computational laboratory experiments need to somehow be 
articulated along with what we observe in the world. 

 
The approach that I’ve taken is to start with empirically established global patterns that 

are well established and well documented but poorly understood or puzzling, then try to 
understand them and identify the mechanisms that might produce them. We may not necessarily 
have the right ones, but I don’t have a program for ultimately integrating with natural science, 
any more than game theorists do. I think in 40 years of game theory, there’s no real clear 
program for how you then take the theory and use it to make real-world predictions in a way that 
really tests the games. People do it all the time, but I haven’t seen it systematically established at 
the level of a rigorous epistemology. 
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Peter Hedstrom:  Peter Hedstrom, Nuffield College, Oxford. In anticipation of one of 
my main points in my talk tomorrow morning, I must say that I’m not entirely convinced about 
your argument that we should avoid entering this — I don’t remember how you expressed it — 
“confusion” of the real world. I think that [it involves] making a distinction between two 
different types of tests. I mean, on the one hand, we want to test whether a specific mechanism 
operates as we assume that it does. In most of these cases, of course, the laboratory experiment is 
the preferred strategy, but there is another and equally important test. There are two types of test. 
One is a test of whether a mechanism that we are using operates as it should. A laboratory 
experiment seems to be the choice of method. The other type of test is to see whether the 
proposed mechanism actually contributes to explaining the specific empirical pattern that we 
wish to explain. That is where I have difficulty in seeing how one could avoid the confusion of 
empirical reality. Somehow, we must be able to demonstrate the relevance and importance of our 
preferred mechanism for the specific thing that we want to explain. Somehow, we must also take 
alternative explanations into account because, for example, there are lots of different models that 
can generate exactly the same aggregate patterns. So the fact that our preferred model generates 
the pattern that we want to explain is not necessarily, in and of itself, such a strong argument in 
its support. 

 
Macy:  Computational experiments are very similar to mathematical proofs. Such 

mathematical proofs are extremely useful, yet you do not have to immediately test them in the 
empirical world in order to recognize the knowledge that’s generated by that deductive process. 
These are not deductive proofs, and they lack generalizability, but they nevertheless allow us to 
investigate dynamics that we couldn’t necessarily do by using deductive methods. 

 
That’s why I see the need for controlled experiments. I’ll certainly grant you this: any 

time I can do a controlled experiment in the field, I would always prefer that over doing it in the 
laboratory. There are tremendous advantages to doing controlled experiments in the field, but 
they’re very hard to do. There are also situations where using data collected from the field is 
absolutely in order. What I worry about, though, is a kind of fetish that says that we have to show 
that our model explains a particular historical occurrence. If we don’t do that, then there’s no 
value in it. I’m suggesting that we adopt the empirical orientation that has developed and served 
game theory very well. The approach that game theorists have taken to the relationship between 
theory and testing is an appropriate model for agent modeling. 

 
Claudio Cioffi-Revilla:  Claudio Cioffi, George Mason. Michael, I thank you for a really 

stimulating presentation, and I hope the 10 commandments are published in AJS. 
 
Macy:  Maybe someday. 
 
Cioffi-Revilla:  I wanted to ask you about that very important distinction that you drew 

in computational social science between demonstration and experimentation in the use of agent 
models. It’s a very important and very insightful distinction. The question is this. What thought 
have you given to the problem that arises in the context of experimentation with agent models? 
We want to have a minimally complex model in which to conduct experiments, manipulate 
conditions, and so forth. We don’t want to make it too complicated because reality will begin to 
obfuscate the matters that we’re looking at. You mention the Schelling check port city model. 
You don’t want the roads, pollution, and all that other stuff because they’re perhaps irrelevant to 
study in the segregation dynamics. On the other hand, the model can’t be too simple because it 
won’t produce sufficiently rich behavior. 
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Clearly, there is a spectrum of complexity for the experimental model, and the criteria for 
designing the model at the proper level are tricky, unclear, and sometimes very difficult to find 
out. Have you given some thought to this? For example, in your model of the emperor’s 
dilemma, what made you stop at that level of construction as opposed to proceeding on to 
implement multiplexes and other features of that artificial world that you could have thrown in, 
but didn’t? You left out those other features — lots of them, infinitely many, perhaps. Can you 
say something? You must have thought about this. 

 
Macy:  The person from University of Amsterdam — what is your name? 
 
Dugundji:  Elenna Dugundji. 
 
Macy:  We actually used the method that Elenna was articulating. We started out with 

regular grids and only later added irregular ones. We started out deterministically and added 
stochasticity. So the model actually did become more complicated, not necessarily more 
complex, but more complicated as we understood it. 

 
I have nothing against enriching the models. I don’t mean to suggest that. There are two 

points I want to make. We should not suppose that we cannot find enormously important 
explanations — indeed, perhaps even lawful regularities of social life — that will be 
breathtakingly simple. We should not rule that possibility out. Such explanations are all over the 
place. I’m just urging that we resist the pressure from people to make these very complicated 
models. 

 
I get very frustrated when I find agent models in which they have thrown in everything 

because some colleague said that you need to add this or you need to add that. Then I examine 
the thing and I can’t make heads or tails of it. That’s all I mean to say; I don’t mean to endorse 
not adding complications through a systematic program. 

 
I think we should really study the history of game theory and examine how that body of 

work has unfolded. We can learn a lot from what is a very successful program. It’s now very 
well integrated with laboratory experiments. Wonderful breakthroughs are happening now by 
people who are having games played in the lab, people have been doing this for 40 years. Agent 
modelers need to take a very careful look at that progress and see what we can learn from them. 

 
Robert Reynolds:  Bob Reynolds, Wayne State University, Computer Science, and 

Museum of Anthropology, University of Michigan. I was thinking of another commandment. 
Models can also be viewed as learning devices or vehicles, and you could treat them as you 
would a student. For example, in education, they have a philosophy called scaffolding, where 
you touch the student in deterministic or controlled situations, then you gradually relax those 
controls and let the models sort of organize themselves. That systematic approach you talked 
about might, in fact, relate to this notion of gradually relaxing constraints. For instance, consider 
the example of the emperor’s new clothes, where the agents were allowed to rethink their own 
diagrams and to adjust the grid on their own to perhaps get a closer approximation to equilibrium 
— to a network that would allow equilibrium to be reached and kept. This notion of viewing the 
agents as learning devices and treating them almost as students, allowing them to go on their 
own gradually, is certainly a way I do things. 
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Macy:  Yes, I think that’s a great idea. I’d love to see a special issue of JASSS. Maybe 
there already has been one on agent modeling in the classroom and ways of teaching. Does 
anybody know? Has Nigel [Gilbert] done this? I think we need to pay careful attention to them, 
because they are marvelous teaching tools, and I use them in undergraduate courses. 

 
William Lawless:  Bill Lawless, Paine College. First of all, I admire how quickly you 

went through all that material. I hope that I can do that as quickly in my paper. But it left some 
questions. First, you said imitation of the fittest is false. Is that correct? There’s an article in 
Science this year on public information that seems to contradict that. You might want to follow 
up on that. I think overall it’s a nice demonstration of flock behavior. I agree with you about lab 
experiments very strongly. I disagreed when you said you don’t need field experiments, but then 
you seemed to correct that. I think you do need to have field experiments. But, more important, 
I think the field of agent-based modeling will suffer until we can actually solve a problem that 
has not been solved. Although it’s nice to be able to show how norms (even bad norms) flow or 
stay, we’ve got to do more than that. At this stage, it’s really good, but we’ve got to go beyond 
that. 

 
Macy:  I agree, and thank you for the citation. I’ll look that up. I’ve actually challenged 

my graduate students to find a way to solve this problem of imitation of the fittest. I haven’t seen 
anybody do it, so I look forward to looking at that. 

 
Macal:  Thank you for the questions. Thanks very much to Michael Macy for an 

extremely stimulating thought, and thank you very much. And thanks to our chair and discussant 
for some valuable insights and comments. We’re going to take a 15-minute break. Then 
David Sallach will give an overview of computational social theory, which will be followed by 
the various sessions of the day. 
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CHALLENGES IN COMPUTATIONAL SOCIAL THEORY 
 

D.L. SALLACH,* Argonne National Laboratory, Argonne, IL, 
and The University of Chicago, Chicago, IL 

 
 

ABSTRACT 
 

To fulfill their potential, the computational and social sciences need to work together to 
create heretofore unprecedented types of models. This paper outlines current challenges 
and suggests ways that computational models can become more effective in modeling 
social interactions.   
 
Keywords: Abstraction, ontology, generative models, meaning orientation, situated 
agents 

 
 

INTRODUCTION 
 
 By way of introducing the Computational Social Theory track at Agent 2004, I would 
like to discuss seven challenges facing computational social science (CSS). They represent issues 
facing the subdiscipline that must be addressed in order for CSS to realize its potential: 
 

• Navigation of strong policy trade-offs; 
 

• Generation of patterns from abstraction; 
 

• Construction of formal organization; 
 

• Prospective ontologies; 
 

• Orientation by endogenous meaning; 
 

• Social entities: contingent, contested, and emergent; and 
 

• Critical social tests. 
 
Each of these issues and their interactions are discussed below. 
 
 

NAVIGATION OF STRONG POLICY TRADE-OFFS 
 

Societal priorities in an area of research create scientific opportunities. Where society and 
its primary institutions have an interest, concern, and, therefore, funding, an opportunity for 
progress is created. Areas that exemplify such concerns to varying extents are health, war and 
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peace, ecological sustainability, homeland security, and the possible emergence of an integrated 
global civilization. 

 
Such issues, however, may not yet be well-framed from a (social) scientific perspective. 

In this situation, societal interest may also create a demand for early solutions, while the models’ 
prerequisites for understanding and addressing the issues have yet to emerge. Under such 
circumstances, the opportunities arising from institutional priorities may be offset by unrealistic 
expectations. The potential for putative near-term solutions may be exaggerated. When such 
projects disappoint, the entire field may suffer, including potentially more realistic strategies that 
seek to establish a foundation in basic (social) science. 
 

Naturally occurring social issues are inherently complex. Demographic, economic, 
political, cultural, and microsocial interaction interleave, making it difficult to control the 
richness of particular phenomena by using a strategy of isolation from remote or extraneous 
sources of complexity. Thus, all situated social issues are inescapably high-dimensional. Simple 
models can be helpful in producing insight, but the study of actual problems must confront the 
interaction of complexities. 

 
At this point, it would seem the strategy most likely to be effective in modeling the 

interaction of complex processes is through identifying relevant and effective abstractions, from 
which complexity and complex interactions can be generated.1 The underlying process can be 
understood through the abstractions (i.e., theory), and the effectiveness of the abstractions can be 
assessed relative to the complex patterns that they generate. When abstraction is effective, theory 
can drive and focus experimentation. 
 

How can such abstractions be best identified? Computational modeling has a critical role 
to play, one previously unavailable to the social sciences, by providing a means of complexity 
generation through social simulation. Compelling insight into the nature of social theory will 
doubtlessly contribute to the process, but it seems clear that computational experiments will play 
a vital role in identifying and comprehending the sources of social dynamics. 
 

Addressing strong policy concerns will necessarily require advances in the social (and/or 
complexity) sciences. Simple models can provide valuable insights, but policy-relevant models 
will require effective abstractions from which to generate patterns of social complexity. Strong 
social interests may result in the provision of resources that can support advances in the 
computational social processes, but they may also result in demands for near-term but ultimately 
ineffective strategies. Assuming the present interpretation is accurate, clarity concerning the need 
to generate social complexity from effective abstractions is the best protection against unrealistic 
shortcuts. 
 
 

GENERATION OF PATTERNS FROM ABSTRACTION 
 

The generation of social dynamics has the potential to provide a wealth of empirical 
detail. As a result, abstraction can be a key path to theoretical progress. Generative models, 
however, require that effective abstractions be identified. Progress in the complex sciences is 
likely to require a reconceptualization of underlying ontologies.  
                                                 
1  For a line of technical research that might support this substantive effort, see Czarnecki and Eisenecker (2000). 



315 

Several natural sciences in the twentieth century provide dramatic examples of such 
ontological reorganization, specifically around the concepts of quantum, gene, and tectonic plate 
and the process by which they came into being. The implication for CSS is that social theory is 
currently fragmented and may be organized around various folk concepts that have yet to be 
identified as such. It is also possible that methodological individualism has tended to limit the 
nature and types of social interaction within models. These and related topics are naturally the 
focus of computational experimentation. 
 

To frame the issue of complexity generation from theoretical abstraction more concretely, 
consider the role of networks in social phenomena. In recent years, this has been an area of 
active and productive research that has helped frame processes like infection, imitation, and 
diffusion. The network structures and patterns under investigation are generated by mathematical 
models and algorithms. However, the mapping to social networks is, as yet, limited.  
 

Algorithmically generated networks are determinate and/or structural in nature. However, 
social categories with a particular name or structure (e.g., between cousins or neighbors) do not 
necessarily manifest the same effects. Cousins may be the same gender or not, age-near or age-
far, raised in close or remote contact, raised as friends or not, and so on; the details of variegated 
human relationships are endless. A reified network structure, however generated, cannot capture 
the richness and variability of human social relationships. Thus, despite all the recent progress in 
modeling social networks, it also appears to remain an area where experimentation in alternate 
abstractions has the potential to make important conceptual contributions. 
 
 

CONSTRUCTION OF FORMAL ORGANIZATION 
 

The problem of moving beyond reified organizational structures is compellingly 
addressed by Stinchcombe (2001). Specifically, he explores how formal organizations form and 
operate within fields of informal social interaction. He documents this process in a range of 
diverse domains, including: 
 

• Construction blueprints, 
 

• Civil law and procedures, 
 

• Commodification and liquidification of residential mortgage pools, 
 

• Classification of aliens at border crossings, and 
 

• Stratification of scientific knowledge.  
 

Formalisms applicable in each domain give rise to distinct abstractions. The application 
of formalisms requires officials, agencies, and other participants to distinguish, reason, and 
negotiate about the pertinence of situations and rules. 
 

The construction of formal organization involves participants in a process of defining, 
invoking, and using selected abstractions. While formality is a structured arrangement of 
discourse that preserves essential informal accomplishments, the functioning of formal 
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organization inevitably goes behind the formalities, where informality serves, inter alia, as loose 
joints among various types of formality.  
 

Participants continually define, utilize, mediate, challenge, accept, modify, and/or reject 
formalities that they, and others, introduce. Each such negotiation is open-ended and occurs 
through direct social interaction. Alternately stated, unmediated social interaction provides the 
enveloping context in, by, and for which formality is created, invoked, focused, and employed. 
 
 This interpretive process applies not only to the process of creating and using formal 
organizations, it permeates all social life. From the modeling perspective, however, a key issue 
remains: what theories and/or ontological structures will best help us handle the dynamic 
processes that Stinchcombe describes? It is to this question that we now turn. 
 
 

PROSPECTIVE ONTOLOGIES 
 
 It is beyond the scope of the present paper to fully consider and assess prospective 
theoretical frameworks, and how they may be applicable, at various orders of abstraction. It is 
sufficient to suggest a range of possible theories with the potential to play a generative role. A 
sample list of such theories is named below:  
 

• Cultural evolution, 
 

• Recognition theory, 
 

• Exchange theory, 
 

• Polarity dynamics, 
 

• Interaction order, 
 

• Situation theory, 
 

• Social fields, and 
 

• Attractor systems. 
 

As one example, in-group versus out-group dynamics is a well-studied social model that 
has the potential to provide the basis for a computational polarity mechanism in which in-group 
solidarity and out-group solidarity are counterposed and sometimes lead toward group conflict. 
At the same time, however, cross-cutting interests pull the two groups toward integration as well.  
 

While this model has been applied extensively in social psychological settings, CSS will 
support the exploration of in-group and out-group dynamics on multiple scales. Similar 
possibilities are likely to apply to the competing theories listed above. 
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ORIENTATION BY ENDOGENOUS MEANING 
 

Situated agents are arguably constrained by: 
 

• Physiology and ecology; 
 

• Social and institutional structures; 
 

• Presentational self, intelligibility, and interaction order; and 
 

• Intentionality: orientations, expectations, and purposes. 
 

Let us look more closely at what any such models will need to generate. As discussed 
above, the models that advance the social sciences will need to generate the production, 
invocation, challenging, and negotiation of meaning. More specifically, to capture the textured 
and situated nature of human action, models will need to be based on abstract ontologies that can 
generate indexical methods and responses.  
 

Indexical representations are tied, in epistemological and causal terms, to the agent’s 
immediate circumstances2 and are thus more fully endogenous to both model and agent. As Agre 
(1996, p. 12) writes, “Perception and action, after all, are inherently indexical in character.”  
 

There are many exogenous models, but meaning-oriented architectures are rare. As work 
moves forward, designs based on exogenous rules will increasingly need to document that their 
rules successfully define that determinate regularities have been identified under appropriate sets 
of circumstances.3 Arguably, when pushed to the limits of modeling assumptions, action is 
controlled either by meaning or by exogenous factors. The substantive significance of this choice 
will surely be explored in the decade to come. 
 
 

SOCIAL ENTITIES: CONTINGENT, CONTESTED, AND EMERGENT 
 

Unlike many natural kinds of entities considered by philosophers and physical theorists, 
social entities are often contingent, emergent, and/or contested. This is particularly obvious with 
regard to small-scale social groups. The political process has given rise to the examples of blue-
collar workers, teenagers, yuppies, soccer moms, NASCAR dads, security moms, and so forth, 
ad infinitum. 
 

Individuals are frequently referenced in partial and/or stylized ways as well, as when a 
waitress says, using metonymy, “The chicken salad is ready for his check.” Nonoverlapping 
entity definition can become a source of misunderstanding and contention. Models that focus 
exclusively on exogenously discretized entities ignore important sources of social nonlinearity. 
 

                                                 
2  Indexical representations may not, however, be as well-suited for other purposes, such as distributing knowledge 

about spaces and times to agents at distant or unknown locations. 

3  Along a parallel line, probabilistic approximations are unlikely to generate nonlinear or innovative agent 
responses.  
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CRITICAL SOCIAL TESTS 
 

No scientific breakthroughs have been more compelling than those that have emerged 
from critical tests. When two (or more) scientific theories with conflicting predictions are 
counterposed and assessed, the very focality of the investigation can create dramatic clarity. No 
critical test provides a clearer example than the investigation(s) that used light data collected 
during a solar eclipse to test the theory of relativity. The result was made more dramatic by the 
difficulties in carrying out the test, which only heightened anticipation and interest in the result. 
When relevant data were ultimately recorded and analyzed in 1919, the result was proclaimed 
“one of the highest achievements of human thought.” 
 
 The greater complexity of social dynamics, and the comparatively less mature nature of 
the social scientific disciplines, have combined to obscure the potential role of critical tests. 
Indeed, at this point, it is not clear that unique and effective critical tests can be identified.  
 

However, one area in which critical tests have been explored within the social sciences 
concerns international conflict, more specifically, democratic peace theory (the thesis that 
democracies rarely go to war with each other). Consider, for example, that the sources of conflict 
may be attributed to either divergent interests or incompatible governing structures. Maoz (1997) 
counterposes the two potential sources of conflict as a critical test and finds that, even when 
democracies not strategically aligned, they remain unlikely to fight each other. If the comparison 
is with nondemocratic governments that share strategic interests, the contrast is even more 
striking. 
 

Cederman (2001) shows how agent modeling can help tease out and explore the 
complexities inherent in a theory of democratic peace. He constructs a model based on three 
interacting mechanisms (strategic identification, ideological alliances, and collective security) 
and demonstrates how these mechanisms might generate the empirical social patterns of 
democratic peace as an emergent macropattern. 
 
 

CONCLUSION 
 

To fulfill their potential, both the computational and social sciences will need to work 
together to create heretofore unprecedented types of models. Necessary mechanisms will be 
more endogenous, reflexive, and deeply interactive than any yet developed by the computational 
sciences. In the substantive social sciences, existing concepts and theories will need to be 
integrated across a range of domains and scales, and at a higher level of abstraction. The result, 
in both cases, will be forms of innovation and experimentation that open up new analytical 
horizons. If time, resources, and scientific progress coincide, it is possible that important social 
priorities can be addressed in increasingly effective ways. 
 
 

ACKNOWLEDGMENT 
 
 This work is supported by the U.S. Department of Energy, Office of Science, under 
contract W-31-109-Eng-38. 
 
 



319 

REFERENCES 
 
Agre, P.E., 1996, “Computational Research on Interaction and Agency,” pp. 1−52 in P. Agre and 

S. Rosenschein (eds.), Computational Theories of Interaction and Agency, Cambridge, 
MA: MIT Press. 

 
Cederman, L.-E., 2001, “Modeling the Democratic Peace as a Kantian Selection Process,” 

Journal of Conflict Resolution 45:470–502, August. 
 
Czarnecki, K., and U.W. Eisenecker, 2000, Generative Programming: Methods, Tools and 

Applications, Indianapolis, IN: Addison-Wesley. 
 
Maoz, Z., 1997, “The Controversy over the Democratic Peace: Rearguard Action or Cracks in 

the Wall?” International Security 22:162–198, Summer. 
 
Stinchcombe, A.L., 2001, When Formality Works: Authority and Abstraction in Law and 

Organizations, Chicago, IL: University of Chicago Press. 



320 

 
 
 
 



321 

DISCUSSION: 
 

CHALLENGES IN COMPUTATIONAL SOCIAL THEORY 
 

(Friday, October 8, 2004, 9:45 to 10:00 a.m.) 
 

D. Sallach, Argonne National Laboratory and The University of Chicago 
 
 
Challenges in Computational Social Theory 
 

Michael North:  Here is an overview of computational social theory. 
 
David Sallach:  Good morning. It’s nice to see you all here today. When this particular 

session was conceived, it was conceived as being somewhat longer than 15 minutes. As the 
schedule evolved, it shrunk. I do not think that in 15 minutes I can actually do an overview of 
computational social theory, so instead I will try to comment on challenges in computational 
social theory. Happily, some of the issues that I’d like to raise are in the arena of simplicity 
versus complexity. Thanks to previous presentations and subsequent discussions, we seem to be 
already immersed in that discussion. Now, some will say that this was a sneaky plan to get us to 
this point. It’s not true. I deny it. 

 
I want to be quick and just raise a few issues pertaining to computational social theory 

and how it may have the potential to contribute to advances in the social sciences. I’m not bold 
enough to issue commandments yet, so I would say that there are seven considerations. This is 
the substance of all my comments on the kinds of policy concerns that influence the emergence 
of computational social science, on the kinds of effects that they might have, on a strategy that 
involves generation from abstraction, on the idea of conceptual or ontological experimentation, 
and on the issue of endogenous meaning, which will be quite short because I always talk about it 
and most of you have already heard it or versions of it. I want to raise the issues of viewing 
entities in social simulations as being contingent, contested, and emergent; understanding how 
the above might contribute to theory-driven computational models and tools; and identifying 
critical social science tests and complexity science tests. That’s my talk. As is said in more 
religious contexts, the rest is commentary, but I will do just a little bit of commentary too before 
I sit down. 
 

[Presentation] 
 

Sallach:  There’s always a commercial after the message. The commercial here is to 
encourage you to consider becoming active in the North American Association of 
Computational, Social, and Organizational Science (NAACSOS) or, if they’re more relevant to 
you, the European Social Simulation Association or the Pacific Association for Agent Modeling. 
They provide a professional context in which issues like those we’re discussing can be explored. 
Indeed, Agent 2004 is held in association with NAACSOS. The next NAACSOS conference will 
be held at Notre Dame in June 2005. Thank you very much. 

 
North:  Thank you, David. We have time for a few questions while the next speaker 

sets up. 
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William Lawless:  Bill Lawless, Paine College. Excellent talk. You’ve given a very nice 
overview, but there are a couple of areas where I’d like to push you a little bit. First, you talked 
about the importance of effective theory driving experiment and sometimes what occurs. There’s 
a recent article in Physics Today on astronomy. Sometimes advances in technology lead to 
discoveries; theory is way behind that and then catches up. Sometimes theory leads, and 
sometimes it follows. The only objection I have is the importance you’ve placed on meaning. I 
think meaning is quite important, but sometimes it is a distraction or leads us astray because 
humans justify their actions a lot. I’d point out that Tversky in economics, Edgley in social 
psychology, and Kelly in game theory have not found a good relationship between explanation, 
meaning, or justification and actual behaviors — the choices that are actually made in situations. 

 
Sallach:  I would like to say a couple of things. One is that I totally agree with the 

emphasis on technology. I think that the reason for the advances in a lot of the microsociological 
things, particularly ethnomethodology (of which I’m a fan, even though I don’t do anything that 
they would like), is the advent of video recording and the ability to microanalyze interactions at 
that level. I think that what we’re looking at here is exactly that the new technologies are making 
new possibilities available. 

 
As for my interest in meaning, I’m most interested in scale-free meanings (that is, 

processes that can happen at multiple scales). So, for example, the things that happen between 
states might happen in time units of a year, a decade, or something along that line, but you can 
still ask if it represents a threat. And the thing I would caution you about with regard to studies 
that say whether meaning is useful or not, is that meaning itself is a very fluid phenomenon. If 
you try to view it statically, you’re going to, as the ethnomethodologists say, lose the 
phenomena. 

 
Claudio Cioffi-Revilla:  Claudio Cioffi, George Mason. You brought up a very 

important point just now that ties in closely to something that Michael Macy mentioned earlier 
with regard to the experimental use of agent-based models:  the scale-free or the scaling variance 
of social laws or patterns. This is really important because experimentation in physics really 
hinges on the fact that if you conduct an experiment in a lab on the laws of physics are preserved 
under a vast reduction in scale. We don’t seem to think about this often enough in the social 
sciences. For example, one reason why I’ve always objected to using people to simulate 
international systems is because people are not countries, and countries make decisions and have 
expectations in a very different way than people do. This means that there’s a preservation of 
interaction patterns that is not invariant to scale in many social systems. How do you think about 
this problem in the agent-based context? 

 
Sallach:  We have a nice exemplar here in Schelling’s example. Think of the strategy of 

conflict, where he talks about what could reasonably be called meanings. In the game of chicken, 
for example, it applies to when you’re cutting into merging traffic but refusing to look at the 
other drivers. So the other driver has no choice but to back off. And it happens in international 
arms races. He’s clearly identifying scale-free phenomena that have scale-free meaning 
associated with them, so that’s very nice. 

 
In terms of your idea, I have no problem at all with modeling states as actors. You’ll get 

a certain level of purchase from doing that. In other words, there may be times at which knowing 
the kinds of micro-identifications that the human actors in the state process have (whether  
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they’re via corruption, partisan commitment, electoral constituencies, military reliability) — 
there may be times when pushing it down and including more of the micro may be beneficial. 
But I think it’s a strategic focus as to how much of the micro that you want to include, and that 
however much you want to include, it may be useful to try to identify meaning-oriented 
responses. 
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SIMDYAD: AN AGENT-BASED MODEL OF INTERACTION BETWEEN INTIMATES 
 

W.A. GRIFFIN,∗ S.K. SCHMIDT, and O. KORNIENKO, 
Department of Family and Human Development, Arizona State University, Tempe, AZ 

 
 

ABSTRACT 
 

The agent-based model SimDyad was used to examine the possibility that system 
dynamics and the subsequent emergence of phenomena typically generated by hundreds 
or thousands of independent agents can be modeled by using only a few agents 
(i.e., behavior is a matter of agent impact rather than agent quantity). Constructed to 
simulate the interactional and affective patterns observed in married couples, SimDyad 
uses eight verbal and nonverbal behaviors as agents that interact, exchange information, 
and modify subsequent behavior. SimDyad uses estimates of relationship satisfaction, 
relationship goals, and perceived alternatives to modify algorithms that determine how 
the information exchanged between agents is used to alter the likelihood of an agent’s 
presence or absence later on. Although the model is in the early stages of development, 
initial results indicate that SimDyad can approximate affective patterns seen in real 
couples whose members have similar relationship satisfaction levels. 
 
Keywords: Agent-based model, emotion, affect, married couples, ABM 

 
 

INTRODUCTION 
 
 With the improved ability to videotape and electronically capture the intricacies of micro-
social signaling, scholars across a range of scientific disciplines are increasingly examining the 
dynamics in these ubiquitous processes. Working on diverse subjects ranging from ants to 
antelopes and porcupines to people, scientists ask the same basic questions: How is social 
information exchanged, how does it modify structure, and what is its function? Germane to these 
questions is the notion of decision making: specifically, what behavioral and cognitive processes 
generate micro-social signaling? Numerous quantitative methods for exploring the nuances of 
group-level or individual-level behaviors exist, but there are few techniques for elucidating the 
minutiae associated with the social complexity that results from the simultaneous decisions made 
by multiple interactants.  
 

To appreciate micro-level behavior, analytic methods must be able to capture the discrete 
nuances of patterns within social exchanges. Moreover, they must be able to identify the macro-
level mechanisms that spawn these patterns. A recently developed approach to computer 
simulation, the agent-based model (ABM) is an analytic tool that can accomplish these goals. 
Agent-based simulations, which are viewed as generators of phenomena that demonstrate 
possible causal pathways (Kohler, 2000) and as tools to enrich our understanding of fundamental 
processes (Axelrod, 1997), allow for intuitive experiments on ways that the unique 
configurations of agents generate social processes (Axelrod, 1997; Hannon and Ruth, 1997).  

                                                 
∗ Corresponding author address: William A. Griffin, Department of Family and Human Development, 

Box 872502, Arizona State University, Tempe, AZ  85287-2502; e-mail: william.griffin@asu.edu. 
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 Previous ABM work focused on a surplus of independent agents to generate phenomena. 
Our work, however, focuses on understanding and modeling the reciprocal evolutionary 
dynamics ubiquitous at multiple scales across all social processes (Conte et al., 1998). As such, it 
must include agent pathways capable of explaining processes in smaller social units. 
Specifically, we examine the possibility that system dynamics and the subsequent emergence of 
phenomena, typically generated by hundreds or thousands of independent agents, can be 
modeled by using only a few agents as a matter of agent impact rather than agent quantity. In the 
proposed model of dyadic interaction, the agents, although few, contribute strongly to the 
simulated process. In other words, the impact per agent is greater in this small and dynamical 
process than is the impact typically ascribed to an agent in more traditional ABMs.  
 

Focusing on small social systems allows us to identify a discrete social process at a 
specific level (i.e., dyadic interaction) while maintaining some ability to generalize to broader 
social processes. To address social processes germane to all human interactions involving micro-
exchanges of social organization and structure, several related questions need to be answered. 
(1) How is the emergence of small cohesive social units evident? That is, how is a relationship 
knowable beyond merely examining two or more individuals interacting? (2) Does the emergent 
structure characterizing the dyad derive from a chain of extended interactions that become less 
stochastic? Stated differently, is reduced behavioral or affective stochasticity the quantitative 
definition of a dyad or a small group? (3) Given that relationships derive from multi-scale 
interactions (second to second, day to day, eventually extending into years), what is the 
morphological correspondence over these scales? This paper addresses the first question. 
 
 

DEFINING AGENTS IN SMALL N DYNAMICS 
 

Intuitively, defining agents in small social units would consist of assigning each 
individual within the unit to an agent class. Given that some units consist of only two people, 
however, this task becomes analytically challenging, as data points become too sparse for the 
simulations. Solving this problem requires several assumptions. First, we assume that social 
processes are complex, continuously evolving entities that adaptively configure themselves 
according to basic rules. These adaptive changes, in turn, modify the environment housing the 
agents that make up the entities (Axelrod, 1997; Casti, 1997). Thus, for simulation purposes, we 
assume that individuals are, in fact, the environment housing the agents. In our model, agents are 
the behaviors displayed by an individual. Second, under this assumption, we further assume that 
agents can then be defined as independent, heterogeneous elements within the individual that 
configure themselves in ways to communicate with complementary agents housed within the 
adjoining individual(s). Finally, as agents exchange information across individuals, we 
additionally postulate that sociality is created (i.e., emerges), adapts to intra-unit variation, and, 
in turn, modifies the system itself. 
 

To maintain consistency with our approach for understanding general social processes, 
we must define agents as elements available to all individuals across various types of social 
exchanges. That is, irrespective of the particulars of a social exchange, we must identify 
behavioral features that are plausible, ubiquitous, and convey interpersonal information. 
Fortunately, there is literature suggesting that nonverbal behaviors and, to a lesser degree, verbal 
statements are the primary cueing features of human interaction (Mehrabian, 1971; Noller, 
1984a,b). Moreover, there is evidence suggesting that behavioral manifestations (e.g., head nod) 
serve as a proxy for internal affective states and, as such, reflect the state of the relationship 
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(Gottman and Notarius, 2000). On the basis of these findings and the aforementioned 
assumptions, we postulate that behaviors, as proxies for latent cognitive and affective processes, 
evolve according to an indigenous algorithmic rule-set and that, over time, individuals are 
modified, as are their decision-making processes. 
 

Thus far, we have not put forward our ideas about why we think that we can build ABMs 
with fewer than a dozen agents, whereas the general assumption is that this number should be 
increased by a factor of 10 before interesting dynamics can occur. Tentatively, we are proposing 
that with small n dynamical models, the agents, although few in number, contribute 
disproportionately more to the emergence of a general process than do the agents in models 
containing hundreds of agents. This proposition is not surprising or especially informative. 
However, it does imply a computational and pragmatic advantage: updates among agents (as 
well as their human analogs) are nearly instantaneous. In a recursive ABM model, reflecting the 
dynamical systems computational approach, this means that each agent has at least a moderate 
vision relative to the state of the system, is sensitive to the mean state of the system, and is 
responsive at each iteration. Agents with these attributes can populate a landscape that is 
mathematically tractable, permitting a calculus of social emergence and cohesion.  
 
 

THE SMALL SOCIAL UNIT: MARITAL DYADS 
AS AN EXAMPLE OF SMALL N DYNAMICS 

 
Although many dyadic or small n groupings exist naturally in the social world, empirical 

findings on the evolving micro-social processes of these entities are nearly nonexistent. To 
ensure validity in simulated models, real data are critical for comparison purposes. As a result, 
our work focuses on modeling the dynamics of the marital dyad for two reasons. First, it is 
possible to create salient indices of dyadic interaction that are indicative of differential patterns 
in married couples (Griffin, 2000, 2002). Second, we have immediate access to real-time 
observational interactions of couples over an extended period of time (Griffin, 1993). These 
assets afford us the benefit of extracting the behavioral and affective tendencies that are needed 
to regenerate dyadic processes in our simulations and a method for determining the validity of 
our model. 
 
 
Relationship Mechanisms 
 

We propose that three mechanisms influence moment-to-moment behavior in marital 
relationships: (1) relationship satisfaction; (2) relationship goal; and (3) potential alternatives. 
The first, and most central, is relationship satisfaction. Commonly defined as a global evaluation 
of the marriage, this mechanism is usually assessed by using self-report instruments that measure 
satisfaction across a range of areas (e.g., finances, parenting, in-laws) (Lock and Wallace, 1959; 
Crane et al., 1990). Abundant research shows that contextual factors (such as those noted above) 
strongly influence relationship satisfaction and, more important, that the satisfaction level is 
evident in the moment-to-moment behaviors of interactants (see Bradbury et al., 2000; Gottman 
and Notarius, 2000, for a review). Specifically, numerous observational studies have reported an 
inverse relationship between the presence of negative verbal behavior (e.g., put down, criticize, 
disagree), nonverbal expressions of negativity (e.g., eye rolls), and relationship quality (Gottman 
and Notarius, 2000). 
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A second mechanism contributing to the moment-to-moment behavior in married couples 
is the relationship goal, which is the commitment to the relationship. For the current model, this 
construct is defined as an individual’s intention to continue or leave the relationship. The concept 
of relationship goal has been closely examined in the commitment literature and appears to be 
contingent on three factors: (1) the individuals’ expectations of the relationship, (2) the amount 
of work they expect to do in order to achieve these expectations, and (3) the degree that these 
expectations are met (see Le and Agnew, 2003, for a review). The relationship satisfaction and 
the commitment literature agree that several contextual factors unique to the relationship 
influence an individual’s intention to remain. These factors are referred to as investments and 
include such resources as the amount of time in the relationship, social status maintained as a 
result of the relationship, and material possessions accumulated in the relationship.  
 

Finally, the perception of alternatives to the relationship has also been identified as 
modifying an individual’s evaluation of the quality of his or her marriage. Although less is 
known about this particular construct, the commitment literature suggests that the perception of 
extra-relationship options is often related to levels of commitment (Le and Agnew, 2003). 
Specifically, it was found that an individual’s decision to leave the relationship becomes stronger 
when he or she has more options outside the relationship. In addition, contextual factors 
(e.g., age, physical attractiveness, presence of children) may influence an individual’s perception 
of alternatives.  
 

Moreover, the influence of perceived alternatives on interactional behavior requires an 
additional assumption of utility. Specifically, if we assume that options vary in terms of viability, 
then the influence of perceived alternatives varies as a function of salience rather than simply the 
presence of options. Although the presence of options may co-vary with age or level of physical 
attractiveness, what an individual does with the knowledge of having options is likely to be 
determined by a cost-benefit analysis between the relationship and the alternative(s). It is 
plausible that the viability of extra-relationship options perceived by an individual is determined 
by relationship satisfaction. For example, an attractive female may have many potential partners 
outside her current marriage, but if she is highly satisfied with her relationship, the saliency of 
those alternatives is minimal. While the processes that account for the influence of perceived 
alternatives have not been established, we anticipate that perceived alternatives, in conjunction 
with overall satisfaction and goals, determine the moment-to-moment behaviors of married 
adults.  
 

Although the current model introduces three putative mechanisms that influence 
behavior, we do not assume uniform influence during moment-to-moment behavior. Specifically, 
we posit that the level of satisfaction is the primary determinant of moment-to-moment 
interaction, with relationship goal and perceived alternatives having secondary and tertiary 
influences, respectively. This hierarchy is imbued in SimDyad and is discussed below in more 
detail.  
 
 

DISAMBIGUATION: THE GENERATING MECHANISM 
 

Although the aforementioned micro-level behaviors and utility mechanisms provide a 
basis for understanding the evolving affective states of a marital dyad, they fail to articulate a 
macro-level generating mechanism that necessitates their invocation. We propose that a plausible 
mechanism might be disambiguation, or the reduction of uncertainty. Specifically, at each turn in 
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an interaction, the machinery invoking the behavior in the next small increment of time serves to 
reduce ambiguity surrounding the state of the relationship. Stated differently, we assume that 
behavioral nuances expressed during moment-to-moment exchanges simultaneously reflect and 
generate the dyadic state, and that each participant directs these features to minimize the 
ambiguity. In short, at each time step, overt behaviors simultaneously reflect, maintain, and 
modify the dyadic relationship. 
 
 

METHOD 
 

At the Marital Interaction Lab at Arizona State University, we began collecting couple 
and family interactional data 15 years ago. Since that time, we have conducted numerous studies 
examining affective and behavioral expression in marital and post-marital interactions and the 
role of disease in interactions (e.g., Parkinson’s disease in marital interactions and asthma in 
family interactions) (Griffin, 2002; see Griffin et al., 2004a, for an overview). Across studies, the 
general methodology for collecting adult dyadic data has remained the same. A brief overview is 
given here. 
 
 
Data Collection 
 

Upon arrival at the Marital Interaction Lab, couples were greeted by a lab assistant and 
then seated in a room constructed to resemble a small living area containing prints, curtains, 
plants, and two chairs in the center of the room. Two unobtrusive, partially concealed, remotely 
controlled cameras were mounted on the walls at head level behind each chair. All audiovisual 
and mixing equipment was controlled from a room adjacent to the interaction. Video signals 
were combined, producing a split-screen image; audio was obtained from lavaliere microphones 
worn by each spouse. 
 
 
Problem-solving Task 
 

After completing informed consent forms, couples were given an areas of disagreement 
questionnaire (i.e., standard Strodbeck’s revealed differences task; see Gottman, 1994). Each 
marital partner selected and ranked a list of potential disagreement areas typically associated 
with marital relationships, according to how much they disagreed and for how long they had 
disagreed. Couples were then instructed on how to use the affect generation computers in the lab 
(see below). After they became familiar with the procedure, they returned to their chairs. With 
the lab assistant’s help, the couple selected the three most common topics from the list of 
problem areas and agreed to discuss them. The lab assistant then instructed the couple to engage 
in a 12-minute discussion and attempt to resolve the issues. This is a common task used to evoke 
interaction in married dyads (Gottman, 1994). Controlling the audio and video equipment from 
the adjacent room, the lab equipment operator recorded the couple’s conversation. 
 
 
Affect Generation 
 

After completing the conversation, lab assistants escorted the marital partners to their 
respective seats at the affect generation computers. The lab assistants left the room, and each 
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spouse then simultaneously reviewed and rated his or her own affect while watching a 
videotaped split-screen playback of the interaction. Separated by a partition and wearing audio 
headsets, husbands and wives could not see or hear their spouse while reviewing the videotaped 
interaction. A study using a similar methodology for recalled self-report of affect reported that 
the procedure was valid with respect to observational coding (Gottman and Levenson, 1985). 
The videotape was played back through a specially configured microcomputer by using software 
that overlays a nine-level, color-coded, vertical bar on each color video monitor. This overlay 
was positioned beside the face on the monitor of the spouse reviewing the tape. The affect rating 
ranges from extreme negative (red), through neutral (gray), to extreme positive (blue) and is 
controlled by a personal computer mouse. Extreme negative is at the monitor bottom, neutral is 
at mid-monitor, and extreme positive is at the top of the monitor. The width of the bar varies at 
each affect level (5-pixel increments) corresponding to the intensity of the affect; neutral is the 
thinnest. The widest affect level is 28 pixels wide (1.5 cm). As the reviewer moves the mouse, 
the affect bar corresponding to the degree and direction of the affect is highlighted. For example, 
as the individual’s affect rating becomes more negative (positive), the mouse is pulled back 
(pushed forward), and the appropriate affect level becomes highlighted, and, as the highlighted 
area moves further from neutral, the width of the level expands to reflect intensity. During the 
review of the tape, and viewing only his or her own rating, each individual is asked to move the 
mouse to reflect affective experience during the interaction (i.e., “How were you feeling at each 
moment?”). In this context, affect refers to the speaker’s assessment of an internal reference to 
the meaning of “feeling” (i.e., over a continuum from positive to negative). Software records the 
location of the bar position every second, providing a continuous measure of affect throughout 
the interaction. Average ratings are referenced to a reduced five-point scale: 1 and 2 = negative, 
3 = neutral, and 4 and 5 = positive. 
 

In this method of affect retrieval, each affect has a subjective reference that is unique to 
the rater, within the context of the interaction, given the dyad’s history. For each individual, 
there is only an internal template referencing a positive, neutral, or negative affect state. In 
effect, an internal state that is pleasant to one individual may be only neutral to another. 
Moreover, because it is a self-report, it could be argued that such a recall procedure provides a 
good proxy of the true affect state and requires less inference than other data collection 
procedures that operate from an outsider’s perspective (Griffin, 1993).  
 
 
Behavioral Coding 
 

We initially code the “talk turn.” Reliability is in the mid-0.9’s (kappa). These codes 
delineate the conversational structure at each turn into the roles of speaker or listener. Nonverbal 
cues are then coded for each talk turn. “Nonverbals” is a listener category containing three 
positive attending behaviors (eye gaze, head nod, and back channel) and one negative 
contemptuous behavior (eye roll). We also code “gaze” for the speaker to examine if the speaker 
is looking when talking. Basically, we include this category to determine if the speaker has 
reason to perceive the listener is not listening, being disrespectful, or worse, being contemptuous. 
This impression of the speaker may or may not be evident by his or her actions, but it usually 
influences the affect rating, which then provides an opportunity to compare (e.g., ratio) the 
speaker’s values versus the listener’s values, either in real time or averaged across the talk turn.  
 

Similarly, by using the “verbal” codes, we add more dimensionality by assessing whether 
the speaker is being generally helpful or facilitating (i.e., problem solution, agree) or destructive 
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(i.e., negative, such as making a hostile statement expressing unambiguous dislike or disapproval 
of a specific behavior engaged in by the partner or a comment intended to demean or embarrass 
the other person). These are also compared to the listener’s attending behavior or examined for 
internal consistency with the self-reported affect. In effect, at each unitized time point (either a 
talk turn or in real time), we have information on how each person was feeling, the presence or 
absence of constructive or destructive statements, and attending behavior by the listener. In 
composite form, these coded behaviors form an index of the process at time tx that permits the 
reconstruction, visualization, and pattern classification of dyadic interactions (see Griffin, 2000, 
2002). See Griffin et al. (2004a) for an overview of the data collection and behavioral coding 
procedures.  
 
 

ABM ALGORITHM 
 

By using the conceptualization of a dyadic process outlined above, we created a simple 
algorithm of agent interaction that consisted of three steps. In Step 1, an initial interactant matrix 
was populated with the probability of the appearance of each agent. These values were derived 
from best-guess estimates obtained from reviewing the literature and the data collected in our 
lab. There are eight agents per interactant; a randomly pulled value taken from a normal 
distribution with a specified mean and standard deviation was used to assign a likelihood of 
occurrence. The respective distributions for the four verbal agents were as follows: problem 
solve (0.5, 0.05); agree (0.5, 0.05); gaze while talking (0.65, 0.1); and negative female (0.35, 0.1) 
and male (0.25, 0.05). For the four nonverbal agents, the respective distributions were as follows: 
back channel (0.65, 0.05); head nod (0.65, 0.05); gaze (0.65, 0.10); eye roll female (0.20, 0.04) 
and male (0.10, 0.02). Consistent with the existing literature reviewing observational studies of 
marital interaction, females tend to be more negative and report higher levels of negative affect 
(Gottman and Notarius, 2000). 
 

Step 2 consisted of creating an interaction scenario analogous to a 15-minute 
(900-second) discussion by a married couple. Similar to the interaction data obtained in our 
laboratory, a couple begins an interaction when one person speaks and the other listens. At each 
iteration, the respective agent groups (speaker [verbal] vs. listener [nonverbal]) are “displayed” 
by an interactant and evaluated by the other to determine similarity or “sameness.” This 
evaluation method is discussed in more detail below. However, prior to the evaluation that 
occurs during each iteration, the value of each agent is examined and modified as a function of 
the expressed (1) relationship satisfaction, (2) relationship goal, and (3) perceived alternatives. 
More specifically, the probability value of the behavioral agent is modified as a function of 
relationship satisfaction (i.e., higher satisfaction increases the propensity for the agent 
[i.e., behavior] to appear). Next, the propensity to invoke relationship goal is inversely related to 
relationship satisfaction. Finally, the propensity to invoke perceived alternative is inversely 
related to relationship goal. In effect, as noted above, relationship satisfaction is the major factor 
determining moment-to-moment behaviors. Only when relationship satisfaction falls below a 
specified threshold does the influence of relationship goal contribute to behavior change; the 
situation is similar for perceived alternatives. (Additional details about threshold values and 
other aspects of code construction can be obtained from one of the authors of this paper, 
W.A. Griffin.) 
 

Each agent (i.e., behavior) is modified at each iteration, and the collective agent grouping 
(i.e., verbal; nonverbal) is used to create the affect rating. Since the estimated affect rating, 
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analogous to the affect rating generated in the laboratory, is not observable, we construe it to be 
the emergent property of agent interaction. Each agent, although observable through either 
statements or behavior, contributes collectively to the nonobservable affective state. In the 
current model, affect is constructed as the sum of the inverse of the positive behaviors plus 
negative. For example, listener = [(1 – head nod) + (1 – back channel) + (1 – gaze)] + (eye roll) × 
(scaling factor). Calculated in this manner, a greater positive affect receives a lower score, 
whereas a higher score suggests greater negativity. This calculation method is similar to the one 
used in our laboratory studies and allows for easy comparison to our realized data. 
 

Finally, in Step 3, the agent likelihood is again modified. As noted above, during each 
iteration, comparable agents assess whether or not the other agent is present. Comparable agents 
are defined as those agents that are complementary in their behavior. For example, listener head 
nod and back channel are complementary to speaker agree (see Figure 1 for a complete list). As 
noted in Figure 1, some behavioral agents have restricted vision (e.g., speaker gaze can only 
evaluate listener gaze), whereas others (e.g., head nod) can view multiple agents. This variable 
vision contributes to greater unpredictability in modifying the agent action. 
 
 Agent presence is assumed if the likelihood of the complementary agent exceeds a 
critical value, usually 0.5 at that particular iteration (i.e., talk turn). If each agent exceeds the 
necessary value, then at the end of the iteration, a slight modification in the dyad matrix occurs, 
 
 

 

FIGURE 1  Permissible communication links between agents 
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with the respective likelihood increasing for each agent. If either agent does not exceed the 
critical value during the window of examination (e.g., iteration t), then the probability of being 
present is reduced in the next iteration. As expected, the joint presence of negative behaviors 
increases the probability of their subsequent presence in the next iteration.  
 

At this step, as the reader may have deduced, the computational attempt at 
disambiguation occurs. In effect, each person is cognizant of the behavior of the other person and 
responds in a manner that reduces the discrepancy. For example, an eye roll may or may not 
elicit a negative statement during iteration tx, but the eye roll does increase the likelihood of a 
negative statement during iteration tx+1. Similarly, when it is assumed that speaker agree 
co-occurs with listener head nod at tx, the likelihood of their joint appearance at tx+1 increases. 
However, if only listener head nod occurs, hence creating a discrepancy, the chances of a head 
nod occurring at tx+1 decreases, thereby increasing the odds that neither will co-occur during 
subsequent iterations. 

 
 

RESULTS AND DISCUSSION 
 

To assess the viability of SimDyad, we ran several hundred simulations by using various 
combinations of relationship satisfaction, relationship goal, and perceived alternatives. Because 
of the newness of SimDyad, simulation runs were used to modify codes until we were able to 
obtain output that was consistent with our expectations, given the input parameters. For example, 
if SimDyad, in its current configuration, is given an interaction between a moderately satisfied 
male (65/100) with moderate goals for the relationship (70/100) and minimal perceived 
alternatives (10/100) and a slightly dissatisfied wife (45/100) with low goals for the relationship 
(30/100) and minimal perceived alternatives (10/100), the model can produce output that looks 
similar, albeit less variable, to output by real couples with similar attributes (Figure 2). As 
evident by the path shown in Figure 2, as the interaction continues, the wife becomes more 
negative (i.e., the value increases), whereas the husband initially becomes more positive (i.e., the 
value drops), then maintains a lower level throughout the interaction.  
 

This is very typical of a profile generated by actual couples in our laboratory. A couple 
with similar relationship scores was located, and their affects were plotted on a cumulative affect 
graph (Figure 3). For Figure 3, we reversed the affect direction and then plotted the cumulative 
values. When the values are plotted in this form, it is easier to see trends over time. Note that the 
simulated couple shadows the real couple; however, the male in the real couple reported lower 
relationship satisfaction (than the simulated male), owing to the lower cumulative trend.  

 
 Although SimDyad reproduces affect patterns that are consistent with expected and 
realized patterns, it still lacks several features that we consider essential for replicating dyadic 
interactions. First, the generated affect rating lacks the variability seen in realized data. Although 
we introduce stochasticity at several locations per iteration, it does not induce sufficient lability. 
It would be simple enough to increase variability by modifying code, but doing so without a 
strong rationale or theory would be antithetical to the empirically derived generating mechanisms 
used to construct the model.  
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FIGURE 2  Simulated couple interaction 
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FIGURE 3  Cumulative affect rating of simulated vs. real couple with 
comparable satisfaction levels 
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A second, and possibly somewhat more worrisome, problem is assessing the veridicality 
of the model (defined by Carley [2002] as model truthfulness). As discussed in Griffin et al. 
(2004b), it is possible that we can replicate realized data and still not be using the actual 
generating mechanisms. This problem, however, is beyond the scope of this discussion. 
Nonetheless, we are implementing several things in the revised SimDyad to assess model fit and 
veridicality. First, we are attempting to compare simulated outputs to realized data by using 
matched couples. Differences in the second-to-second affect rating are used to score the 
simulation. These scores are then used to modify parameters (e.g., role of relationship goal). The 
simulation is re-run, and assessments are made again. Note, however, that even real couples with 
very similar levels of satisfaction show moderate variability in their affect ratings.  
 

Second, our objective is to eventually perform a sequential analysis of the behavioral 
agents generating the affect rating. Ample data have been generated in our lab that would permit 
the analyses. By comparing realized data and their associated affects to our simulated behaviors 
and their resulting affects, we can assess whether the two types of data have similar generating 
processes.  
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ABSTRACT 
 

A paper presented at the Agent 2003 conference illustrated how PlayMate, a multi-
threaded agent-based model, simulated the formation of playgroups in preschool children. 
Each child (agent) possessed rankings on multiple attributes. Homophily, sex, and 
memory were used as the other critical features of group emergence. In an attempt to 
reassess model fit, an additional year of data and an increased sample size were later 
added to the model. Also, to simplify the model, attribute variables were reduced to those 
that were initially found to predict group formation. An affect variable generated by and 
reflective of peer dynamics was also added. As speculated, the affect variable in the 
current version is a better predictor of model fit than the static variables used in the 
previous iterations of PlayMate. Moreover, preliminary evidence suggests that children 
use emotion to evaluate the utility of maintaining their relationships with other children 
and that relationships change in proportion to the amount of time spent in established 
groups. In PlayMate, it continues to be difficult to simulate high-density cells. 
 
Keywords: Agent-based model, ABM, group process, preschool peer group 

 
 

INTRODUCTION 
 
 Ubiquitous self-organizing animal and human groups have increasingly become the focus 
of research by scientists interested in social dynamics. These groups range from married couples 
and co-workers to large crowds, with each type of group having a distinct structure and ontology. 
What is not clear, however, is how discrete entities, each with unique attributes and preferences, 
contribute to the formation of these groups. Even less is known about the socio-developmental 
processes involved in these groups or the influence that these processes may have on subsequent 
group evolution. One contributing factor to this shortcoming is the difficulty in capturing these 
dynamic social processes in their natural contexts. Most researchers do not have the opportunity 
to observe the formation of a couple or the development of a growing family. As a result, social 
scientists have resorted to explaining the process via static traits or individual characteristics. 
These methods may provide some preliminary insight into group formation, but they lack the 
dynamical process components that illustrate how complex socio-developmental contexts 
emerge and evolve. 

 
Although natural environments that contain the possibility of group formation are 

difficult to find, the task is not impossible. Over the past few years, we have been collecting 
naturalistic observations of children in their preschool and kindergarten environments. In the fall 
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of each year, new and returning children come together in our university child development lab. 
Eventually they settle into groups of semi-stable play partners. We can thus examine some of the 
intricacies of playgroup formation and stability in each year’s cohort. When children play, they 
exhibit a huge range of behaviors, yet much of their behavior is also restricted and redundant. 
This odd mix of behavioral and affective novelty combined with redundancy and pattern provide 
a natural laboratory for studying the complex evolution of groups. 
 

A focus on social processes requires the use of methodologies that account for the 
complexity of the differential systems housing the interactions. Recent advances in computer-
based simulation, specifically agent-based models (ABMs), provide a tool to achieve this goal. 
ABMs allow us to simulate clustering based on agent attributes and to model how these 
groupings subsequently modify the environmental field that permits the expression of these 
attributes. We can also model the concurrent materialization of peer preferences. Finally, we 
assume the evolution of these preferences modifies the influence of child attributes and the  
co-existing environment. 
 

From this primary assumption, secondary assumptions are made. First, we assume that 
the propensity to play is driven by ontological characteristics of the child and by the quality of 
the group interaction. Second, we assume that the quality of mutual dynamics is generated by 
reciprocal exchanges that predict the subsequent propensity to play. Finally, we assume that 
quality is a function of child-to-child homophily, or high levels of within-group similarity 
(Berndt, 1982). Therefore, we propose a model of dynamical influence that incorporates (1) the 
ontology of the individual child, (2) the influence of this ontology on the likelihood of group 
formation, and (3) the influence of relationship quality and the frequency of interaction on the 
social trajectory of the individual child and the group. Within the framework of these 
assumptions, we address two basic questions: What is the utility of group play? What 
mechanisms do young children use to evaluate the cost and benefits related to group play?  
 

At the Agent 2003 conference, we illustrated how PlayMate, a multi-threaded ABM, 
simulates the formation of young children’s playgroups based on the individual attribute 
rankings of each child (Griffin et al., 2004). Although the ABM adequately simulated real data, 
we have tried to improve the model by (1) simulating an additional year of data on a larger 
number of children (57 versus 18) across different classrooms and (2) developing an affect 
variable that is sensitive to inter-child dynamics within evolving groups. 
 
 

PLAYGROUPS 
 
 
Peer Preferences and Socio-emotional Processes 
 
 We assume that each child brings a unique set of behavioral and affective propensities to 
his or her interaction with another child and that consequently the group develops idiographic 
interaction rules. These rules, sensitive to environment change and intra-group variation, evolve 
as the group coalesces. Implicit in this description is the allowance for increased interactional 
flexibility and behavioral novelty with each moment-to-moment exchange. Quantifying such a 
process allows an investigator to answer the following two questions. How do moment-to-
moment exchanges within the group serve as a mechanism to determine relationship quality? 
How does the relationship quality influence the subsequent propensity to play?  
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For preschoolers and kindergartners, the affect displayed during a typical play exchange 
is probably the best indicator of relationship quality for a stable or semi-stable group. These 
affective exchanges, in their simplest form (i.e., positive, negative, neutral), give each individual 
in the group an opportunity to convey his or her like, dislike, or neutrality about what is currently 
occurring in the interaction (Ekman and Friesen, 1969, 1978). Although, in general, all emotions 
are available during any given social exchange, scientists have focused primarily on two: 
positive and negative (Denham et al., 1990; Macguire and Dunn, 1997; Walter and LaFreniere, 
2000). Unquestionably, positive and negative emotions play an important role in determining the 
propensity for children to play. However, neglecting neutral expressions predisposes the 
investigator to lose possible critical information about micro-social processes and eventually bias 
the interpretation of the process. To date, only Vaughn et al. (2001) have examined the role of 
neutral, as well as positive and negative, affects as being critical features used by children to 
initiate play. The findings were clear: initiations of peer interactions predominantly involve 
neutral affect.  

 
If peer interactions are, in fact, characterized by disproportionate amounts of neutral 

emotion, we can consequently speculate that enduring peer groups (i.e., stable groups) contain 
either more or less neutral affect than is typical, or instead contain an additional emotional 
component — most likely positive emotion. The plausibility of this latter possibility (the addition 
of positive emotion in stable groups) is well supported in the literature (Newcomb and Brady, 
1982; Denham et al., 1990; Newcomb and Bagwell, 1995). However, quantifying the ability of 
positive emotion to modify the subsequent propensity to increase play between peers is a 
difficult, although not impossible, task. Conceptually, this impact is measurable by using the 
basic tenet of information theory (Shannon and Weaver, 1949). Specifically, if we assume that 
neutral emotion is prevalent and essentially redundant, we can assume that the rare expression of 
positive emotion contributes unique information to the members of the group, and when positive 
emotion is present in amounts greater than expected, it increases the desire to subsequently play 
with a particular child. 
 

Essentially, an affect expression can be viewed as the manifestation of the internal state 
of the relationship. Thus, we can assume that the affective environment, evident in moment-to-
moment interactions, provides the milieu for extracting the information used to evaluate the 
utility of continuing to interact with a particular child. Preliminary work by Ladd (1999) supports 
the idea that young children have the ability to evaluate their relationships. If we assume that 
displayed affect provides the peer group with the necessary information needed for these 
evaluations, then as peers maximize positives within their interactions, an important objective is 
achieved: preservation of the group (Dishion et al., 1994; Ladd et al., 1996). We propose that as 
these evaluations accumulate over time, children use them to determine whether or not to play 
with their peers. 
 

Although the addition of positive affect likely provides critical information for group 
formation and stability, the amount of positive affect that a young child exhibits is best 
understood as the proportion of positive relative to the overall affective expression. For example, 
from existing economic models, we can assume that if we are correct in identifying positive 
affect as the primary indicator of group stability, then a child will produce only the amount of 
positives necessary (relative to the entirety of their affective makeup) to achieve a desired benefit 
(Nass, 1996). This, of course, is plausible only if energy expenditure is higher for a positive 
affect than for either a neutral or possibly negative affect. It is currently unknown what benefit(s) 
is (are) specifically derived from play. Despite the lack of this knowledge, however, there is 
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strong evidence in the ethology literature to suggest that no organism, particularly large 
mammals, can afford to expend energy without producing some outcome that will promote its 
long-term success of survival (Altman, 1984, 1987; McNab, 1986). This suggests that positive 
affect expression is essential in establishing interactions, but because of the cost, the proportional 
use of positives will decrease over time as relationships become more stable. 

 
 

Static Characteristics 
 

The concept of emotional expression as a determinant of a child’s desire to play with 
another child has intuitive appeal as well as some empirical support. Emotional expression is, 
however, constructed as a dynamic modifier of that desire to play: its impact can change over 
time and with new circumstances, new peers, factors external to each child, and a host of other 
influencers, some known and others unknown. Consequently, to aid in interpreting its role in the 
stability of peer friends, we also need to examine the demographic characteristics that each child 
brings to the group interaction. Consistent across the peer literature and evident in our previous 
model, gender appears to be a determinant factor in the peer selection process (Maccoby, 1988, 
1990, 1998; Serbin et al., 1994; Martin and Fabes, 2001). It is possible that the match in physical 
appearance provides some social signal of “sameness” to same-sex children, and that the idea of 
sameness somehow influences their belief that interaction would be enjoyable (Kohlberg and 
Ziegler, 1967). In effect, gender serves as a semaphore for activity preference in same-sex 
children, and thereby it increases a child’s propensity to play via physical proximity to an 
activity.  
 

While gender sameness may be one potential influence of who plays with whom, it does 
not provide micro-social process information. Yet, it could be speculated, for example, that sex 
sameness modifies emotional expression during group play, and that this modification, in turn, 
modifies the likelihood of additional play between the interactants. This is not an established 
fact, and any investigation of the socio-emotional process described above would need to 
account for the concurrent influence of these two salient features.  

 
 

Behavioral Characteristics 
 

In addition to the influence of demographic characteristics, the quality of group 
relationships may also be modified by skill sets or behaviors that children bring to their 
interactions. Like affect, these behaviors are indicative of ways children attempt to engage peers 
in social contexts, and they likely provide cues about the state of the group relationship. While a 
range of unique behaviors has been noted in the peer literature, previous iterations of PlayMate 
indicate that prosocial and socially inhibited behaviors are the best indicators of play propensity. 
Like gender, it is possible that the presence of either prosocial or socially inhibited behavior has 
the bidirectional effect of modifying emotional expression and subsequent propensity for 
interaction. In fact, from previous observational literature, we know that behaviors are a proxy of 
displayed affect and provide information about the state of the relationship (Gottman and 
Notarius, 2000; Griffin, 2002). However, given that these variables were collected via static 
methods (i.e., one-time teacher or observer report), we have no accurate way of accounting for 
the interaction of behavior and emotion, nor for determining if behavior is likely to change over 
time as a function of group evolution. As a result, we attempt to increase the accuracy of the 
model by using emotion and comparing its fit to the realized data.  
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Homophily 
 

At the micro-level, displayed affect (as it is influenced by gender and possibly behavior) 
is a plausible predictor of play preference. However, to appreciate the general process of peer 
selection, a macro-level generating mechanism is also needed. Given that children’s playgroups 
are characterized by homophily (Berndt, 1982), we can assume that homophily increases play 
propensity. Essentially, children seek out similarities in their peers, with gender and behavior 
providing a preliminary reference point to signal sameness. In turn, these dimensions modify the 
moment-to-moment affective exchange, thereby further altering the perception of sameness. As 
each child interprets emotion and behavior and evaluates the sameness of the other child, the 
value of continued play is assessed.  

 
 

SIMULATING PLAYGROUPS: PLAYMATE 
 

By using static and dynamic child attributes to modify the likelihood of interacting with 
another child, PlayMate provides a representation of postulated developmental shifts in 
playgroup formation for children ages three to six years. Each child, represented as an agent, can 
be in one of four states: (1) playing with another child, (2) playing with an adult (a teacher), 
(3) playing alone after playing with another child, or (4) playing alone after playing with an 
adult. Two key components are used to model the shifts in play likelihoods between and among 
children across the four states. The first is play propensity, the likelihood that any specific 
pairing of children will occur. The second is arousal, a behavior proxy (of a child’s internal 
configuration of cognitions, affects, and behavioral tendencies) that externally characterizes the 
propensity to shift states. Arousal does not imply a change in physiological systems (e.g., central 
nervous system); it is a descriptive term to indicate the current level of a child within each state 
as he or she moves toward shifting states.  
 

The underlying mechanism PlayMate uses is briefly described as follows. At each 
observed epoch (analogous to a single real playground observation), a child is in one of four 
discrete states (noted above). Although the child is in a particular state, he or she has a 
cumulating value in each of the four states that is used to allow spontaneous state transitions 
(excluding those logically not permitted, such as solitary [3] following solitary [4]). In “round-
robin” fashion, a child is selected to play with another child from the available pool (one is 
randomly removed to simulate a “sick” day). Upon pairing, child i assesses child j on several 
dimensions determined by the investigator; minimally, these include sex and the relevant 
attribute (e.g., emotion) being examined. Arousal, and thus the propensity to leave the child-
playing state, increases in proportion to play partner dissimilarity. The greater the homophily, as 
assessed by closeness on the variables in the model, the less likely the child is to leave the child-
playing state and continue playing with other children. This reduces the amount of solitary play 
and increases the likelihood of a child playing with other children as long as they are similar. 
After each play episode, the assessed attribute level difference is used and two things happen. 
First, the arousal level of each state is updated according to a set of transition rules and values 
associated with those rules. Second, the degree of similarity in attribute level, plus the assigned 
value for sex similarity, plus a memory value (higher value assigned to having played recently)  
are converted to an integer value associated with an investigator-determined curve 
(e.g., exponential). This value is then entered into an adjacency “tally” matrix. This matrix is a 
proxy to the observation matrix containing real data. After each run, the simulation tally matrix 
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is converted to a child-to-child play probability matrix and compared to a similar matrix derived 
from actual data. (Griffin et al., 2004, has additional details.)  
 

Real data were collected via intensive 10-second observations of children’s naturally 
occurring interactions at preschool and kindergarten. Real-time observations of emotions and 
play partners were recorded into handheld computers and repeated for a randomized list of 
children in each classroom. The data were collapsed into six time frames, each consisting of 
approximately 2,000 to 3,000 observations, with the reliability of each coder consistently found 
to be high (see Martin and Fabes, 2001, for an example).  
 

To assess model fit, PlayMate generates numerous quantitative indicators of the structural 
and compositional differences between the simulated and real data. These indicators include 
difference measures of Euclidian distance, mean cell values, entropy, uncertainty reduction  
(a measure of mutual information), solitary play, and row (i.e., child) signal-to-noise ratios. Each 
measure is assumed to provide slightly different information about the characteristics of the 
matrix’s structure. 

 
 

Data Simulation 
 

Before the simulations were run, each child received a score based on three factors: 
gender, attribute level, and memory. For gender, each child received a binary number (e.g., 0, 1). 
Rank orders were given on the basis of a summary score for prosocial and socially inhibited 
behavior. Rankings for emotions were based on the ratio of positive to all affective occurrences. 
Finally, integers for memory rankings were based on a list of recent play pairings, with a current 
capacity of five possible pairings. 
 

For the current iteration of PlayMate, simulation runs consisted of each child in the class 
playing 50 rounds in the round-robin fashion. Performing the routine 50 times allowed us to 
obtain approximately 75–120 play episodes, characteristic of the numbers obtained for each child 
in the real data within each time frame. State shift and play partner propensities were influenced 
by the three factors, with each variable weighted according to the theoretical justification that 
displayed affect and its proxy (i.e., behavior) being the strongest predictors of peer selection. 
Essentially, increased peer preferences were determined by the aggregate of the three factors, 
with an attribute level difference modifying the likelihood of being in a child play state. 

 
 

RESULTS 
 

In an attempt to capture the natural dynamics of the population under study, we initially 
ran the model to produce simulated matrixes that included all possible combinations of pairings 
across the three classrooms. However, given the limited availability for contact between the 
preschoolers and the kindergartners in the actual data, the sparseness of the real matrix in 
conjunction with the round-robin method invoked in PlayMate was not an appropriate 
combination for the specification of the model. As a result, all subsequent simulations were run 
on two different groups  the kindergarten classroom alone and the two preschool classrooms 
combined. In addition, peer availability was restricted to within class selection for producing the 
realized and simulated tallies. 
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Consistent with previous iterations of the model, the two indexes most sensitive to 
children’s attribute difference were Euclidean distance and mean cell difference. Figures 1 and 2, 
showing mean cell differences for preschool and kindergarten children, respectively, indicate 
that the affect variable had a better fit (i.e., a smaller difference) than either prosocial or social 
inhibition for 10 of the 12 data points. 
 

In addition, Mantel tests (Dietz, 1983) indicated that while the model fit well for 
preschoolers across each of the six time periods, significant correlations between the real and 
simulated matrixes deteriorated over time for kindergartners (Table 1). The scattergrams of the 
kindergarten data clearly suggest that most cells are characterized by no more than 
10 observations per time period. Initially, this result appears promising, given that the simulated 
matrixes are producing these values the majority of the time.  

 
However, two cells had extremes as high as 40 occurrences in the real data and only 

simulated values of 6 and 7. In summary, the observed affect manifested in the moment-to-
moment interactions of young children was better associated with the matrix fit than with a 
static, one-time report of behavior by a teacher or observer. However, as children move away 
from solitary play over time and develop established play partners, the values in the matrix 
disperse out into the rows. Unfortunately, the current version of PlayMate lacks a mechanism to 
capture these changes. 

 
In an attempt to test preliminary ideas related to the utility of emotion and its changing 

function over time, a repeated measures ANOVA was conducted. As hypothesized, a main effect 
for the decrease in the proportion of positive affect over time was found: F(1,43) = 317, 
p < 0.001. In addition, the interactions of groupXemotion and between subjects tests were  
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FIGURE 1  Mean cell difference between simulated and realized data  
for preschool children 
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FIGURE 2  Mean cell difference between simulated and realized data  
for kindergarten children 

 
 

TABLE 1  Significance levels for 
simulated versus realized matrix 
fit from using Mantel test 

Classa 
 

Time p Value 
   

K 1 0.035b 
P 1 0.031b 
K 2 0.23 
P 2 0.006b 
K 3 0.005b 
P 3 0.011b 
K 4 0.88 
P 4 0.000b 
K 5 0.36 
P 5 0.000b 
K 6 0.11 
P 6 0.000b 

 
a K = kindergarten; P = preschool. 
 
b Significant at p < 0.05. 
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FIGURE 3  Observed emotion by class and time period 

significant: F(1,43) = 19, p < 0.001, and F(1,43) = 30, p < 0.001, respectively. As seen in 
Figure 3, although both groups decreased their proportional use of positives over time, the 
kindergarten class decreased their use at a more rapid rate. 
 
 

DISCUSSION 
 

Although improvements have been made to previous versions of PlayMate, two areas of 
concern should be noted. First, although the model did a fairly good job of mapping onto mean-
level play propensities, it continues to have difficulty specifying high-density cells. In a real 
population of young children, or in any normally distributed population, extremes are expected. 
For example, in this particular year of real data, we encountered one autistic child who rarely 
played with other children and another child who spent more than 80% of his time in solitary 
play. In addition, a few children in the real data appeared to pair off early and show extreme 
exclusivity with one particular partner. While these extremes are somewhat expected in real data, 
we have yet to develop a method to effectively model them without inhibiting our ability to 
capture the general behavior of the classroom. 
 

A second area of concern involves the static rule implementation in the current version of 
PlayMate. The programming code is written to allow homophily to generate the dynamics  
of who plays with whom. However, we have no mechanism for allowing rules to evolve over 
time as a function of the evolution of the group itself. While homophily may be a primary 
influence on initial group formation, it is likely that over time and with increased frequency of  
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interactions, the social rules regulating group formation and maintenance change. These changes 
probably reflect the need for parsimonious energy expenditure during play and the concurrent 
reduction in variability among play partners. Theoretical and computational models that 
postulate the threshold levels of play frequency (and density) that induce these putative changes 
need to be developed. Such models should enable us to pick up the problematic high-density 
clusters and, as a result, produce stronger evidence of model validity. 
 

Despite the aforementioned shortcomings of the current model, two important objectives 
were achieved. First, we replicated evidence that PlayMate maps onto real processes involved in 
group formation. Second, we developed a more sensitive measure (i.e., affect) that is capable of 
capturing the dynamics within and across groups as well as across time. The latter objective is 
critical for understanding the cohesion of social interaction and will become increasingly more 
important as future attempts are made to further determine the utility of play for children. 
Moreover, developing better measures will aid in formulating the function that affective 
exchange serves in the evaluation of that utility, and, finally, how similar processes translate into 
other types of social networks. 
 

In its current form, PlayMate provides the preliminary foundation to suggest that the 
degree of friendliness is inversely related to the familiarity of the group over time. From a 
coupled economical and biological premise, this makes intuitive sense: the goal of any complex 
adaptive entity is likely to minimize the amount of energy expended or the cost required to 
achieve the intended benefit (e.g., see optimal foraging theory as discussed in Beauchamp, 2003, 
and Vucetich et al., 2004). If, in fact, positive affect requires energy expenditure and provides the 
milieu that children use to preserve the group, it could be that once the group exceeds a particular 
threshold (i.e., becomes a stable group), the members of the group no longer need to provide new 
information for the purpose of maintaining the already established group (i.e., the continued use 
of proportionally high positives would become redundant information and an unnecessary 
expenditure of energy). Given the difference in the rate that this effect is accomplished by the 
kindergarten and preschool groups, it could further be speculated that there is an advantage to 
achieving developmental maturity. Essentially, the older the child, the more social experience he 
or she is likely to have had. Older children are thus likely better at reading the requirements of 
social situations and, in turn, quicker at minimizing the required energy expenditure over time. 
Although it is yet to be determined whether this particular finding is a function of age or 
learning, it is likely that age and learning are correlated. If this is the case, we can assume that, 
on average, social acumen increases with developmental age.  
 

Although the idea of behavior serving a utility function has been supported in various 
areas of the ethology literature (Real, 1991, 1996; Montague et al., 1995; Schank and Alberts, 
2000; Deaner et al., 2005), the attempt to explain human behavior from this perspective remains 
speculative and untested. Examining human behavior, specifically children’s social interactions, 
as phenomena from this particular framework first requires a more microscopic focus on the 
smallest social units possible (i.e., unique dyadic pairings). Doing so will aid in determining 
whether the phenomena occur only as a function of aggregation across the system or whether 
they occur in each stable pairing, and subsequently, in determining if the combination of dyadic 
pairings produces the effect at the group level. More important, adopting this type of framework 
requires theoretically and empirically answering a fundamental question that has been 
unexplained thus far in the child development literature: Why do children play? What do 
children get from interacting with other children that essentially promotes their adaptation and 
survival as a young member of a complex species? Obviously, children cavorting on a 
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playground appear to be enjoying the activity. This enjoyment requires energy, however, and no 
complex species can afford to engage in such energy expenditure without achieving some 
evolutionary gain. To assess this gain, we must pose questions and test models that attempt to 
define generating mechanisms for behavior. As determined by all iterations of PlayMate thus far, 
homophily is capable of explaining a fairly adequate proportion of play propensities. However, a 
large portion of the picture remains a mystery. Even though answering these types of questions is 
challenging, to truly understand the processes occurring within social interactions, we must first 
understand what drives individuals to engage in those interactions. Fortunately, computer 
simulations and ABMs are powerful tools for examining these questions from a framework 
consistent with the very dynamics that influence the emergence of the phenomena in question. 
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ABSTRACT 
 

The modeling of human decision making will benefit from the use of interpretative 
agents that can assign meaning to situations. Meaning can be based on three interpretive 
mechanisms: prototype inference, situation definition, and orientation accounting. These 
mechanisms work together to create individual and collective interpretive responses to 
circumstances and events. This paper is a progress report on modeling with interpretive 
agents. 
 
Keywords: Agent-based modeling, interpretive agents, social prototypes, prototype 
concepts 

 
 

INTRODUCTION 
 
 In communication and action, human actors are oriented by meaning and its attribution. 
In every situation, we consider, discern, define, attribute, convey, question, dispute, affirm, 
reconsider and evolve its meaning. Inevitably, the attribution of meaning is an indexical process: 
the meaning of referents is determined by interactive context. Participants may also view shared 
situations as having distinctive, or even conflicting, meanings.  
 
 Meaning attribution is dynamic, often shifting rapidly. Notwithstanding, it is actor 
interpretation and interaction that shape and inform the flow of communications and acts. An 
“interpretive agent” (IA) computational research strategy emphasizes the way that meaningful 
responses to circumstances are produced via social interaction. In the context of artificial society 
and multi-agent systems (MAS) strategies, interpretive agents themselves remain relatively 
simple, while their interaction process is comparatively rich.  
 
 

INTERPRETIVE AGENTS 
 
 Modeling social agents is a compelling area of research for a number of reasons, 
including the complexity of the domain, its applicability to a significant range of real-world 
situations, and the inherent challenge of IA design and modeling issues. Modeling the social 
interaction of agents has richer potential when the agents’ interpretive process is addressed. 
Designing such agents requires caution, since modeling even simple interpretive behaviors in 
agents can multiply computational complexity to exponential levels. The IA strategy developed 
in Sallach (2003) undertakes to capture domain complexity without confronting the limits of 
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computational constraints. The approach emphasizes shared social prototypes and actions by 
using three mechanisms to simulate the meaning-oriented and nonlinear nature of social 
interaction.  
 

In its current architecture, the IA strategy is based on three assumptions and three 
mechanisms. The three assumptions and their rationales are summarized in Table 1. 
 

Cross-translation captures more of the complexity of human conceptualization and 
decision making than, for example, symbolic representation can. Fields of orientation combine 
both cognition and emotion. The modeling of orientation fields allows experimentation as to how 
natural agents reason about complex and diverse phenomena. 
 

Situated reactions to events, and the ensuing shared discourse, establish the dynamic 
contours of culture. Agent simulation, however, has not yet incorporated this form of knowledge 
representation. It is a premise of the IA research program that the utilization of topological 
inference can help produce a second generation of social agent simulation (see, for example, 
Gardenfors 2000). 
 

Three interpretive agent mechanisms and their associated dynamics are summarized in 
Table 2. 
 

The three mechanisms work together to create individual and collective interpretive 
responses to changing circumstances and events. In aggregate, such mechanisms can also 
simulate the process of cultural construction and evolution. The present paper is an interim report 
on the IA research program. 
 
 

CONCEPTS WITH RADIAL STRUCTURES 
 
 Prototype concepts are an empirical discovery of cognitive science. Once recognized, 
they can be theorized or modeled, but their form was identified through experimentation. 
Prototype structure is multi-dimensional and radial, with a (possibly idealized) exemplar at the  
 
 

TABLE 1  Interpretive assumptions 

 
Assumptions Rationale 

  
Agent experimentation Agent simulation provides a productive domain for experimentation 

with models of interpretive agent interaction, allowing exploration of 
diverse ontological and epistemological assumptions. 

  
Continuous/discrete 
cross-translation 

Natural agents dynamically translate from continuous settings to 
discrete models, and back into nuanced communication and calibrated 
action. Social agent models will improve in responsiveness and 
sophistication by simulating this process. 

  
Fields of orientation Natural agents dynamically maintain an orientation field with an 

emotional valence maintained or derived for every relevant actor, 
situation, object, and resource. Changes in cognitive models and/or 
emotional valences cause a shift in the orientation. 
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TABLE 2  Interpretive mechanisms 

 
Mechanisms Dynamics 

  
Prototype inference Human agents organize concepts into prototypes (i.e., radial structures 

oriented by exemplars) and draw inferences relative to those reference 
points. 

  
Situation definition Social actors maintain prototype concepts of situations and orient 

prospective actions relative to these concepts. Prototype situations are 
open-ended and evolve with each interaction. 

  
Orientation accounting Human agents are sensitive to the orientations of other actors, whether 

present or absent, living or historical, and even real or fictional. 
Anticipating such responses, their reactions are shaped accordingly. 

 
 
core while more idiosyncratic representatives reside along the radians. Prototype concepts and 
reference point reasoning can be seen as defining the form that is taken by bounded rationality. 
 
 Prototype effects have been identified in concepts of many types (e.g., birds and animals, 
human emotions, and social relationships). Thus, robin, love, and friendship are clearly better 
exemplars of their categories than, for example, ostrich, ennui, and clerk, respectively. Even 
mathematical objects manifest prototype effects in ways that are highly revealing. For example, 
two and four are seen as prototypical even numbers as opposed to, say, 112 or 4,516.  
 

A prototype concept is constructed from a set of (sometimes irregular) dimensions. As 
illustrated in Figure 1, a prototype concept of an affinity relationship might vary along axes of 
(1) the extent of relationship, (2) the number of common acquaintances, (3) the shared areas of 
interest, and (4) the immediacy and symmetry of reciprocity. As values vary along these (and 
potentially other) dimensions, the nature of the relationship will be considered more (or less) 
prototypical. In reasoning, concept exemplars form a reference point relative to which situations 
and actions can be assessed. 
 

Prototypes are the form that concepts take under the limits of bounded rationality. Like 
other concept forms, prototypes are used in combination. Figure 2 shows a simple example in 
which life, food, exchange, and ingestion are combined within the integrating concept of 
restaurant.  
 

Different actors typically combine concepts in somewhat different ways and to different 
extents. As a result, meanings are continuously negotiated among participants. 
 

A sample restaurant discourse structure is depicted in Figure 3. The hypothetical 
conversational participant is prepared to discuss, with equivalent priority, politics, work issues, 
and rumors that capture his or her interests. In the absence of a specific topic, s/he will engage in 
casual sociality. When restaurant employees take orders, serve food, etc. (as illustrated in 
Figure 4), that activity takes priority over conversational threads (depicted as the blue line 
interleaving the service interruptions). Should adverse circumstances create an even higher 
priority, such as the emergence of a danger, that new priority, when recognized, will be given the 
highest salience. 
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FIGURE 1  Affinity prototype 
 
 

 

FIGURE 2  “Restaurant” combines prototypes 
 
 

The prototype concepts active in a restaurant overlap and intertwine with each other. 
When friends exchange gifts, or diners pay for the meal, there is an exchange. In the face of 
danger, whether an explosion in the kitchen, an armed robbery, or some other disruption, 
possible actions are considered relative to the constraints and affordances inherent in, for 
example, friendship relations and a restaurant setting (see Figure 5). These new prototypes 
(danger) blend in with the others (friendship, exchange, etc.) and form the definition for a new 
situation, in which the agent needs to interpret, decide, and perform actions. 
 

 

Many friends in 
common 

 No friends in common 

Key examples of family & 
friends:  personal, and from other 

sources:  history, fiction, etc. 

Creative reciprocity, 
often delayed Known for decades 

Shares one or two areas 

Simple & rapid reciprocity 

Shares many areas in depth Known briefly 
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FIGURE 3  Restaurant discourse 
structure 

 
 

 

FIGURE 4  Contingent restaurant scenario 
 
 

In an interaction setting, there is, of course, more than one actor and, as suggested above, 
their prototype concepts, even when similar, are not perfectly aligned. As Figure 6 depicts, while 
generally sharing overriding priorities, the participants will, or will not, also share topical 
interests. Subsequent interactions will invoke, refine, contest, and evolve shared prototype 
concepts, thereby creating an emergent interaction order (Rawls 1987; 1989). 
 

The restaurant example is not just an arbitrary setting. Rather, it is a generic framework 
in which a wide variety of modeling problems can be explored (Figure 7). In the particular  
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FIGURE 5  (a) Blended concepts evolve with (b) new developments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 6  Overlapping discourse structures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 7  Chez Argonne 
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examples, and potentially many others, interaction orders of various structures give rise to a flow 
of deeply situated responses. The depth of these interaction-rich settings allow for more texture 
and nonlinear patterns than are normally feasible from using agent simulation models. 
 
 

MODELING PROTOTYPE CONCEPTS 
 
 To model prototype reasoning, it is important to design mechanisms of prototype 
invocation and topological inference (Gardenfors, 2000). As part of ontological experimentation, 
the cognitive part of an orientation field can be implemented, not as a set of facts, assertions, or 
beliefs, but as a prototype network or field. In order words, agent concepts, individual and 
collective, should manifest a core/periphery structure. 
 
 Concept exemplars, as well as departures from the conceptual prototype, vary radially 
along axes that together define the concept. Issues that need to be considered in designing such 
models concern, inter alia, the representation of the structure of basic/core prototypes as well as 
the dimensions (and domains) that define the relevant prototype concepts.  
 
 Ultimately, prototype concepts are employed in the action selection process (Bryson and 
Stein, 2001). In contrast to a restaurant discourse structure, the action hierarchy considers a 
broader set of possible priorities and actions. In Figure 8, action selection is conceived as an 
attractor system (Juarrero, 1999), in which compatible intentions are combined and integrated.  
 
 The IA action selection process is defined relative to a bio-social action hierarchy that 
integrates both social frames of reference and biological drives. Frames and drives are rooted in 
the social and biological orders, respectively, and can be seen as forming complementary poles 
with respect to each other. At the horizontal sides of Figure 8, there are exogenous  
 

 

FIGURE 8  Bio-social action hierarchy 
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processes/actions that drive and constrain endogenous options. Several frames/drives are 
involved during interaction; these frames acquire or lose focus as agent requirements change. 
Sociality is a frame that is given the lowest priority and is used when there is no pressing need 
for other interactions or actions. The drive to eat is periodic, receiving higher priority when 
hunger increases and disappearing when the agent is satiated. Danger is given the highest priority 
in the system and, when perceived, the agent attends to it immediately in order to achieve safety. 
These frames give rise to multiple options, which are considered and assessed as the selection 
process moves toward the congruent satisfaction of a set of important goals.  
 
 Prototype concept models draw upon a number of related formalisms: the relational data 
model, including its conceptual (RM/T) form (Codd, 1979); situation-theoretic “infons” (Devlin, 
1991); and action selection “tuples” (Bryson and Stein, 2001). These formalisms are integrated 
into an intra-agent response cycle, in which the particular sequence is determined by the urgency 
and level of activity of the agent. On the basis of prior experience and orientation, current agent 
perceptions are categorized by using shallow and/or deep joins, as relative urgency permits. An 
overview is provided in Figure 9. 
 

Since each agent is individually situated, and each has unique conceptual and action 
structures, patterns of responses and interactions are less likely to be redundant or reductionist. 
 
 

CONCLUSION 
 
 The present paper considers and applies the three mechanisms in the design and 
implementation of a general prototype model. While the latter is applied to multiple domains, the 
restaurant setting serves as a common focus. The dynamic evolution of interpretive processes of 
social interaction is explored. More concretely, a sociality laboratory is created in the form of a 
prototypical restaurant. The dynamics of interpretive social interaction, as manifested in a variety 
of simulation problems, are being investigated and modeled in the ambience of Chez Argonne. 
 
 Future topics will consider the method of drawing inferences from a network of 
prototypes, representation of orientation fields, definition of situations in prototypic terms, level  
 
 

 

FIGURE 9  Response cycle 
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of granularity in differentiating two situations, extraction of similarities from different situations, 
categorization of a new situation in the prototypic sense, and so forth. 
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DISCUSSION: 
 

COMPUTATIONAL MICROSOCIOLOGY 
 

(Friday, October 8, 2004, 10:15 to 11:45 a.m.) 
 

Chair and Discussant:  X. Zhong, The University of Chicago 
 
 
SimDyad: An Agent-based Model of Interaction between Intimates 
 

Michael North:  I’d like to move on to the Computational Microsociology session. I’ll 
be hosting it instead of the previous host due to a last-minute change. I’d like to introduce 
Bill Griffin from Arizona State University (ASU). He’ll be discussing “SimDyad: An Agent-
based Model of Interaction between Intimates.” 

 
William Griffin:  Good morning. Let me tell you what we’re trying to do at the lab at 

ASU. This particular presentation and the one that follows cover a series of efforts we’ve been 
working on for a while. We’ve been trying to figure out, at a theoretical level and at an 
implementation level, how one can generate a reasonable agent-based model or models by using 
very small n. It’s fairly easy to conceptualize how a mass (a very large number) of entities, 
collectively, with simple rules, can produce an emergent phenomenon. It’s much more difficult 
to envision how this occurs with only a few entities interacting. We are accustomed to 
conceptualizing large quantities of interactants as being necessary for generating complex 
processes. But most of the important socialization processes that we know of and that we’ve all 
been a part of occur in very small groups or in intimate dyads, and they’re very complex. Those 
of you who are old enough to have been in relationships long enough know that they get nasty 
and messy and everything else, and there’re only two people. No, actually, there are not really 
two people; there are a lot of people. We don’t know how the complexity of this runs its course, 
however, so that features of a dyad emerge. Features that characterize the dyad are small groups 
— groups of two and three people who have an intimate network. Thus far, theoretical agent-
based modeling has stayed away from that. That’s what we’re trying to do. 

 
We’re also trying to look at phenomena for which we have empirical data. Thus, the talks 

this morning will cover our attempts to replicate or start simulating a proxy to what we have 
good data on, and what we’ve had enough good data on for years, and things like that. This 
morning, the first thing we’ll talk about is dyads, specifically married couples, and we have some 
data on divorced couples. We’re the only lab in the in the world right now that has interactional 
data on divorced couples. We want to see if we can simulate what they do by using an agent-
based approach rather than just, say, an ordinary differential approach or differential equation 
approach. 

 
[Presentation] 

 
Brian Pijanowski:  Brian Pijanowski from Purdue. Excellent work. I have a question 

that’s actually not related to the work but is related to administrative red tape — to human 
subjects’ research. I’m trying to get into this myself and finding that I spend a lot of time just 
filling out forms and attending workshops. I’m working in a social system in East Africa where 
if you walk into a room and say that you have a form for someone to sign, it affects the way in 
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which they’d like to participate in your overall process. Could you comment on that with respect 
to your work? 

 
Griffin:  Yes. I actually have a unique perspective on that because I started doing this 

work before there were human subjects, but it was typically very local in terms of the 
department. By the way, he’s [referring to Pijanowski] right. If you started doing this, the human 
subjects would be all over you because one of the things that’s assumed is that you will induce 
psychological distress, and you have to write in your human subject forms that there’s a 
possibility of psychological distress. I used to say to the clinician that people will never talk 
about something that has not been talked about before a hundred to a thousand times. Nothing 
new will come out of it. Twenty years ago that was not a problem. Your colleagues would say 
that was okay. Since that time, I’ve been on the ASU Human Subjects Board. It’s a very different 
story now. Not only is it much harder to get that, and my position is in the minority … as if this 
is not going to induce distress in this form or in a lot of forms that the government is now trying 
to protect. 

 
The only advice I have is to be very clear up front and say that there is a possibility of 

psychological distress. As I say (and I’ve been doing this for over two decades), it’s never been a 
problem because there is a misunderstanding that you, as an experimenter, can induce 
psychological distress. You cannot. You will not — not if you’re doing a task where you’re 
asking a married couple to discuss problems that they are having in their relationship. These have 
all been discussed a lot. In fact, one of the nice things about doing this research is that it’s so 
heavily patterned. In one of the experimental designs I had, we had a “positive interaction” and a 
“negative interaction.” A positive interaction occurs, for example, when you pick from a list of 
ten things those three things that you like to do and that you can remember doing (e.g., first date, 
honeymoon, marriage, birth of a child). A highly distressed couple will fight about the first date. 
They’ll fight about the honeymoon, who spent all the money, why didn’t they go where they 
were supposed to go. I don’t even have that in my protocol now because you generate the same 
data. The same thing happens. It is built in; it’s a pattern, and this pattern of response is what 
we’re actually using to develop the models. 

 
What I was going to say about the human subjects is to make sure you say up front that 

there’s a possibility of psychological distress and that you have an immediate debriefing protocol 
that they can use to get out of the distress. You will probably run into that same language. 

 
Pijanowski:  I have a couple of questions. I agree with you about the importance of 

validating what you’ve got with the agents. Can you talk about where you are in that and about 
whether or not you see that the agents might lead you in directions for dealing with 
interventions? I also have a more theoretical question. Why would people in distress express that 
distress more readily than persons who are doing well if they’re put into a contentious situation? 
I would think that you might sometimes find the opposite if you’re comfortable in your 
relationship. For example, I’ve observed Mormons in their 80s who seem to snipe at each other 
very quickly and very harshly but are not under any threat that they’re going to break apart. 

 
Griffin:  Yes. Let me answer the latter question first. One thing that’s difficult in this 

kind of work, which you just pointed out, is that every couple is unique. Every couple has a 
history, and the behaviors of any given couple that you see don’t necessarily put them on a 
trajectory toward a dismal outcome, but they reflect the structure. There’s an ideographic sort of 
nature about this. Sniping may simply reflect how their relationship was defined, and all the 
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sniping isn’t the same. They know when it changes. They know the tone of voice. They’ll know 
real quickly when it is not the same thing. 

 
William Lawless:  Do you pick that up? 
 
Griffin:  Yes. You have to. Depending on the protocol, you may have to see them more 

than once, or you’ll notice that when a topic shifts, what verbally would sound the same comes 
across nonverbally very differently. Because you don’t have access to that information, one of 
the ways you know it is to look at the shift in the probabilistic structure of the response. 

 
Lawless:  So you wait for the point to arise. You’re not manipulating things. 
 
Griffin:  We ask couples to list things and areas in their relationship that they want to 

address. Again, it doesn’t matter. You could talk about who’s supposed to pay for car repairs. It 
doesn’t matter. They’ll drift there anyway. They will always drift there, and that’s what you want 
them to do. What was the other question? 

 
Lawless:  The importance of the intervention. Based on what you’ve seen with the 

agents, does intervention happen too soon? 
 
Griffin:  Yes, it was way too soon. I’ll go to the validation. We actually got a 

mathematician to do Monte Carlo calculations on this. We’re trying to feed him enough data to 
look at the amount of variation. We’re working on that. The critical thing is we’re assuming that 
this is akin to the actual generating process, but we don’t know that. We can reproduce a data set 
without knowing if it’s valid, and that’s going to take some time. 
 
 
PlayMate: New Data, New Rules, and Model Validity 
 

Michael North:  I’d like to introduce Shana Schmidt, also from Arizona State 
University, who will discuss “PlayMate: New Data, New Rules, and Model Validity.” 

 
Shana Schmidt:  Last year, Bill [Griffin] developed a simulation to model children’s 

play groups. When I started working for Bill, we talked about the full model, about the kids, and 
about how the model applies to them. One thing we talked about right away — even though there 
were a couple of variables (a couple of behaviors) that it mapped on very well — was that the 
method, that the data collected, was static. We started talking about how they’re not actually the 
most adequate capturers of the social processes that are going on and about how that determines 
the group’s evolution over time. We decided to go after what happens in kids’ moment-to-
moment interactions that would be a better indicator of how group processes in young children 
emerge and evolve over time. 
 

[Presentation] 
 

Ebony Bridwell-Mitchell:  Ebony Bridwell-Mitchell, New York University. The 
question I have is probably more relevant with regard to older children. I’m thinking about your 
point that similarity and attraction drive the way we see these agents being connected. I imagine 
that for an older kid, as well as these kids, what people are attracted to is not the similarity they 



366 

perceive between themselves and a particular agent, but the similarity between that agent and 
some prototypical characteristics of an “in group.” I imagine that might be more true. 

 
Schmidt:  You’re talking about cliques and crowds, like “in” teenagers? 
 
Bridwell-Mitchell:  Yes, instead of necessarily being attracted to someone I perceive as 

being similar to myself, I’m more attracted to someone who’s similar to what I believe to be the 
prototypical member of some in group. 

 
Schmidt:  Sure, but I think you have to be careful, because with that, you have an 

awfully smart agent. It’s not just physical; you can’t miss physical similarity. It doesn’t take a lot 
of smarts to be able to do that. What you’re giving your agents is extreme cognition, and I think 
people do that. It’s just that I don’t know how we’re going to model that. 

 
Bridwell-Mitchell:  No, my question was regarding whether you anticipate that some of 

the things you found might have been different if you were looking at similarity based on 
similarity to some other set of agents versus similarity to my own personal characteristics? 

 
Schmidt:  Sure. 
 
Bridwell-Mitchell:  I think there would be a huge challenge with modeling that. 
 
Michael Macy:  This is really interesting work. I’d like to compare notes with you 

sometime because I have some grad students who are doing something very similar on clique 
structures among older kids, but one thing that’s different in the model — and I wanted to run 
this past you — is that homophiles can actually be decomposed into two forms: “likes attract” 
and “opposites repel.” What we found is that when you assign valence to homophiles, the 
dynamics really do change. Allowing for both “likes attract” and “opposites repel” gives very 
different dynamics than just having “likes attract.” I wondered if you explored some of that. 

 
Schmidt:  Not typically, but one thing is that we rank or order all of our attributes, so if 

they were opposites, they would repel. I do think it’s interesting that you say that. I think for this 
particular age group, it would be somewhat interesting. There’s actually a small group of people 
out there doing what’s called “mutual antipathy” research. They work with three- and four-year-
old kids who have this mutual antipathy. They’re having a lot of negative interactions, but 
they’re completely opposite from each other, so it’s going to be a function of how your data are 
collected because there’s a difference between interaction and playing. I think that that would 
probably be a graduate student’s biggest challenge: modeling to accurately reflect whether it’s a 
positive play thing or an interaction. That’s something that we’ve bumped into more times than I 
care to count, but it’s actually a really good concept. 

 
Macy:  I didn’t quite get your last comment. I had one other question, but your last 

comment, was that about positive emotions? 
 
Schmidt:  Yes, it was about how the more familiar you are, the less friendly you need 

to be. 
 
William Lawless:  I think it might indicate a degree of comfort that you’re not under a 

threat that the relationship is going to break apart. 
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Schmidt:  We kind of played around with it that, again, utility and what is the cost of 
play. What is the energy expenditure? Even though play is fun for most kids and they get 
something out of it, a substantial amount of energy goes into it. If you are comfortable with a kid 
and know that he’s not going away because you’ve had enough exchanges together to tell you 
that he’s not going to go away, then you don’t need to expend that much energy anymore, but, 
again, this is all preliminary. I feel like we’re jumping the gun even going there, but I’m a little 
excited about it. 

 
Lawless:  Maybe emotion is not necessarily a by-product. Maybe it represents a 

constraint, an internal constraint. You’re bumping up against a constraint, and the kids don’t 
have the skills to go past that. 

 
Schmidt:  Yes. Especially a three-year-old. 
 
William Bulleit:  Bill Bulleit, Michigan Tech. It’s certainly beyond my area, but my 

limited interaction with kids would seem to indicate that the crossing you get between 
kindergartners down to three-year-olds is probably related to their size. Small kindergartners 
seem more likely to play with three-year-olds, and big three-year-olds tend to play with 
kindergartners. 

 
Schmidt:  In this new round of studies, because we have a new grant, we’re collecting 

actual data on height and weight. One of the things that we’re looking for with height and weight 
is the popularity feature — that bigger or older kids tend to be more popular within these little 
nested groups. We actually went after age with it. We went after discrepancies (kind of the other 
way around). There are a thousand different things that you could do with it. You could do 
cognitive ability, asking if they are academically even. If you’ve got a really astute three-year-
old child playing with a five-year-old kid who’s in kindergarten, but not quite on the same level 
as the other kindergartners, that makes sense. But having collected and knowing these data, I can 
tell you what’s going on with that, although our population’s probably not going to be applicable 
to others. Some of the kids have been there since they were three and have moved up, and they 
remember the kids who stayed back in preschool. They’ve moved on to kindergarten but are still 
bumping into them from time to time, so we don’t really know enough. 

 
One of the struggles that we’ve been having with modeling this is finding out what’s 

really going on. In a new year of data, would the same things hold? We’re not quite sure. 
Absolutely, it’s one of the things you could look at. 

 
North:  I’d like to thank the speaker. 

 
 
Prototype Concepts and Social Interaction 
 

Michael North:  I’d like to reintroduce David Sallach and introduce Veena Mellarkod 
from Texas Tech. They’re going to talk about prototype inference and social interaction. 

 
David Sallach:  Some themes in this presentation are similar to some that we were 

talking about. This is a joint work with Veena Mellarkod. I’m going to do the first half of the 
presentation, and she’ll do the second half. The themes in common with what we were talking 
about earlier are the idea of using meaning-oriented agents to generate macro processes and the 
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emphasis on bounded rationality. In particular, this research takes a look at the potential 
importance of prototype concepts and the use of prototype concepts within agent simulation. You 
might view this as a continuation of a larger initiative that we call the interpretive agent 
initiative, which was discussed in a paper presented last year. It summarizes principles and is 
available in the proceedings, but I will very briefly summarize the dominant assumptions of this 
research initiative. 

 
[Presentation] 

 
North:  We have time for a few questions. 
 
Claudio Cioffi-Revilla:  Claudio Cioffi, George Mason. I have two quick questions to 

see if I understood correctly. Could you back up to the diagram of the event stream? Is it 
appropriate to understand the event stream as situational changes? 

 
Veena Mellarkod:  The event streams have many different things, like the emotions and 

the prototypes. They might not be situations, but more than that. 
 
Cioffi-Revilla:  Not situations as such, but changes in a given situation? 
 
Mellarkod:  Yes. 
 
Cioffi-Revilla:  So the event streams prompt some responses, some problems to respond 

to or opportunities. My second question is where do prototypes fit in this general flow? 
 
Mellarkod:  They’re everywhere. At the input level, there is mainly a quick join of the 

immediate situation and then act immediately, give a quick response. At this level, it’s more a 
deep join as to what’s happening, a detailed situational analysis that would be done in an off-line 
way. It might not be done during the interaction, but while the agent is sleeping, it would occur. 

 
Robert Reynolds:  Bob Reynolds of Wayne State University and the University of 

Michigan, Museum of Anthropology. A follow-up on the prototype question is that prototypes 
are like rules: they’re meant to be broken. Any given situation may not fit the prototype exactly. 
For example, you order something on the menu and you want to substitute something. 
Negotiation always comes into play to different degrees to massage the prototype into something 
that fits the current situation. How do negotiation and tweaking the prototype to fit a given 
situation fit in terms of the process? 

 
Mellarkod:  At this level, they find comparisons where different prototypes are 

occurring, and at that place, the new situation evolves. It would be adapted to the current existing 
prototypes, or if new prototypes are emerging, they try to fit in the event stream to a particular 
prototype. Did that answer your question? 

 
Reynolds:  Yes. So, if this is an internal process, then these prototypes are constantly 

refined based on the actual flow of events. But you also raised the issue of negotiation, which 
would take place more at the table level. In other words, might this be one of the interaction 
structures that would be going on? There was an example that we gave, but there’s also a 
negotiation example that could then be plugged into those situations where negotiation was the 
relevant interaction protocol. 
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Dingxin Zhao:  I’m Dingxin Zhao from The University of Chicago, Department of 
Sociology. I have a question. You say that you can link from micro to macro. Can you give me 
an example of how it can be linked? 

 
Sallach:  What we’re doing is using the restaurant as a metaphor. The point is that at 

each of these tables, micro-interactions are going on; however, there is a macro structure. Maybe 
we can see this most clearly in, for example, the occupation authority. Imagine that there is an 
occupation authority. (By the way, this idea of occupation authority is just a totally abstract 
example.) The occupation authority has a set of policies that can be implemented. They may be 
more concerned with ideological convincing or perhaps with the application of coercion; that is, 
there may be different structures of policy. There may be differences within the occupation 
authority in terms of relative priorities — a sense of what is effective strategy and so on. These 
differences can be the subject of negotiation. As a result, however, at the outset, a policy would 
be put in place. That policy would be transmitted to the troops, and the troops would try to carry 
it out. It’s not that they would carry it out perfectly. In fact, there would be discussions about 
this: Does this policy make sense? What has our experience in the field been? And so on. So you 
have some slippage that a lot of times you don’t get. But the point is that you have a sequence of 
interaction context manifests — certain kinds of decisions and actions and so forth — that then 
move (or are translated) into a macro framework. 

 
William Lawless:  I have a quick question. I like the notion of adjustments. You also 

talked about evolution. Are those two related, and, if so, how are they related? 
 
Sallach:  What do you mean by evolution?  
 
Lawless:  You talked about cultural evolution at the beginning of your portion of the talk.  
 
Sallach:  Yes. I mean that this contains within it the potential (depending on what 

simulation you’re working with) or some mechanisms for what you might call micro-culture. In 
other words, culture presents resources that are then available in the interaction context and may 
be invoked in a variety of ways. These resources may include prototypes that are shared, but not 
completely shared. There has to be an alignment of the underlying concepts and so forth, but the 
culture is this kind of vast field of available symbolic, artifactual, and other types of resources. 

 
Lawless:  Then how would evolution occur? Is there a stress or strain on the prototypes? 
 
Sallach:  We don’t have a model that specifically models evolution per se. Certainly 

situations evolve. We have micro-transitions that take place, but we do not, at this point, have 
macro ones. 

 
Xing Zhong:  I am just briefly commenting because a lot of discussion has already 

involved these issues. With regard to the first paper, we also constructed a dynamic model of diet 
interaction, and I would like to say that the author did a nice job of constructing a complex 
adaptive system in the way that the hierarchical influence mechanism worked as a positive 
feedback mechanism, whereas the inherent uncertainty in the system, what with encoding and 
decoding errors and attribute bias, etc., work as an active feedback in the system. The bias is an 
interesting process, and I wonder whether it is appealing to the author to construct an alternative 
bias that is an intrinsic parameter produced by an individual. I would argue that this so-called 
intrinsic bias can play a role in this agent process by modifying the capacity of reduction of 
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uncertainty in a situation. We can observe the robustness of the market that is of interest by 
introducing this noise into the system. In the meantime, I would encourage the authors to 
articulate the patterns observed within the small … emerged from experimentation to shed light 
on the data mix of interest. 

 
With regard to the second paper, I think that it raised a compelling question by asking 

how discrete entities emerge into self-organized groups. With PlayMate, the author’s model to 
obtain information through peer preference by addressing both ontological-level and 
interrelational-level processes. I would like to suggest an extension to that site, if it has not yet 
been constructed, by allowing behavior attributes to interact with group-level characteristics. 
Although it may be marginal to the emergence of group permission, the interaction of behavior 
attributes with group dynamics can establish a feedback loop where growth dynamics and 
stability of the group are concerned. 

 
With regard to the third paper, it presented a concrete design of an interpretive agent. The 

mechanism discussed here, prototype influence, has three advantages in simulating situated 
meaning in social interactions. First, the prototype concept with its radial structure allows 
malleability and interpretation of the capacity of agents, which endogenize the heterogeneity at 
the macro level. Second, by allowing interactions among prototypes, this design accommodates 
variety in social interactions. Third, the design of the general prototype domain reduces the 
computational complexity. As a result of these advantages, we can attain a higher level of 
accuracy and reliability with a more complicated agent. With these advantages in modeling, 
I would like to push the point further by asking the authors to speculate on, or even highlight the 
question of where and when, the modeling interpretative agents become substantive in the 
process of our theory building. 

 
Sallach:  Thank you. I hope we don’t have to answer that question right away, but I agree 

with you. It’s a major focus to determine when they have the potential to make the unique 
contribution and how best to link that up with the range of theories that I discussed earlier, the 
one we’d like to see experimentation with. 

 
North:  Are there any other questions or comments? 
 
Luis Antunes:  Luis Antunes from Portugal, University of Lisbon. I would like to ask the 

author of the second paper about the utility of considering utility in the relationships between 
very young infants. I would think that kids are not really energy savers or utility maximizers, and 
I wonder if that preconception about looking for the utility in your vision distorts the real 
motivation behind behaviors. I was worried about the results and the concept of utility. 

 
Schmidt:  I think from the utility, it’s not … 
 
Unidentified Speaker:  The proceedings are taped, and your comments will appear in 

the proceedings. 
 
Schmidt:  That’s perfectly okay. I think it’s a good question, and it’s one we’ve been 

playing with. We’re trying to define how this could even be working for these kids. In terms of 
utility, it’s probably not the same way that an adult thinks of utility. A kid simply either likes 
something or doesn’t like it. As far as the cost goes, there is a cost to them to stay in it if they 
don’t like it, and it’s overwhelming for them. So there is a utility function in defense of that. In 
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terms of a cost/benefit analysis or something like that, the kids probably don’t do that. But there 
has been substantial literature saying that kids (even very young kids, I believe …in a work by 
Gary Black) do evaluate the relationships in terms of utility. It’s just probably not the same kind 
of utility that adults use. 

 
Unidentified Speaker:  They don’t have the same relationships. 
 
Schmidt:  Yes. It’s not that they don’t engage. It’s that they …. 
 
William Griffin:  I think you’re asking whether our interpretation of utility is 

influencing our interpretation of the data. Yes. It doesn’t affect me because I’m not a child 
developmentalist. That’s just the Marva part of that. 

 
One thing that’s very clear from watching children play is that there is an energy cost and 

an emotional cost to engaging in behavior that they’re not pleased with. You can watch them 
move quickly to solitary activity, or they will lessen the probability of playing with another child 
if there’s a cost involved. You can watch this sequentially over time. That’s a good question, 
though. I don’t think it influences our interpretation of the data. We know the phenomena exist. 
How do you think it’s influencing it? It’s a good question. 

 
Antunes:  You try to say what’s happening in terms of this region of study. I think … 

can prevent you from … this explanation, which says that they’re saving energy here, so let’s 
move on. Can you observe in detail what’s happening and determine energy and utility? 

 
Sallach:  Well, there’s more than just interpreting the data. We’ve gravitated toward that 

because there’s some empirical support for it, but we also don’t exclude other alternatives. One 
thing we’re looking at, for example, determining the caring capacity of the group in a case where 
you have two kids playing. Does bringing a third person into that group modify the child’s 
interpretation of how much fun it is to play with the initial person to begin with? We’re looking 
at that. So it’s not just being familiar with another child, or how close you are … with an 
attribute as having a simple utility function and reducing energy costs or expenditures or 
something like that. There is more to it. We know that. So, yes, it’s not limiting the lenses in any 
way. But what happened, just from what you said, is that it becomes much more complex very 
quickly, and we just keep gathering data. 

 
North:  Thanks to everyone. We need to cut off our discussion at this time. 
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ABSTRACT 
 

We propose an integrated approach for exploring gender differences by using models 
provided by multi-agent systems and psychology. First, we present some psychological 
theories that try to explain gender differences, focusing on both proximal and distal 
causes. We concentrate on the schema and role theories for proximal causes and the 
biosocial theory for ancient causes. We describe a general framework for gender 
differences that is not limited by the weight of utilitarian restrictions. Second, we apply 
our research ideas into that context by tackling the consequences of gender-differentiated 
decision, its social consequences, and agent adaptation. Finally, we put forward a simple 
model of an experimental setting to test both the framework and some common ideas 
about gender issues, and we present some preliminary results of our simulations.  
 
Keywords: Gender differences, agent behavior, agent-based social simulation 

 
 

INTRODUCTION 
 
 Many artificial intelligence (AI) and computer science techniques and applications make 
use of sex-related concepts when they need to address topics such as evolution or reproduction. 
However, in most cases, the sex of an agent is used only as a group-distinctive feature, and the 
study cannot be limited merely to gender issues, from either a biological or social standpoint 
(e.g., Troitzsch, 2004). In this paper, we examine gender as a social/biological concept, not just 
sexed agents. In particular, we investigate the conditions under which the concept of gender 
arises as well as discover the features that are relevant for modeling gender-differentiated 
decision and its consequences at both the micro and the macro level.  
 

Gender presents a new class of problems to AI researchers, since women as a class 
behave recognizably differently from men, and no one would deem either gender’s behavior as 
being “more rational” than the other. The two genders just happen to have different rationalities 
(Antunes et al., 2001a). But why? Is this difference rooted in genetic dispositions or in social 
environment? In both cases, the questions are, “Are there mental structures supporting this 
difference?” and, if so, “What are they?” Only in this way can we justify the need for a gendered 
agent-based model — a need that arises in many fields (e.g., economics, social sciences, 
demographics). It is hard to address some social dynamics without taking into account the fact 
that social actors have a gender. For example, consider the differences in the salary that women 
and men receive for carrying out the same task (europa.eu.int, 2004). The differences in salary 
are bound to have an impact on the (perceived and real) utility that both genders take out of their 
labor, and this necessarily affects the overall dynamics of society. 
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The research reported herein is being conducted by an AI research group, and it strongly 
emphasizes multi-agent systems. Knowledge about gender differences, however, comes mainly 
from psychology. To bridge this gap in notions, methodologies, and approaches, we must 
essentially build a common set of concepts and terms, reach an understanding about the 
topography and borders of both areas, and operationalize the psychological concepts into  
AI models that we can explore. Without this integrated approach, we risk obtaining inconsistent 
results, as demonstrated by the first attempts to introduce the concept of gender in economy and 
game theory studies. In particular, game theory focused on gender differences with regard to 
altruism, but results were mixed: some studies found women to be more cooperative or generous, 
while others found men to be more cooperative (Eckel and Grossman, 2001). This inconsistency 
can be ascribed to a ingenuous use of the Prisoner’s Dilemma game or its public good variants. 
Indeed, the risk component of this kind of game was not taken into account, even though it 
affects women’s behavior. So, women are more likely to defect in a task that implies risk 
(Simpson, 2003).  
 

This approach, like many others, found its agent modeling in a utilitarian view of 
rationality. While the empirical results are indeed interesting, this prevailing utilitarian view  
(or totalitarian view; see Kahneman and Tversky, 2000; Antunes et al., 2003) dramatically limits 
the complexity of the model and hence the realism of results. In particular, when all the 
motivations being considered amount to maximizing expected utility, the deep roots of gender 
(i.e., sex) are excluded. In this case, belonging to a given gender is, for all simulation purposes, 
equal to supporting a given football team or to arbitrarily being assigned some distinctive tag. 
This is a drastic methodological trap that we endeavor to avoid. In the following section, we give 
an overview on some theories about gender differences. Then we present our model. 
 
 

GENDER STUDIES 
 
 In the last century, many biological and social scientists have performed research on sex 
differences. The former used evolutionary theory to provide a coherent theoretical framework; 
the latter started from a completely different theoretical approach, using concepts from social 
psychology, such as schema and role. We briefly present these concepts, concluding with a 
theory that sums up the investigations made by biologists and social scientists.  
 
 
Schema and Role Theory  
 

Various psychologists use the concept of schema to address sex differences. A schema is 
a cognitive structure — a network of associations that organizes and guides an individual’s 
perceptions. It works as an anticipatory structure, encompassing a readiness to search for and to 
assimilate incoming information. In schema theory, what is perceived is a product of the 
interaction between the incoming information and the perceiver’s pre-existing schema.  
 

In particular, gender schema theory (Bem, 1981) asserts that the phenomenon of sex 
typing derives from gender-based schematic processing (i.e., a generalized readiness to process 
information on the basis of the sex-linked associations that constitute the gender schema). Sex 
typing, in turn, results from the fact that self-concept is assimilated into the gender schema. The 
activation and therefore the use of the gender schema depend on various factors: situation, 
availability of supplemental information, and personal inclination to use schemas 
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(Barberà, 2003). The content of the gender schema is related to the society in which the schema 
is developed.  
 

At a social level, schemas or stereotypes are represented by gender roles. A role is a set 
of expectations about the ways in which people are expected to behave in different situations. 
Roles depend on many things, like the position a person holds, the person’s culture, and, of 
course, the person’s sex. Social role theory suggests that most of the behavioral differences 
between males and females that we know about are the result of cultural stereotypes about 
gender. In particular, because they perform different tasks, males and females may develop 
different skills and abilities, different expectations for their own behavior, and different beliefs 
about their own traits. This brings about the formation of gender roles, that is, shared 
expectations about behavior that are applied to the people on the basis of their identified sex. The 
contents of gender role are reproduced within a society through various socialization and social 
psychological processes (Bussey and Bandura, 1999). 
 
 
Evolutionary Psychology 
 
 Evolutionary psychologists state that the sex-specific psychological dispositions built into 
the human species through genetically mediated adaptation to primeval conditions are 
responsible for sex-differentiated social behavior (Wood and Eagly, 2002). In conformity with 
the principle of differential parental investment and the mechanism of sexual selection, males 
and females developed distinct strategies for solving the different reproductive challenges 
(Trivers, 1972). As a result, ancestral men competed with other men for sexual access to women, 
and men’s evolved dispositions came to favor aggression, competition, and risk taking. Ancestral 
women developed a proclivity to choose mates who could provide resources to support them and 
their children. Furthermore, because of females’ internal fertilization, males developed a 
disposition to control women’s sexuality and to experience sexual jealousy in order to increase 
paternity certainty and gain fitness benefits from investing resources in their biological offspring. 
In summary, according to evolutionary psychologists, much of the sex-differentiated behavior 
that occurs in contemporary societies emerges from these evolved psychological dispositions.  
 
 
Biosocial Theory  
 

Wood and Eagly (2002) proposed a new perspective called biosocial theory. It is a 
synthesis of the psychological and biological approaches. Biosocial theory takes into account 
both the sex-related biological differences and the social context (Eagly, 1987). In particular, 
Wood and Eagly claim that physical sex differences, interacting with social and ecological 
conditions, influence the tasks accomplished by men and women because certain activities are 
more efficiently performed by one sex. For instance, females, being characterized by pregnancy 
and childbearing, are less efficient in fulfilling tasks that require long amounts of time far from 
home and long periods of training, while men, being characterized by greater size and strength, 
are more efficient in performing hunting and warfare. Therefore, women and men allied in 
complementary relationships in societies, and the division of labor produced greater efficiency. 
The psychological attributes are seen as a result not only of the evolved characteristics of the 
sexes but also of developmental experiences and activities performed within a society.  
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 Wood and Eagly studied numerous nonindustrial societies and focused on the different 
sex-typed social arrangements in each society. Their work underscored that the division of labor 
between men and women is an almost universal characteristic, which allows childbearing by 
women. However, the tasks performed by women and men depend on the local economy and 
environment. For instance, even if women usually do not hunt, they do hunt in some 
environments where hunting does not conflict with childbearing. Another variable that affects 
women’s roles is the possibility of supplemental feeding of infants, which allows women to 
perform more productive tasks. The same result is obtained if other people are available to care 
for infants. In general, Wood and Eagly stated that in accordance with role theory, biological 
sex-related differences interacting with the environment determine the roles held by women and 
men, which, in turn, determine the psychological attributes, skills, and socialization of each sex 
(i.e., the gender of each sex). 
 
 

METHODOLOGICAL CONTEXT 
 

From the decision standpoint, we consider a setting where agents use a multi-varied, 
situated, evolving choice mechanism (Antunes et al., 2001a,b). A choice function is set up for 
each individual agent; it encompasses both the reasons for preferring different options and a 
mechanism for updating the choice parameters according to results of previous decisions. This 
complex choice framework makes it possible to generate realistic, nontrivial types of behavior. 
Hence, we can obtain behavior heterogeneity in an agent society that is fundamental to overcome 
the problems of the traditional approaches (based on utilities and probabilities) (Antunes et al., 
2003). 
 

In the interaction of gender-differentiated decision and societal consequences of gender 
differences lies a complex set of gender-relevant aspects, whose dynamics determine the very 
idea of gender (as opposed to simple sex of the individual). These aspects can be measured (or 
valued) against a set of dimensions, influencing the idea of gender in different manners. In 
previous work, we explored the idea of decisions being influenced by different dimensions 
(Antunes et al., 2001b; Antunes and Coelho, 2002). Basically, an agent has a choice function that 
uses multi-varied measures over the relevant dimensions (called five values), and the agent 
possesses mechanisms that evaluate the outcomes of decisions and “tune up” the machinery to 
choose differently (hopefully better) in the next situation. An example of the application of such 
a schema to gender-differentiated agents is shown in Figure 1. 
 

The relevance of the aspects listed in the upper left of Figure 1 differs on the basis of the 
agent’s gender. These aspects can influence a decision by being measured against various 
dimensions, such as those shown on the lower left. The outcome of a decision is then assessed in 
terms of aspects such as those shown on the upper right, again according to measures like those 
shown on the lower right. For instance, a male agent can decide to spend more time with his 
family and earn less money in his work, and he can evaluate this decision as being socially more 
fair while being individually bad for his finances. This kind of assessment will ultimately 
provide motives for change and evolution in the society that will “spin off” from each individual. 
Individual decisions will contribute to but not ultimately determine how the society will act as a 
whole. 
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FIGURE 1  Dynamics of gender as a role: relevant influential aspects 
 
 

EXPERIMENTAL SETTING 
 

We adopted the Wood-Eagly (2002) biosocial theory about gender differences, since it 
provides us with a link between the distal biological reasons that might have caused gender 
differences, while allowing the realization of gender-aware behavior as a social role that could, 
by itself, reinforce the difference in genders. We propose a simple model based on a cross-
cultural study conducted by these two authors.  
 

There are several interesting hypotheses we could explore. At this stage of our work, we 
concentrate on the relationship between labor and child nurturing, with the natural emphasis 
being on the role of women in these two activities. We hypothesize that different social 
organizations affect the contribution of women in productive activity — a contribution that is a 
cue of their power and status in the society (Schlegel and Barry, 1986).  
 

For validation, we used data from cross-cultural anthropological research, particularly 
from the standard cross-cultural sample (SSCCS) (Murdock and White, 1969). The SSCCS is a 
database that contains information collected from about 186 nonindustrial societies. These 
societies are considered less complex than post-industrial society and more similar to the early 
human communities. They are not homogeneous, which reduces the presence of cultural biases.  
 

In this experimental environment, we propose to conduct an exploratory simulation 
aimed at better understanding the problem. Even if our setting is too simplistic, we can address 
issues (e.g., the adequacy of the models of agents, their groups, their societies, and their 
interactions among these several entities), and we can evaluate the effectiveness of the societal 
and individual measures we use to test the results of the chosen models. In a more ambitious 
effort that is more realistic, we can compare our simulation results to the results and conclusions 
from anthropological models based on empirical experiments. The idea of exploratory simulation 
is to develop intuitions, conjectures, and preliminary results into better and better hypotheses and 
theories (Conte and Gilbert, 1995; Hales, 2001). 
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THE MODEL 
 

Our model attempts to replicate the conditions of a simple society. The world is 
represented by a grid (100 × 100) with random scattered food, regenerated periodically. Each 
agent cannot move diagonally, and opposite edges are connected (tours world). A central area 
(10 × 10) constitutes the village, to which the agents return after each cycle. There is no food in 
this area.  
 

Each agent is characterized by a set of attributes: 
 

• Sex (male or female), 
 
• Speed (2−5),  
 
• Current age, 
 
• Death age (between 50 and 60), and 
 
• Metabolism (4−8). 

 
Agents are organized into nuclear families composed of only parents and children (at this stage). 
The main goal of an agent is to increase the amount of stored food, which determines the well-
being of the family and the number of offspring. Thus, there are two main tasks: a productive 
task and a reproductive task that implies childbearing.  
 

The capability of gathering food is based on agent speed. Speed measures the time and 
capacity that agents have to accomplish their tasks. In general, the value of the male agents’ 
(M-agents) speed is higher than that of the female agents (F-agents). So this characteristic 
constitutes the physiological difference between the male and female agents. Furthermore, 
F-agents must care for their offspring until they are 2 years old.  
 

In each turn, every agent leaves the village to look for food and carries out a number of 
steps equal to its speed. It then returns to the village, places the collected food in its family’s 
food storage, and eats a quantity of food equal to its metabolism. The agents do this in order of 
age, so parents and older children take advantage of the food storage first. This mechanism 
follows a habit also observed in the animal realm, in which parents, in situations of necessity, 
favor the older children, in whom they have already invested a remarkable quantity of energy 
(Dawkins, 1976). At the end of a turn, the age of each agent is increased. Agents younger than 
15 years old totally depend on their family and slow down the agent who cares for them. At the 
age of 15, agents start to contribute to the well-being of the family, and, at the age of 18, they can 
form an independent family by selecting a (random) mate.  
 

When every member of the family has eaten, the family decides whether to have another 
child by considering the level of food in the food storage. The family then decides which 
member will be entrusted with the children. The parent who remains with the offspring is slowed 
down in its productive activity. The value of this penalization depends on the number of 
children, which is multiplied for a value between 0 and 1. This is done in order to simulate that 
some tasks clearly contrast with the care of offspring (1), while others do not at all (0).  
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We start with very simple-minded agents. Each agent embodies a fixed belief about the 
sex of the children’s caretaker. Thus, agents have three possible characters: traditionalist, 
nontraditionalist, and utilitarian. The first always assigns the childbearing function to the female, 
the second assigns it to the male, and the third uses an algorithm to calculate the most profitable 
choice for the successive turn. These kinds of characters allow for three different social 
organizations. 
 

In each simulation we measure: 
 

• Number of agents, 
 
• Life expectancy, 
 
• Male contribution to subsistence, and 
 
• Female contribution to subsistence. 

 
Societal measures of status are taken only directly (i.e., by observing the contributions of 

women to the family wealth). Also, the influence of women on the stereotypical female role is 
realized only through self decision. In a more realistic setup, women can do this by either setting 
an example for society members or directly influencing their children’s education. Neither of 
these cases should be neglected. In fact, an equally interesting hypothesis to model would be to 
investigate the long-term effects of these socially influencing strategies on the gender equality of 
a society (see Conte and Castelfranchi [1995] on micro-macro link). 
 
 

PRELIMINARY RESULTS AND PROSPECTS 
 

In our first simulations, we ranged the weight of interference between childbearing and 
the subsistence task over (0,1) and manipulated the speeds for females and males to simulate the 
existence of tasks that contrast more with child nurturing than others and that require a higher 
physical aptitude than do others. We started by observing populations composed of only one 
kind of agent (nontraditionalist, traditionalist, or utilitarian) in order to compare the performance 
of each one against the others. 
 

Results show that in a very competitive environment (requiring physical capacity to 
collect food and incompatibility between child nurturing and productive tasks), populations 
composed entirely of traditionalist agents obtain a better result in terms of number of members 
(about double) than do populations composed only of nontraditionalist agents (see Figure 2). The 
utilitarian population presents similar results, because almost all the families decide to let female 
agents do the child nurturing. 
 

We also tracked the contribution to subsistence in competitive environments. The female 
contribution to subsistence is about 25% in traditional populations and 40% in nontraditional 
populations (see Figure 3). In real populations, this figure is considered quite good in terms of 
women’s productive contribution, and also in terms of the fairness of the distribution of domestic 
labor between sexes (Schlegel and Barry, 1986).  
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FIGURE 2  Size of three populations at iteration 1,000  
 
 

 

FIGURE 3  Contribution to subsistence 
 
 

We performed simulations with the three kinds of agents, starting with populations of 
100 elements. In iterations of 1,000 cycles, we noted that the nontraditional agents disappeared 
quickly, while the utilitarian group remained a little longer. In the end, only traditionalists 
remained, with a good population growth (magnitude of 140 elements, in contrast with the 
original 35) (Figure 4). Our conclusion is that groups do not survive because they cannot 
originate enough wealth to ensure the support of their offspring. However, when we 
experimented with less competitive environmental conditions, we verified that the three kinds of 
agents can survive (Figure 5). 
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No. of Years 

FIGURE 4  Population with the three kinds of agents in a competitive environment 
 
 

 
No. of Years 

FIGURE 5  Population with the three kinds of agents in a noncompetitive environment 
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 To produce less competitive environments, we uniformly increased the agents’ velocity. 
Other possibilities would be to change the rate of food supply or its total quantity. For 
experiments with more heterogeneous and ingenious agents, these alternatives would surely be 
more adequate. In our simulations, we ran the same 1,000-cycle iteration and observed that 
traditionalists prevail as the biggest population. The utilitarian and nontraditionalist groups 
survived as minorities, with the utilitarians being the larger group of the two. These final 
distributions were stable. When we performed additional cycles, we noted that the three groups 
remained. These results allow us to conclude that the three group strategies we programmed are 
not bad; given the right world circumstances, they allow for the group’s survival. In future 
experiments, our goal is to provide further dynamics in these groups. On one hand, we want to 
allow individuals to change their group during their lifetime, either because of a change in 
opinion about the best way to optimize family life or because of the consequences of social 
contacts (weddings, education, etc.). On the other hand, we want individuals to observe and 
ponder the individual and societal measures that affect them and to dynamically adapt their 
behavior as a consequence of that assessment. 
 
 

CONCLUSIONS 
 

This paper discusses preliminary work on the implications of considering gendered 
agents in a simulated experimental setting. We hope to gain insights into the anthropological 
problem itself, yet we also recognize the challenge that this work poses to current models of 
artificial agents’ rationality. Our prospects include refining our model, gaining insights from it, 
and discovering regularities in the problem we are addressing (Gilbert and Doran, 1994; Conte 
and Gilbert, 1995). The overlapping of subjects from psychology and AI also must be checked 
for realism, relevance, and, especially, correspondence in complexity granularity. In future work, 
we intend to complete this set of experiments and proceed with data analysis. We then plan to 
refine our agent and society models. We also envision an application of these ideas to avoid 
certain learning problems in genetic algorithms. 
 
 

REFERENCES 
 
Antunes, L., J. Faria, and H. Coelho, 2001a, “Choice: The Key for Autonomy,” in P. Brazdil and 

A. Jorge (eds), Proceedings of EPIA 2001, 10th Portuguese Conference on Artificial 
Intelligence, LNAI, Vol. 2258, Springer. 

 
Antunes, L., J. Faria, and H. Coelho, 2001b, “Improving Choice Mechanisms within the  

BVG Architecture,” in C. Castelfranchi and Y. Lespérance (eds.), Intelligent Agents VII, 
Agent Theories Architectures and Languages, 7th International Workshop, ATAL 2000, 
Boston, MA, Lecture Notes in Computer Science, Vol. 1986, Springer-Verlag.  

 
Antunes, L., and H. Coelho, 2002, “On How to Conduct Experiments with Self-motivated 

Agents,” p. 11 in Lindemann, Moldt, Paolucci, and Yu (eds.), Proceedings of RASTA ’02, 
Vol. FBI-HH-M-318/02, University at Hamburg. 

 
Antunes, L., J. Faria, and H. Coelho, 2003, “Utility in Interacting Markets? — A Position 

Paper,” Second International Workshop on Regulated Agent-based Social Systems: Theory 
and Applications (RASTA ’03), Edinburgh, Scotland, June.  



385 

Barberá, E., 2003, “Gender Schema: Configuration and Activation Process,” Canadian Journal 
of Behavioral Science 35:176–184.  

 
Bem, S.L., 1981, “The Measurement of Psychological Androgyny,” Journal of Clinical and 

Consulting Psychology 42:499–528. 
 
Bussey, K., and A. Bandura, 1999, “Social Cognitive Theory of Gender Development and 

Differentiation,” Psychological Review 106:676–713.  
 
Conte, R., and C. Castelfranchi, 1995, Cognitive and Social Action, London, UK: UCL Press.  
 
Conte, R., and N. Gilbert, 1995, “Introduction: Computer Simulation for Social Theory,” in 

Artificial Societies: The Computer Simulation of Social Life, London, UK: UCL Press.  
 
Dawkins, R., 1976, The Selfish Gene, Oxford, UK: Oxford University Press.  
 
Eagly, A.H., 1987, Sex Differences in Social Behavior: A Social-role Interpretation, Hillsdale, 

NJ: Erlbaum. 
 
Eckel, C.C., and P. Grossman, 2001, “Chivalry and Solidarity in Ultimatum Games,” Economic 

Inquiry 39:171–188. 
 
europa.eu.int, 2004, “Gender Equality.” Available at http://europa.eu.int/comm/employment_ 

social/equ_opp/index_en.htm.  
 
Gilbert, N., and J. Doran (eds.), 1994, Simulating Societies: The Computer Simulation of Social 

Phenomena, London, UK: UCL Press.  
 
Hales, D., 2001, Tag Based Co-operation in Artificial Societies, University of Essex. 
 
Kahneman, D., and A. Tversky (eds.), 2000, Choices, Values, and Frames, Cambridge, UK: 

Cambridge University Press.  
 
Murdock, G.P., and D.R. White, 1969, “Standard Cross-cultural Sample,” Ethnology 8:329−369.  
 
Schlegel, A., and H. Barry, III, 1986, “The Cultural Consequence of Female Contribution to 

Subsistence,” American Anthropologist 88:12. 
 
Simpson, B., 2003, “Sex, Fear and Greed: A Social Dilemma Analysis of Gender and 

Cooperation,” Social Forces 82:35−52. 
 
Trivers, R., 1972, “Parental Investment and Sexual Selection,” pp. 136−179 in B. Campbell 

(ed.), Sexual Selection and the Descent of Man: 1871−1971, Chicago, IL: Aldine.  
 
Troitzsch, K.G., 2004, “A Multi-agent Model of Bilingualism in a Small Population,” in 

H. Coelho Helder and B. Espinasse (eds.), Proceedings of the 5th Workshop on Agent-
based Simulation, Lisbon, Portugal, May 3−5. 

 



386 

Wood, W., and A.H. Eagly, 2002, “A Cross-cultural Analysis of the Behavior of Women and 
Men: Implications for the Origins of Sex Differences,” Psychological Bulletin 128(5). 

 



387 
 

OVERLOOKED IMPLICATIONS OF ETHNIC PREFERENCES FOR RESIDENTIAL 
SEGREGATION IN AGENT-BASED MODELS 
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ABSTRACT 
 

The impact of preferences is investigated for co-ethnic contact on residential segregation, 
as supported by Schelling’s hypothesis that modest preferences can have important 
consequences for segregation under certain conditions. The findings temper and, in some 
instances, contradict Laurie and Jaggi’s claim that expanding “vision,” the size of the 
immediate neighborhood used in evaluating ethnic mix, makes stable integration a likely 
outcome in Schelling-like models with weak or moderate preferences. Laurie and Jaggi’s 
results have limited relevance for residential segregation for several reasons. Most 
important is that their study underestimates the segregation-producing potential of weak-
to-moderate preferences because they overlook a powerful interaction between 
preferences and ethnic demography and perform their simulations by using the optimal 
ethnic mix for achieving integration. This paper shows that preferences described by 
Laurie and Jaggi as compatible with stable integration generate high levels of segregation 
in their model under settings for ethnic demography common in real cities. 
 
Keywords: Ethnic demography, residential segregation, SimSeg model, agent-based 
modeling 

 
 

INTRODUCTION 
 

Laurie and Jaggi (2003) reported that standard interpretations of Schelling’s (1969, 1971, 
1978) agent-based model of residential segregation should be reconsidered and revised. If 
correct, the implications of the Laurie-Jaggi  study are significant, as the Schelling model is one 
of the most influential and celebrated of the agent-based models. It is a valuable tool for 
investigating how micro-level residential choice behavior can produce aggregate-level patterns 
of ethnic residential segregation. It is routinely cited as an exemplar of how relatively simple, 
micro-level behavior can produce unexpected emergent structure in spatial networks (Macy and 
Willer, 2002). Clark (1991), Epstein and Axtell (1996), Krugman (1996), Young (1998), and 
Wasserman and Yohe (2001) are among the many scholars and researchers who have explored 
different aspects of Schelling’s model and endorsed his conclusions that integration tends to be 
an unstable condition in model systems and that high levels of segregation can occur even when 
no individual in the population wishes to reside in the type of ethnically homogeneous 
neighborhoods found in highly segregated cities. 
 

Laurie and Jaggi extend Schelling’s model by investigating how “vision,” a parameter 
governing the size of the immediate “neighborhood” surrounding residential locations, affects 
segregation behavior. They report that vision interacts with preferences to produce “non-simple 
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segregation behavior” that includes stable integration under model specifications they view as 
relevant for residential segregation in urban areas. Accordingly, Laurie and Jaggi contend that 
their study provides evidence against “claims of inevitability of segregation in Schelling-like 
models” (2003, p. 2689) and claim to have “discovered that there is a large region of the 
parameter space” for preferences and vision “where integrated communities remain stable for 
arbitrarily long times” (2003, p. 2690). They stress that this “stable regime does not correspond 
to some unrealistic, Gandhian levels of racial preferences/tolerances of the agents” but is 
consistent with “non-zero and quite substantive values” of preferences and can serve to generate 
“an optimistic outlook for the future of neighborhood integration” (2003, pp. 2690–2691). Thus, 
they assert that “contrary to popular belief, rather modest decreases in xenophobia and/or 
preferences for one’s own kind, when coupled with increased vision, can lead to stable and 
integrated neighborhoods,” and they suggest that “the education community and other social 
agents who work to lower preferences for one’s own kind and to increase tolerance for the 
‘other’ can take strong encouragement from this study” (2003, p. 2703; emphasis in original). 
 

We commend Laurie and Jaggi on a number of counts. First, unlike some critics of the 
Schelling model, they show great respect for his contributions and the depth of his original 
insights. Even as they question conventional assessments of Schelling’s theories, they note that 
he was careful to recognize the limits of his contributions and showed subtle understanding of 
the complexity of the issues. Thus, where many have studiously ignored Schelling’s work or 
dismissed it without engaging it in a direct way, Laurie and Jaggi take his model seriously; they 
seek to extend and refine it with the goal of better understanding the potential linkages between 
individual preferences and segregation. 
 

Second, Laurie and Jaggi display a welcome appreciation for the value of developing 
theory from the ground up by exploring models purposefully kept simple, at least initially, to 
better understand the implications of the model. They resist the urge to introduce excessive 
realism in their model before the complex behaviors manifested in simpler versions of the model 
are well understood. Rather, they are guided by the view that theoretical development is served 
well by elaborating established models in incremental steps to minimize problems in establishing 
cause-and-effect relations. 
 

Third, Laurie and Jaggi clearly describe how they implement and modify Schelling’s 
model. The broader literature on residential segregation is replete with discussions of the 
relationship between preferences and segregation that offer strong conclusions without outlining 
a model that supports them or providing a basis for evaluating the conclusions in a rigorous way. 
In contrast, Laurie and Jaggi are clear and explicit about the components of their model and the 
key mechanisms that drive their findings. They describe precisely how they implement 
preferences, urban structure, ethnic demography, and agent behavior involved in a housing 
search and residential choice. In short, they provide the essential ingredient for cumulative 
scientific inquiry — a clearly specified model that facilitates replication and extension. 
 

Fourth, Laurie and Jaggi show a nuanced understanding of the fact that segregation in 
real urban systems is the product of many factors. They avoid contrived arguments pitting one 
factor against another when no basis is found for portraying them as mutually exclusive or 
competing explanations. Thus, while they recognize the role of factors such as economic 
inequality, housing discrimination, and institutional forces in segregation dynamics, they pursue 
an intentionally restricted analysis aimed at better understanding the linkages between 
preferences and segregation. This theory leads them to suggest policy options for reducing 
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segregation, namely, enhancing available information about neighborhood ethnic composition 
and promoting increased tolerance of residential contact with out-groups and reduced 
preferences for in-group contact, which would not necessarily be highlighted in analyses 
focusing on other factors contributing to segregation (e.g., mortgage loan discrimination, realtor 
steering, minority economic disadvantage). 
 

We applaud the Laurie-Jaggi study for the reasons just enumerated and for the care of 
their analysis and the clarity of their exposition. We believe, however, that close scrutiny of their 
implementation of Schelling’s model leads to the conclusion that their findings must be 
interpreted much more narrowly than their discussion suggests. Specifically, we conclude that, 
while the Laurie-Jaggi results are technically correct, the broad implications from their analyses 
are misdirected in two crucial respects:  

 
• Their central findings are based on very low settings for vision, which have 

limited relevance for residential segregation.  
 
• They adopt idiosyncratic model settings for ethnic demography and search 

that lead them to seriously underestimate the impact of preferences on 
segregation and the magnitude of the changes in preferences that may be 
needed to reduce segregation in real cities. 

 
Our conclusions are derived from several observations. First, we introduce the simulation 

model, SimSeg, which we use to perform our analyses, and highlight points of similarities and 
differences between it and the Laurie-Jaggi model. Second, we replicate key findings from the 
Laurie-Jaggi study to show that the SimSeg model produces similar segregation behavior when 
implementing model specifications that correspond closely with those used by Laurie and Jaggi. 
Third, we introduce variations in the implementation of search and vision to show how they 
influence model-based findings. Finally, we introduce other variations in model specifications to 
document that preferences and ethnic demography interact in a complex way that is both central 
to determining segregation behavior in agent-based models and relevant to understanding 
residential segregation in real cities. 
 
 

THE SIMSEG MODEL 
 

SimSeg is an agent-based model written by the first author of this paper for use in 
conducting simulation experiments to explore segregation dynamics (Fossett, 2003). The 
characteristics and capabilities of the SimSeg program have been outlined by Fossett (1998), but 
only a few are relevant to the analyses presented in this paper.1 This section briefly reviews the 
key points of similarity and difference between the Laurie-Jaggi agent-based model and SimSeg. 
We then use the SimSeg model to replicate key findings from the Laurie-Jaggi study and show 
that our contradiction of their findings cannot be attributed to technical differences between the 
two models. 
 

                                                 
1 Information about the program can obtained by going to the first author’s Web site at 

http://sociweb.tamu.edu/faculty/fossett/index.htm. A version of the program geared to undergraduate teaching 
can be found on the Internet by going to the Web site for Amber Waves Software at 
http://www.amberwaves.com. 
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First, we consider the concept of “agent.” In both models, agents are virtual households 
with the ability to search in a virtual housing market and make residential choices. Households 
possess binary ethnic status. Following Laurie and Jaggi, they are labeled either White or Black; 
however, these labels are arbitrary. Households have preferences for co-ethnic contact specified 
in terms of the percentage of co-ethnic households found in the neighborhood in which the 
household lives or to which it is considering moving. In the Laurie-Jaggi model, ethnic 
preferences are homogeneous within and across groups. In the SimSeg model, preferences may 
vary by ethnic group — a feature we draw on in some of our extensions. 
 

Households reside in housing units at fixed locations in a virtual city landscape. Housing 
units have no qualities other than occupancy status and neighborhood ethnic composition. 
Searching households can move only to unoccupied housing units. When they move, their 
original housing unit becomes unoccupied and “available.” Their destination housing unit 
becomes occupied and “unavailable.” In both models, housing units are arranged in a virtual city 
landscape. In the Laurie-Jaggi model, the landscape consists of a 50 × 50 square grid with 
2,500 housing units and no boundaries of any kind. The apparent east-west boundaries of the 
visual representation of the grid are analytically treated as “wrapping around” to meet each other. 
The same is true with regard to the apparent north-south boundaries. Thus, their landscape forms 
an “edgeless torus.” As is evident in figures presented later, the landscape in the SimSeg model 
consists of 5,488 housing units organized into a roughly circular city form. Housing units are 
grouped into 112 “bounded areas,” each of which is subdivided into a square 7 × 7 housing grid. 
The SimSeg landscape has outer boundaries or “edges” analogous to those of real urban areas. 
Laurie and Jaggi describe their edgeless torus landscape as attractive because it suppresses 
“boundary effects.” However, we found no evidence that this matters for purposes investigated 
in this paper.2 
 

In both models, the initial condition is one of random assignment of households to 
locations in the city landscape with 10% of housing units left vacant. By definition, residential 
location is not systematically linked with racial status, so the city landscape is “integrated” at 
initialization on the basis of “even” distribution. Laurie and Jaggi quantify segregation by using a 
measure S, which they describe as the “ensemble averaged, von Neumann segregation 
coefficient,” which generally varies between 0 and 1.3 SimSeg computes a variety of segregation 
measures; we report the index of dissimilarity D computed by using data for the 112 bounded 
areas in the city landscape.4 Laurie and Jaggi describe S as being normed against the expected 
value under random assignment. We draw on Winship (1977) to apply a transformation formula 
that norms D against its expected value under random assignment. Because of the norming 
procedures, both S and D can take on negative values, meaning that the city is more integrated 
than would be expected under random assignment. 
 

                                                 
2  Laurie and Jaggi do not suggest that the substance of their findings depends in any important way on using the 

edgeless torus urban form. If this were the case, we would wonder why an edgeless form would be favored over 
the urban form implemented in SimSeg because real urban systems have boundaries. 

3 The computing formula is given in Laurie and Jaggi (2003, p. 2693). 

4 Laurie and Jaggi describe S as “closely related to the dissimilarity index” (2003, p. 2693) but do not support this 
assertion. We examined values of D obtained by using an individual-level computing formula found in Winship 
(1977) that can be used with immediate neighborhoods. We found that these values correlated more closely with 
D (computed from data for bounded areas) than with S. 
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In both studies, the focal variables in the analyses are the ethnic composition C of the 
city, the range of vision R defining the size of immediate neighborhoods, and preferences for 
co-ethnic contact P. Laurie and Jaggi characterize these as “the interesting, essential, and 
dominant independent variables in this model” (2003, p. 2703, note 6). Laurie and Jaggi set the 
city ethnic composition C to 50% Black (C = 50) in all of their analyses5 for several reasons. 
They state that “the model has been intentionally kept symmetrical between the two races” to 
further the study’s goal of understanding the effect of vision (2002, p. 2692) and “because it is 
the prototypical case and has been the focus of much earlier work (2003, p. 2693). Finally, they 
suggest that they chose this value “to concentrate on the worst-case scenario” (2003, p. 2969; 
emphasis added). For purposes of replicating Laurie and Jaggi, we also set the city ethnic mix to 
50/50. In later analyses, however, we varied ethnic mix for three reasons:  

 
• To highlight the fact that it is a crucial factor conditioning the impact that 

preferences for co-ethnic contact have on segregation outcomes;  
 
• To show that imbalanced ethnic ratios are typical in real cities; and  
 
• To show that the 50/50 ethnic mix, far from being the worst-case scenario, is 

optimal for obtaining stable integration. 
 

Laurie and Jaggi specify immediate neighborhoods on the basis of the value of R. 
R neighborhoods are site-centered regions consisting of the housing units that can be reached by 
traveling R spaces by cardinal moves from a chosen point. These neighborhoods assume the 
form of diamond-shaped areas where the vertices of the diamonds extend out R units from the 
focal housing unit on the points of the compass. For this paper, we also implement immediate 
neighborhoods in this way.6 The approach yields neighborhoods that are very small when R = 1 
and that rapidly increase in size as R increases. We also implement vision by using bounded 
areas (i.e., neighborhoods with fixed boundaries) and find that results obtained by using this 
specification are similar to those obtained by using large R immediate neighborhoods. 
 

Laurie and Jaggi specify an agent’s preference for co-ethnic contact P as the minimum 
percentage of same-race agents it must find among the residents of its immediate neighborhood 
to be “satisfied.” In their simulations, preferences are homogeneous and symmetric; that is, the 
value of P is constant within and across ethnic groups. They vary the value of P from a minimum 
of 20% to a maximum of 50%. In our initial simulations replicating those of Laurie and Jaggi, 
the SimSeg model is set to implement ethnic preferences as they do. In later analyses, we vary 
the implementation of preferences in two ways: (1) we allow it to vary over a much wider range, 
and (2) we allow it to take different values across groups. 
 

                                                 
5 While Laurie and Jaggi state that C is restricted to the range 0.0 < C ≤ 0.5 (2003, p. 2692), C does not take any 

value other than 0.5 in their analyses. 

6 SimSeg also can implement immediate neighborhoods based on all sites that fall within a circle of radius R 
extending out from the relevant housing unit. If a substantive basis exists for choosing between the two 
approaches, it is not known to us. Cardinal traversing rules may be more efficient from the perspective of 
computational burden, but they are curious in that they produce vision patterns where households see “farther” 
by a factor equal to 2  on the north-south and east-west compass points than on the diagonal points of the 
compass. 
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Laurie and Jaggi specify a search process in which an agent is selected at random to 
evaluate the ethnic mix in its immediate neighborhood CN. If the agent is satisfied (if CN ≥ P), it 
does nothing. If the agent is not satisfied, it attempts to move by randomly selecting available 
housing units and evaluating them in the same manner. If the agent discovers an available unit 
with an immediate neighborhood that would allow it to improve its satisfaction, it moves, thus 
creating a vacancy at its origin location. This process continues until a static “equilibrium” is 
reached, that is, until movement ceases because no household is able to improve its satisfaction 
by moving. This specification has two characteristics that we consider in more depth later in the 
paper. One is that it has no mechanism of population turnover; households are immortal and a 
satisfied household can reside in the same location forever. The other is that households move 
only to improve satisfaction and, in a given simulation, may never move from their initially 
assigned locations. 
 

To replicate Laurie and Jaggi, we specify a similar search process by using the SimSeg 
model. During a period of activity termed a “cycle,” households are selected at random and 
given the opportunity to evaluate their immediate neighborhood and compare it with the 
immediate neighborhoods for a set of a dozen vacant housing units selected at random. The 
household will move if it discovers a vacant housing unit that is more satisfying. If more than 
one of the evaluated units is more satisfying, the household will move to the one that is “most” 
satisfying. The evaluation process continues until a number equaling 25% of all households have 
been given the opportunity to move. This ends the cycle. The process is repeated for a sufficient 
number of cycles to establish a static equilibrium.7 
 

In the analyses featured in this study, we use a modified version of this search process in 
which households are required to move the first time they are selected for search. Significantly, 
they must move even if the housing options they encounter are less satisfying than their initially 
assigned location. This rule assures that every household will move at least once during the 
simulation experiment, and at the end of the simulation, they will reside in a location they 
identified and selected through search.8 The modification is simple but has important 
consequences for segregation outcomes. Later, we show that our modified search process 
produces substantively sensible results under conditions where the original Laurie-Jaggi search 
process produces pathological results. 
 
 

REPLICATION OF THE LAURIE-JAGGI STUDY 
 

In the previous section, we noted many points of similarity and several differences 
between the Laurie-Jaggi model and the SimSeg model. The measurement of segregation in 
SimSeg follows conventions in the demographic research literature on residential segregation, 
whereas Laurie and Jaggi use the less well known S. Likewise, SimSeg’s implementation of the 
city landscape corresponds closer to real urban form, while the Laurie-Jaggi landscape conforms 
closely to stylized forms used in agent-based modeling. In this section, we demonstrate that these 
                                                 
7 We run our simulations for 30 cycles. This is an arbitrary number, but it is sufficiently high to ensure that 

segregation patterns have converged on an equilibrium. In most cases, the number of moves in a cycle will fall to 
zero or near zero well before cycle 30 because no households can improve their situation by moving. 

8 Under the Laurie-Jaggi search specification, households can remain in their originally assigned location as long 
as they remain satisfied. Thus, at the end of the simulation, they do not necessarily reside in a location that they 
choose through search. 
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differences do not appear to be consequential with regard to our ability to replicate Laurie and 
Jaggi’s central findings by using the SimSeg model. 
 
 Figure 1 presents the results of three representative simulation experiments that replicate 
the first set of results in the Laurie-Jaggi study. Panel 1 shows the unsurprising result that when 
households have no preferences for co-ethnic contact, segregation does not emerge.9 Panel 2 
shows that when households seek 50% co-ethnic contact and vision is specified to the very low 
value of R = 1, the experiment produces what Laurie and Jaggi term “small-domain” segregation 
characterized by dendritic regions of ethnic homogeneity. Panel 3 shows that if vision is 
increased to R = 5, it produces a much higher level of segregation with expansive “ghettos” (a 
term they use). These results correspond closely with results presented in Laurie and Jaggi’s 
Figure 3. There is no indication here that our representation of the city landscape or our use of a 
modified search process causes the results generated by the SimSeg model to differ in any 
important way from those reported in the Laurie-Jaggi study. 
 

Figure 2 presents final landscapes from representative simulation experiments replicating 
the analyses that Laurie and Jaggi present in their Figure 4. These analyses explore how 
preferences for co-ethnic contact interact with vision in their model. In all simulations, the initial 
landscape (not shown here) is characterized by segregation near 0.0. The results in column 1 
show that when households have low preferences for co-ethnic contact (P = 30), the level of 
segregation in the ending landscape declines as vision increases from R = 1 to R = 3 to R = 5. 
Furthermore, when vision reaches R = 5, the ending landscape has extremely low segregation. In 
contrast, the results in column 2 show that when preferences for co-ethnic contact are set at a 
moderate level (P = 50), the level of segregation in the ending landscape increases as vision 
increases and stands at a very high level when vision reaches R = 5. 
 

Note that the simulations presented in Figures 1 and 2 use our modification of the 
Laurie-Jaggi search process. In Appendix A, Figure A.1 shows the results of comparable 
replications from using Laurie and Jaggi’s original search process. We can also replicate other 
findings presented in the Laurie-Jaggi study.10 We limit our discussion to these results, which we 
view as central to their conclusions. 
 

Laurie and Jaggi interpret their finding of an interaction between vision results and 
preferences results as lending “theoretical support to two specific policy initiatives” for reducing 
segregation: (1) to increase vision by improving “the availability and flow of housing market 
information” and (2) to encourage reductions in preferences for co-ethnic contact that would 
make home seekers more willing to “consider alternative neighborhoods where their own race is 
not concentrated” (2003, pp. 2697–2698). We do not strictly disagree with these findings or with 
Laurie and Jaggi’s general policy recommendations. However, we argue that both findings must 
be qualified and placed in realistic context. 
 

We conclude that the first policy recommendation is largely moot, as households 
routinely use nonminimal vision when they evaluate neighborhood ethnic mix in subdivisions,  
 

                                                 
9 Laurie and Jaggi do not present a similar result because under their search process, no households would move in 

this simulation. In our search process, each household moves on the first search. 

10 Table A.1 and Figure A.2 in the appendix reproduce the Laurie-Jaggi results (shown in their Figures 5 and 7). 
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Initial Landscape Ending Landscape 

  
Panel 1: No Preferences for Co-ethnic Contact; D = 0.02 and 0.00 

  
Panel 2: Preference for 50% Co-ethnic Contact, Vision = 1; D = 0.02 and 0.26 

  
Panel 3: Preference for 50% Co-ethnic Contact, Vision = 5; D = 0.02 and 0.79 

FIGURE 1  Initial (left) and final landscapes from simulations replicating the Laurie-Jaggi 
analyses investigating how vision conditions the impact of preferences under 
50/50 ethnic mix 
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P = 30; Vision = 1; D = 0.20 P = 50; Vision = 1; D = 0.26 

  
P = 30; Vision = 3; D = 0.17 P = 50; Vision = 3; D = 0.67 

  
P = 30; Vision = 5; D = 0.03 P = 50; Vision = 5; D = 0.79 

FIGURE 2  Final (right) landscapes from simulations replicating the Laurie-Jaggi 
analyses investigating the interaction of preferences for co-ethnic contact and vision 
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school districts, and other large-scale bounded areas; also, there is no basis for assuming 
otherwise. Regarding the second policy recommendation, we show that Laurie and Jaggi 
seriously underestimate the segregation-promoting potential of preferences and thus the 
magnitude of the social change needed to eliminate the impact of preferences for co-ethnic 
contact on segregation. We establish these and other points by exploring variations of the 
Laurie-Jaggi model. We conclude that Laurie and Jaggi’s central findings and the interpretations 
they assign to them must be qualified in two important respects. First, when specifications of 
vision and search move away from certain stylized forms used in the literature on agent-based 
modeling and toward forms consonant with substantive theory and research on residential 
segregation, the impact of preferences on segregation becomes stronger and more robust; 
interactions involving vision take on much less importance. Second, when ethnic demography is 
varied to include values typical in real cities, it produces higher levels of segregation than Laurie 
and Jaggi predict because they overlook the fact that ethnic demography conditions the impact of 
preferences on segregation and causes the 50/50 ethnic mix they use in their simulations to yield 
the most optimistic results possible for integration. 
 
 
Commentary and Critique on the Laurie-Jaggi Model Specifications 
 

Researchers drawing on simulation methods must make many choices. One option is to 
strive for realism to enhance the ability to draw implications for empirical systems. Laurie and 
Jaggi conform closely to an alternative strategy of making small changes to a simple but well 
understood model. They are clear about why they do so; it ensures that their model is similar to 
those used in previous studies in the literature on agent-based simulations. The benefit of this 
approach is that it makes clear what effects are produced by manipulating vision. In this regard, 
Laurie and Jaggi’s choices are reasonable and their conclusions about the consequences of 
varying vision are sound in the context of the specific models they investigate. However, Laurie 
and Jaggi do not limit their discussion of the consequences of varying vision to the context of the 
stylized models found in the literature on agent-based simulations. They explicitly suggest that 
their results have broader relevance for understanding residential segregation in real urban 
systems. When they do so, it leaves them open to criticism regarding whether their model 
specification choices are suitable for investigating residential segregation dynamics. 
 

Laurie and Jaggi, like most researchers using agent-based models to explore segregation, 
are not specialists in segregation. Their study is anchored not in substantive theory and research 
on residential segregation but rather in previous research using agent-based models.11 
Accordingly, they focus more on how their model compares with previous agent-based models 
and less on issues concerning the relevance their model may have for residential segregation. 
Consider, for example, their rationale for implementing the city landscape as a “torus.” They 
defend this choice by stating that their goal is to understand the consequences of varying vision 
while “minimizing computational artifacts” (2003, p. 2692). But their choice of the torus makes 
sense only if computational artifacts are identified in terms of departures from previous 
developments of agent-based models, not in terms of maximization of model relevance for 
residential segregation. If size and edge effects are important for segregation outcomes, adopting 
the torus landscape clearly reduces the relevance of the model for segregation in real cities, 
which of course have edges and vary in size. 
 
                                                 
11 See Charles (2003) for a recent review of the literature on residential segregation. 
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We do not find any evidence that this particular choice is crucial to the relationships that 
interest us. Our point about the general orientation of their study stands stands, however, because 
we can offer similar comments regarding their choices to implement a 50/50 ethnic mix; 
definitions of neighborhood that are very small in scale and do not consider bounded areas; and a 
search process where households can occupy the same housing unit forever, in some cases 
without ever moving on the basis of search. These choices are not strongly grounded in the 
broader literature on residential segregation but instead follow practices in the literature on 
agent-based models. 
 

We do not necessarily object to Laurie and Jaggi’s model specification choices as long as 
they place their model-generated results in proper perspective. Thus, we do not criticize their 
findings regarding the complex interaction of vision R and preferences for co-ethnic contact P. 
We can replicate these findings, and we believe they may be relevant to understanding 
segregation dynamics in certain situations, specifically, situations that are short in duration and 
involve only small spatial scales. We grow concerned, however, when Laurie and Jaggi offer 
their analyses as a basis for understanding patterns of residential segregation. In our view, their 
model limits their ability to speak to this subject. Indeed, their choices regarding model 
specification obscure some of the Schelling model’s most important implications for residential 
segregation. For example, real-world cities have imbalanced ethnic mixes; population turnover is 
continuous; and nonminimal neighborhoods are relevant to location decisions. We show that 
model specifications crafted to reflect these patterns generate results that either diminish the 
relevance of Laurie and Jaggi’s central findings or contradict them altogether by providing 
strong support for the view that moderate preferences for co-ethnic contact can produce high 
levels of segregation under a wide range of substantively plausible conditions. 
 
 
Observations on the Laurie-Jaggi Search and Movement Process 
 

The search and movement process in the Laurie-Jaggi model drives the city landscape to 
a static equilibrium where all household movement has ceased. The residential distribution 
freezes for eternity for two reasons: (1) households move only when they can improve their 
satisfaction, and (2) households are immortal and, if satisfied, can occupy the same residence 
forever. This observation differs significantly from real residential systems that have continuous 
residential movement resulting from demographic processes of migration and household 
life-cycle dynamics. The absence of these basic population dynamics attenuates the creation of 
random vacancies in the Laurie-Jaggi model and suppresses movement. Consequently, their 
search process can generate equilibrium residential patterns that are idiosyncratic and misleading 
with regard to segregation dynamics. 
 

For example, consider what happens when the Laurie-Jaggi model is run for a city with a 
50/50 ethnic mix, vision set to R = 7, and preferences for co-ethnic contact set to 0 (P = 0). 
Because households move only to improve their satisfaction and all are satisfied at initialization, 
no residential movement occurs. The initial and final city landscapes are identical because the 
city is in static equilibrium at initialization. Superficially, the result is consistent with Laurie and 
Jaggi’s conclusion that weak preferences for co-ethnic contact are compatible with integration. 
However, their model also implies that weak preferences are compatible with complete 
segregation. To see this conclusion, we make one change to the above simulation: we initialize 
the city landscape to be segregated rather than integrated by packing all households from one 
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group into a single, circular ghetto at the center of the landscape.12 Under the Laurie-Jaggi 
search process, no residential movement occurs. No household can improve its satisfaction by 
moving, and the city remains unchanged and perfectly segregated! Thus, preferences that 
obviously would permit complete integration to emerge under regular population movement are 
not registered by the Laurie-Jaggi model. 
 

This illustration shows that Laurie and Jaggi’s basis for optimism about the possibilities 
for integration under regimes of modest preferences for co-ethnic contact is crucially tied to the 
initial conditions of their model. Under their specification of residential search and movement, 
integration thrives under modest preferences for co-ethnic contact only if the city is initially 
integrated. Their model does not provide a basis for optimism about the possibilities for 
reducing segregation in real cities. On the contrary, a literal interpretation of the implications of 
the Laurie-Jaggi model suggests that pre-existing segregation would not decline even if 
preferences for co-ethnic contact were eliminated entirely. We do not take this implication of 
their model as a meaningful basis for understanding segregation in real cities. We note it only to 
show that the Laurie-Jaggi search process is not a good choice for exploring important aspects of 
segregation dynamics. We conclude that a model that implies that segregation is an equilibrium 
state when all households are indifferent to neighborhood ethnic mix is unsatisfactory. 
Segregation in this situation is inherently unstable and gives way to integration if any 
demographic process is operating to produce household movement. Thus, a simulation model of 
segregation dynamics should be capable of revealing this fact. 
 

The SimSeg model meets this requirement because it can implement alternative search 
processes that better simulate the continuous household movement seen in real cities. Our 
preferred approach is to specify that a random fraction of households, say 1 of 20, is required to 
move when households engage in search. This approach simulates basic demographic dynamics 
of migration and household dissolution and formation as follows. The randomly selected 
household “exits” the population, creating a vacancy at a random location. A new household then 
enters the population, taking the place of the one that exited. It engages in search and chooses a 
residential location from among available residential opportunities. Exits represent instances of 
out-migration or the dissolution of a household; entries represent instances of in-migration or the 
formation of new households.13 
 

While we prefer this approach, it is a significant departure from the Laurie-Jaggi model 
because it produces a dynamic rather than a static equilibrium.14 For this paper, we implement a 
much slighter modification of their search and movement process: we require only that 
households move the first time they are selected for search. After their initial move, the 
households are guided by the original logic of the Laurie-Jaggi process and move again only 
when it increases their satisfaction. Under this process, the city landscape moves toward a static 
equilibrium in which movement ceases. The process is still highly stylized and follows practices 

                                                 
12 To the extent possible, fill out a circle in the middle of the landscape with the households from one group and 

surround it by vacancies. Simulations following this approach are reported in Appendix A, Figure A.3. 

13 Since entries match exits, the process produces a net migration rate of 0 and/or a rate of “natural increase” for 
households of 0. 

14 Real cities are in dynamic equilibrium; urban ecological theories of natural and social areas stress that these 
neighborhoods maintain their social character even as households move into and out of the neighborhood on an 
ongoing basis. 
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used in agent-based modeling rather than in representations of substantively important residential 
dynamics. Even so, using this alternative process has important implications for segregation 
patterns in many situations. Consider, for instance, the situation introduced above where 
households are indifferent to neighborhood ethnic mix (P = 0) and the city is initialized as 
perfectly segregated. Under the original Laurie-Jaggi process, the city is in static equilibrium at 
initialization and no households move. Under our process, every household moves once, and the 
city undergoes a rapid transition from segregated to integrated.15 Under our search process, a 
household searching for the first time randomly surveys available vacancies and takes the first 
one it finds because all ethnic mixtures will be satisfying. Since moves are random with respect 
to ethnic mix, the process strongly promotes integration. Movement ceases when all households 
have been selected for search at least once. The final city landscape is integrated and, in contrast 
to the Laurie-Jaggi model, the distribution of households is determined by preference-guided 
search, not random assignment by an outside entity. 
 

Our search procedure yields a substantively sensible outcome in this situation, and, as 
already shown, our model replicates Laurie and Jaggi’s central findings.16 Thus, we conclude 
that it is a superior alternative for investigating the impact of preferences on residential 
segregation. This point takes on greater significance later in this paper when we perform 
simulations where city ethnic mix varies from the Laurie-Jaggi 50/50 specification. We show 
that the Laurie-Jaggi search process can produce pathological results in these situations, while 
our process produces substantively sensible results. 
 
 
Implications of the Relevance of Nonminimal Neighborhoods 
 

Laurie and Jaggi’s findings about nonsimple segregation behavior deriving from the 
interaction of vision and ethnic preferences apply only in the restricted parameter space where 
agents consider ethnic mix in small-scale, immediate neighborhoods. A fundamental condition 
must be met for this model parameterization to have practical relevance for residential 
segregation: it must be plausible to assume that households consider ethnic mix only in relation 
to minimal, immediate neighborhoods (R ≤ 2).17 Laurie and Jaggi do not note this point, nor do 
they provide any basis for assuming that households restrict their vision to minimal, immediate 
neighborhoods when taking account of ethnic concerns in residential decisions. In our view, this 
possibility is utterly implausible. Both casual and systematic observation suggest that households 
are sensitive to the ethnic mix of nonminimal neighborhoods, including small-scale, immediate 
neighborhoods considered by Laurie and Jaggi, to a variety of medium- to large-scale “bounded 
areas,” such as city blocks, apartment complexes, subdivisions, school districts, and suburbs.18  
 
                                                 
15 This result is documented in simulation results presented in Appendix A, Figure A.3. 

16 We document this finding in Appendix A, Figures A.1 and A.2 and Table A.1. 

17 Laurie and Jaggi describe vision as “myopic” when R ≤ 2 and moderate when R = 3–5. 

18 One line of research on residential segregation has considered the question of whether residential segregation 
may reflect inadequate information about housing options (Charles, 2000; 2001; Farley et al., 2000); a question 
closely related to some of Laurie and Jaggi’s policy recommendations. Significantly, the research focuses on 
knowledge of the social characteristics of nonminimal neighborhoods, signaling that segregation specialists view 
them as highly salient in residential decision making and reporting that respondents are generally 
knowledgeable. 
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We know of no accepted statement setting forth the position that nonminimal neighborhoods are 
irrelevant for residential location decisions. This view cannot be traced to Schelling (1971), as he 
gives bounded neighborhoods extended treatment.19 Thus, we conclude that the interaction 
between vision and preferences documented in the Laurie-Jaggi study has little relevance for 
residential segregation. 
 

Note that this conclusion stands even if the ethnic mix of minimal, immediate 
neighborhoods is salient in residential decisions. Residential decisions may involve 
considerations of ethnic mix in both small- and large-scale neighborhoods; there is no need to 
portray the issue as involving an “either-or” choice. But the segregation behavior documented by 
Laurie and Jaggi under conditions of minimal vision is manifest only when nonminimal 
neighborhoods are strictly irrelevant.20 
 

We do not mean to suggest that Laurie and Jaggi’s careful analysis of how segregation 
behavior varies when vision is restricted to small-scale, immediate neighborhoods is without 
value. Indeed, we believe their work is relevant for understanding segregation in small-scale, 
short-duration situations, such as seating patterns in auditoriums and school lunchrooms and 
conversation groups at social gatherings. At the same time, however, we accept the conventional 
view that vision, as it pertains to residential decisions, involves consideration of nonminimal 
spatial domains. We conclude, therefore, that for residential segregation, the most important 
interaction in the Laurie-Jaggi model is not the interaction of vision and preferences. The most 
important interaction in their model is one that they do not consider at all: it is the interaction 
between ethnic demography and preferences. 
 
 

THE INTERACTION OF PREFERENCES AND ETHNIC DEMOGRAPHY 
 

The impact of preferences on segregation is profoundly conditioned by ethnic 
demography, but Laurie and Jaggi hold ethnic demography constant in their simulations. They 
characterize the 50/50 mix used in their simulations as a worst-case scenario for achieving 
integration.21 In fact, this ethnic mix is optimal. To see this, assume that perfect integration is 
achieved by strategically arranging households to ensure that ethnic mix is uniform throughout 
the city landscape.22 In this situation, all households experience the same ethnic mix. Since all 
households hold the same preference for co-ethnic contact, they will be universally satisfied 
when this preference is compatible with the ethnic mix of the city. Specifically, universal 

                                                 
19 Schelling’s discussion of segregation dynamics for bounded neighborhoods draws on analytic models that he 

does not explicitly tie to his discussion of agent-based models. Our agent-based model incorporates bounded 
neighborhoods as well as immediate neighborhoods. 

20 In analyses not reported in this paper, we implement model parameterizations where households consider ethnic 
mix in both minimal, immediate neighborhoods and larger-scale bounded areas. The segregation behavior seen 
in these simulations follows that of nonminimal neighborhoods even when households assign greater “weight” to 
the conditions in the minimal neighborhood. These results indicate that the segregation behavior Laurie and 
Jaggi document for minimal neighborhood specifications is not robust. 

21 Laurie and Jaggi offer no rationale for this characterization, and we are unaware of any supporting theory. 

22 For this discussion, we set aside the technical problem of achieving a particular demographic mix from an 
integer count of households. It is a separate issue from the one we are emphasizing. 
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satisfaction occurs when P ≤ min[C, (100 – C)].23 The highest level of P that is compatible with 
universal satisfaction under integration is determined by the value of min[C, (100 – C)]. This, of 
course, reaches its maximum value of 50 when the ethnic mix is 50/50. 
 

On the basis of this observation, the 50/50 city is hardly a worst-case scenario; it can 
sustain universal satisfaction with integration at higher levels of P than any other ethnic mix, a 
fact Schelling noted (1971, pp. 148, 179). Consider the 90/10 ethnic mix, which is not 
uncommon in real cities. Integration in a city with this ethnic mix can be universally satisfying 
only when preferences for co-ethnic contact are within the range of 0 – 10%. If desired co-ethnic 
contact rises above 10%, all households in the smaller group will be dissatisfied under 
integration. For example, if P is set at 50 in this city, there would be considerable latent potential 
for segregation to emerge since all members of the smaller group would be 40 points shy of their 
preferred level of co-ethnic contact. 
 

In the Laurie-Jaggi model, dissatisfaction occurs when co-ethnic representation falls short 
of preferred co-ethnic presence; it increases monotonically as the discrepancy increases. 
Consequently, integration produces dissatisfaction for all members of a group when the group’s 
population percentage falls below its desired level of co-ethnic contact; the level of the 
dissatisfaction varies directly with the magnitude of the discrepancy. Guided by the assumption 
that integration is less stable when it produces higher levels of dissatisfaction, we advance two 
hypotheses regarding segregation behavior in agent-based models where groups hold symmetric, 
homogeneous preferences, as they do in the Laurie-Jaggi study, and where households consider 
ethnic mix in nonminimal neighborhoods. 
 

• Hypothesis 1: Segregation should be expected when the relative size of any 
group falls below the prevailing preference for co-ethnic contact. 

 
• Hypothesis 2: The level of segregation should vary directly with the size of 

the discrepancy between the “demand” for co-ethnic contact and the 
demographic “supply” of co-ethnic neighbors under conditions of integration. 

 
We present evidence supporting these hypotheses below. Before introducing these 

results, however, we first demonstrate that our hypotheses cannot be adequately tested by using 
the Laurie-Jaggi model because their search process can produce pathological results in 
simulations where city ethnic mix departs from 50/50. This fact is documented in the two panels 
of Figure 3, which present initial and final city landscapes from two simulation experiments. 
Both experiments share several things in common. In each one, vision is based on site-centered 
areas with R = 5, preferences for co-ethnic contact are 50%, and ethnic mix is 90/10. The first 
two settings were used in simulations reported earlier in this paper. The setting for ethnic mix is 
a departure from the 50/50 ethnic mix used in earlier simulations. The two experiments differ as 
follows. Panel 1 presents an experiment using the Laurie-Jaggi search process. Panel 2 presents 
an experiment using our alternative search process where households must move on first search. 
 
 

                                                 
23 The expression min[C, (100 – C)] represents the minimum value of percent White and percent Black. 
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Initial City Landscape Final City Landscape 

  
Panel 1: Original Laurie and Jaggi Search Process; D = 38; BP * B = 21 

  
Panel 2: Modified Search Process; D = 85; BP * B = 72 

FIGURE 3  Results for experiments where vision R = 5, preference for co-ethnic contact 
P = 50%, and city ethnic mix is 90/10 or 10/90 

 
 

The final city landscape under the original Laurie-Jaggi search process has a relatively 
low level of segregation (D = 38). This value is much lower than the high level of segregation 
(D = 79) obtained earlier when the same settings were used for R and P but city ethnic mix was 
set at 50/50.24 The low segregation for the experiment in Panel 1 might be seen as support for 
Laurie and Jaggi’s characterization of the 50/50 mix as the worst-case scenario for integration. 
That assessment is flawed, however, because the integrated residential pattern seen here is an 
artifact of their idiosyncratic search process. 
 

Laurie and Jaggi interpret integrated city landscapes generated by their model as 
reflecting possibilities for achieving integration that is “stable for arbitrarily long times” (literally 
forever, since no household will move once equilibrium is reached). However, careful 

                                                 
24 The relevant comparison experiment is reported in the lower right cell of Figure 2 and in Appendix A, 

Figure A.1b. 



403 
 

examination of the equilibrium residential pattern of low segregation seen in the final city 
landscape in Panel 1 shows that this interpretation is unacceptable. The integration seen in this 
static city landscape is inherently unstable and could not persist over time in the real world. 
 

The reason for this conclusion is that every Black household in the city is dissatisfied. All 
Black households live in neighborhoods that are approximately 20% Black.25 Since all 
households seek 50% co-ethnic contact, every Black household is about 30 points shy of their 
preferred neighborhood ethnic mix. The resulting dissatisfaction creates considerable latent 
potential for segregation. All Black households would move to areas with greater Black 
representation if they could move. But, under the Laurie-Jaggi search process, the opportunity to 
move never arises. There are two reasons why this is so and both are artifactual in nature: 
 

• No White households ever move in this simulation. 
 
• An artificial shortage of vacancies prevents most Black households from 

acting on their preferences to move to neighborhoods with higher levels of 
Black representation. 

 
The two reasons are not unrelated. The random assignment of households and vacancies in the 
city landscape at initialization creates neighborhoods that reflect the city’s demography. With 
vision at 5, immediate neighborhoods contain 60 housing units and thus will, on average, contain 
6 vacancies, 5.4 Black households, and 48.6 White households.26 The ethnic mix in the average 
neighborhood is 90% White, so all Whites are satisfied with the ethnic mix of the area. Under the 
Laurie-Jaggi model, these households will never move unless the neighborhood ethnic mix 
changes sufficiently to make them dissatisfied. But this can never happen because the average 
neighborhood has only 6 vacancies. If Black households fill all of them, the ethnic mix in the 
neighborhood increases to approximately 20% Black.27 Thus, all Whites remain satisfied by an 
average margin of 30 points and none ever moves. 
 

At initialization, all Blacks are dissatisfied; on average, they are 40 points shy of the 
co-ethnic contact they seek. All are highly motivated to move. When presented with the 
opportunity to do so, Black households in areas of lower Black representation move to areas with 
higher Black representation. This is the only movement that occurs in the simulation. However, 
since areas have limited vacancies, Black representation in areas of Black in-migration quickly 
“tops out” at around 20% as vacancies are filled. As the simulation progresses, two kinds of 
neighborhoods emerge — all-White areas with a 20% vacancy rate and areas that are 20% Black 
and have no vacancies. Movement ceases and the city landscape freezes in an equilibrium 
residential pattern with relatively low segregation. It is obvious, however, that the residential 
pattern is inherently unstable. Latent potential for segregation to emerge exists because all 
Blacks are dissatisfied and are motivated to move. 

                                                 
25 This is reflected in the value of the exposure index measuring the average Black household’s residential contact 

with Blacks (i.e., BP*B) reported in the figure. 

26 These values are mathematical expectations with the citywide vacancy rate set at 10. Of course, in individual 
neighborhoods, the counts will be integers. 

27 When integer counts are used, the typical neighborhood would have no vacancies and either 12 Black and 
48 White households, or 11 Black and 49 White households. In these cases, the percentages of Blacks would be 
20.0 and 18.3, respectively. 
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 The simulation produces an equilibrium with stable integration under the rules of the 
Laurie-Jaggi model. But it would be fundamentally misleading to interpret this result as relevant 
for segregation in residential systems. The only reason extensive segregation fails to emerge in 
the simulation is that opportunities for Black households to pursue their residential preferences 
are artificially restricted by the immobility of White households and the severely truncated 
availability of vacancies in areas with greater Black representation. 
 

Restrictions of this sort are not found in real residential systems. On the contrary, 
households are not eternally immobile; basic demographic processes, such as migration and 
household life-cycle dynamics, generate steady population “turnover” wherein some households 
exit the population and are replaced by new households. These demographic processes produce 
regular vacancies in all areas of the city. The occurrence of such vacancies is all that is needed to 
unleash the latent potential for segregation in the result shown in Figure 3, Panel 1; vacancies 
create opportunities for Black households to move to areas of greater Black representation. The 
Laurie-Jaggi model does not include a mechanism for household turnover and consequently 
restrains residential movement in a way that artificially short-circuits Schelling-like segregation 
dynamics. 
 

The simulation presented in Panel 2 demonstrates this point. The simulation is identical 
to the one just reviewed with one important exception: it implements a search process in which 
all households are required to move on their first search. This step stops short of generating the 
kind of ongoing residential turnover seen in real residential systems. Still, it lifts the artificial 
“cap” on vacancies sufficiently to unleash the segregation potential of the preference/ethnic mix 
combination. Initially, White households move randomly, taking the first housing unit they 
survey; all neighborhoods are about 90% White; thus, White households are satisfied with any 
available housing unit they encounter. The random movement of Whites does not directly 
promote segregation; however, it has important consequences for segregation. It creates 
vacancies in all areas of the city, and these vacancies permit Black households to act on their 
preferences to seek higher Black representation. As a result, neighborhoods where Blacks are 
congregating increase from 20% to 50% Black and beyond. At this point, White households in 
these areas become dissatisfied and begin moving to primarily White areas. As shown in Panel 2, 
the dynamic is powerful and generates intense segregation. 
 

The simulation highlights the inadequacies of the Laurie-Jaggi search specification. Their 
model produces results that suggest that equilibrium segregation outcomes in this situation are 
lower than in their baseline simulations where the ethnic mix is set at 50/50. Our modified model 
suggests that it is at least as high or higher and is certainly not lower. 
 

Figure 4 shows that the impact of modifying the search process to generate a greater 
volume of random vacancies has equally important consequences when the simulations are 
repeated by using a lower setting for the preference for co-ethnic contact. In these simulations, 
the preference for co-ethnic contact is reduced from 50% to 30%. Laurie and Jaggi reported that 
stable integration emerges under these preferences when the ethnic mix is 50/50.28 What 
happens when the ethnic mix is set at 90/10? The results in Panel 1 in Figure 4 show that the 
Laurie-Jaggi model produces a relatively low level of segregation (D = 0.38). This result is very 
similar to that shown in Figure 3 when the preference for co-ethnic contact was higher. In fact, 
the two simulations are close to identical. 
                                                 
28 We replicated this finding by using both their original search process and our modified search process. 
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Initial City Landscape Final City Landscape 

  
Panel 1: Original Laurie and Jaggi Search Process; D = 0.38; BP * B = 21 

  
Panel 2: Modified Search Process; D = 0.74; BP * B = 45 

FIGURE 4  Ending landscapes from analyses where vision R = 5, preference for 
co-ethnic contact P = 30%, and ethnic mix is 10/90 or 90/10 

 
 

This is not a mistake. The two experiments use the same “random seed” and thus have 
the same initial city landscape. As before, all White households are satisfied with the 
neighborhoods in which they live. In fact, their average satisfaction “cushion” has increased 
from 40 to 60 points. Accordingly, none ever moves. As before, all Black households are 
dissatisfied; all households seek areas that are 30% Black but initially reside in areas that are 
10% Black. Their average margin of dissatisfaction has declined from 40 to 20 points, but none 
is satisfied. Accordingly, the same Black households who had the opportunity to move to areas 
of higher Black representation in the first simulation make identical moves in this simulation. As 
before, movement ceases when vacancies fill up in areas with greater Black representation; these 
areas quickly “top out” at about 20% Black, which is 10 points below the level needed to satisfy 
Black’s preferences for co-ethnic contact. 
 

The results in Panel 2 in Figure 4 show that the modified search process produces a 
dramatically different outcome. Black households in this simulation are not artificially “blocked” 
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from moving toward areas of higher Black representation because satisfied and immortal White 
households never move, effectively preventing the percentage of White from ever falling far 
below 80% in any area. Instead, the simulation of elementary demographic events creates 
random vacancies in these areas, and these give Black households opportunities to satisfy their 
preferences for 30% co-ethnic contact. Searching Black households that encounter these 
opportunities move to areas of higher Black representation and become more satisfied. Black 
households that are left behind in neighborhoods with declining Black representation become 
even more dissatisfied. Initially integrated neighborhoods bifurcate into two types — 
predominantly White and predominantly Black. The dynamic produces a high level of 
segregation in the resulting equilibrium city landscape. Interestingly, the level of segregation is 
only slightly lower than that seen in Panel 2 in Figure 3. This result is consistent with the 
Schelling position that high levels of segregation can emerge even when no household is seeking 
the kind of ethnically homogeneous areas found in a highly segregated city. 
 

The results in Panel 2 in both Figures 3 and 4 support our hypothesis that segregation is 
higher when demographic supply under integration cannot satisfy preferences for co-ethnic 
contact. These simulations implement a search process that generates sufficient opportunities 
(i.e., random vacancies) for households to satisfy their preferences for co-ethnic contact. Under 
this specification, segregation is higher under the 90/10 ethnic mix than it is under the 
50/50 ethnic mix. This fact is not the case in Panel 1 in Figures 3 and 4, where the original 
Laurie-Jaggi search algorithm is used. The reason is that the movement of Black households 
toward areas of higher Black representation is artificially short-circuited before any areas can 
reach even 30% Black. 
 

The unusual nature of the Laurie-Jaggi search process has powerful consequences for 
segregation outcomes. The results above show that it can lead their model to produce 
“equilibrium” residential patterns with low levels of segregation when, in fact, there is 
tremendous latent potential for higher levels of segregation to emerge. In our view, their search 
process is inadequate for investigating the dynamics of residential segregation. It assumes away 
basic demographic events that are (1) ubiquitous in real cities and (2) demonstrated here to play 
an important role in segregation dynamics. Households move for a host of reasons unrelated to 
ethnic concerns; thus, all neighborhoods experience regular, ongoing population turnover. 
Research on ethnic succession establishes that this plays a crucial role in neighborhood ethnic 
transitions; neighborhoods undergo succession in large part because they lose their ability to fill 
regularly occurring vacancies with new entrants who reproduce the social characteristics of the 
households who are exiting. The Laurie-Jaggi model ignores this dynamic entirely. In their 
model, vacancies may never be produced, much less be produced on a regular basis in all 
neighborhoods. 
 

Before proceeding to the next section, we note that, while the Laurie-Jaggi search process 
is inadequate for modeling segregation dynamics in residential systems, it might be appropriate 
for modeling segregation in other situations. For example, seating patterns in a high school 
cafeteria or a basketball gymnasium are not necessarily subject to the regular creation of 
vacancies. As seats begin to fill up, agents settle into vacancies that offer satisfying ethnic mixes 
among immediate neighbors. They may also have opportunities to move if they become 
dissatisfied with the ethnic mix of their neighbors. However, the seating arrangement will 
eventually freeze into a stable equilibrium that will not be perturbed until the lunch hour or 
basketball game is over. Thus, it is possible that the segregation outcomes we view as 
implausible for residential systems may be sensible in this alternative social context. 
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Here, as before, our criticisms of the Laurie-Jaggi findings center on their suggestion that 
their model yields important insights about residential segregation in real cities. Our view is that 
their model results are narrowly correct but have limited relevance for residential segregation. 
 
 

ANALYSIS 
 

We now turn to a more systematic investigation of segregation outcomes under varying 
conditions of ethnic demography and specifications of vision. Figures 5–9 present results from 
five sets of simulation experiments; they lend strong support to our hypotheses. Preferences for 
co-ethnic contact are fixed at 30% in all five sets of experiments, but the ethnic mix of the city is 
varied across the five sets. The set of experiments depicted in Figure 5 uses a 90/10 ethnic mix. 
In each successive figure, the ethnic mix is moved toward balance. The progression is 75/25 in 
Figure 6, 70/30 in Figure 7, 65/35 in Figure 8, and 50/50 in Figure 9. As before, group labels are 
arbitrary in these models. Consequently, the effects of imbalanced ethnic mix are symmetric, and 
the results for the 90/10 ethnic mix, for example, would be the same as those observed for a 
10/90 ethnic mix.29 Accordingly, we do not present results for ratios less than 50/50. 
 

For each ethnic mix, we report experiments based on four different implementations of 
vision. The simulations in the upper panels of each figure implement the Laurie-Jaggi notion of 
vision based on cardinal moves with R = 1 and 5. The simulations in the lower panels of each 
figure implement vision based on bounded areas. The search process in all of the simulations is 
our modified version of the Laurie-Jaggi algorithm. 
 

We begin by considering the results obtained when vision is specified in terms of site-
centered, immediate neighborhoods, that is, R = 5. Experiments based on this specification are 
presented in the upper right quadrants of each of the five figures. The pattern is straightforward; 
the level of segregation is a monotonic function of the discrepancy between ethnic demography 
and preferences. Thus, the highest level of segregation is seen when the ethnic mix is 90/10 
(D = 0.74), and segregation declines steadily as the ethnic mix moves closer to 50/50. This 
pattern is exactly as predicted by our hypothesis. 
 

The same pattern is seen in the outcomes shown in the lower left quadrants of  
Figures 5–9. In these experiments, segregation scores are highest under the 90/10 ethnic mix, and 
they decline as the ethnic mix moves toward 50/50. These experiments implement a variant of 
vision where households evaluate housing choices not on the basis of ethnic mix for site-
centered, immediate neighborhoods but on the basis of ethnic mix within bounded areas. We 
view this implementation of vision as interesting for substantive reasons reviewed earlier and 
note that Schelling explicitly recognized the relevance of bounded areas in his writings on 
segregation dynamics. 
 

One impact of implementing vision in this way is that ethnic settlement patterns tend to 
follow the borders of bounded areas, and thus area-to-area transitions in ethnic mix are 
sometimes abrupt. This pattern is not uncommon in real cities where ethnic mix sometimes 
changes abruptly with subdivision or school district boundaries. Significantly, the findings for 
segregation obtained by using this implementation of vision correspond closely with those  
 
                                                 
29 This symmetry hinges crucially on the fact that both groups hold identical preference for co-ethnic contact. 
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Vision = 1; D = 0.30 Vision = 5; D = 0.74 

  

Bounded Areas; D = 0.85 Bounded Areas; D = 0.89 

FIGURE 5  Ending landscapes from analyses where vision R is varied, preference for 
co-ethnic contact P = 30%, and ethnic mix is 90/10 or 10/90 

 
 
obtained by using the Laurie-Jaggi implementation of vision (with R = 5). Values of D are 
slightly higher when the bounded area implementation of vision is used but only because we 
calculate D from these same fixed areas. The central pattern is the same: segregation levels 
decline steadily as city ethnic mix declines from 90/10 to 50/50. 
 

The results for the experiments shown in the lower-right quadrants in Figures 5–9 also 
manifest the same pattern. They are based on an additional variation in the implementation of 
vision, where households evaluate housing choices on the basis of both the ethnic composition of 
bounded areas and the ethnic composition of the adjacent bounded areas.30 This implementation 
of vision produces the highest levels of segregation seen in these figures. It also produces strong 
patterns of clustering not unlike those seen in many cities. 
 
                                                 
30 It is similar to using a “Moore” neighborhood of bounded areas where satisfaction with ethnic mix in the 

bounded area is given priority. Specifically, satisfaction with the ethnic mix of the aggregated population in 
adjacent bounded areas counts as half of the satisfaction with the ethnic mix in the bounded area. 
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Vision = 1; D = 0.20  Vision = 5; D = 0.62 

  

Bounded Areas; D = 0.81 Bounded Areas; D = 0.94 

FIGURE 6  Ending landscapes from analyses where vision R is varied, preference for 
co-ethnic contact P = 30%, and ethnic mix is 75/25 or 25/75 

 
 

The comparison of results using these three specifications of vision is interesting. In one 
important respect, they all generate the same finding; namely, when vision involves moderate to 
large spatial domains, segregation takes on high values when demand for co-ethnic contact 
exceeds the demographic supply. In other respects, segregation patterns vary across these three 
specifications of vision. Vision implemented as site-centered, immediate neighborhoods with a 
moderate R setting of 5 produces slightly lower levels of segregation but clear patterns of 
clustering.31 Vision implemented in terms of both bounded areas and adjacent bounded areas 
produces a similar pattern, with even higher levels of segregation and more pronounced patterns  
 

                                                 
31 Laurie and Jaggi refer to larger clusters as “ghettos” (2003, p. 2695). We use the term cluster to tie the pattern to 

established measurement theory for segregation, which identifies clustering as a “dimension” of segregation 
(Massey and Denton, 1988). 
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Vision = 1; D = 0.20 Vision = 5; D = 0.60 

  

Bounded Areas; D = 0.67 Bounded Areas; D = 0.96 

FIGURE 7  Ending landscapes from analyses where vision R is varied, preferences for 
co-ethnic contact P = 30%, and ethnic mix is 70/30 or 30/70 

 
 
of clustering. Vision implemented in terms of single bounded areas produces intermediate levels 
of segregation but less clustering and more “checkerboarding.”32 
 

The variations across these three specifications suggest that at least two dimensions of 
vision affect segregation patterns: scale and bounding. “Scale” is indexed by the number of 
housing units in the spatial domain used in evaluating ethnic mix. It appears to have a clear effect 
on the dimension of segregation known as uneven distribution. Specifically, once scale climbs 
above very small values, measures of uneven distribution, such as the index of dissimilarity, 
increase with scale, all else being equal. 
 

                                                 
32 Checkerboarding refers to the pattern in which the adjacency of bounded areas with a homogeneous ethnic mix 

is no more common than would be expected by chance. 
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Vision = 1; D = 0.20 Vision = 5; D = 0.34 

  

Bounded Areas; D = 0.42 Bounded Areas; D = 0.61 

FIGURE 8  Ending landscapes from analyses where vision R is varied, preference for 
co-ethnic contact P = 30%, and ethnic mix is 65/35 or 35/65 

 
 

“Bounding” refers to whether vision is confined to a fixed region or is site-centered. This 
aspect of vision has implications for the dimension of segregation known as clustering. Strict 
bounding (the limitation of vision to single bounded areas) produces checkerboarding, a pattern 
where the ethnic mix in adjacent bounded areas is uncorrelated. Implementing vision based on 
site-centered areas with R = 5 produces clear visual evidence of clustering. Implementing vision 
based on a single bounded area produces clear visual evidence of checkerboarding. 
Implementing vision based on the hybrid combination of the bounded area and its adjacent 
bounded areas also produces clustering. The principle appears to be that clustering emerges when 
vision is site-centered in some respect.33 
 

In our simulations, uneven distribution and clustering are most pronounced when vision 
is based on bounded areas and adjacent bounded areas, but this result is primarily a scale effect  
 

                                                 
33 The implementation of vision based on adjacent bounded areas is a type of site-centered spatial domain. 
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Vision = 1; D = 0.20 Vision = 5; D = 0.03 

  

Bounded Areas; D = 0.04 Bounded Areas; D = 0.05 

FIGURE 9  Ending landscapes from analyses where vision R is varied, preference for 
co-ethnic contact P = 30%, and ethnic mix is 50/50 

 
 
of vision, not of using bounded areas. The ring of adjacent bounded areas can include up to 
392 housing units; thus, examining ethnic mix in adjacent areas increases the scale of vision by a 
considerable degree, even after allowing for the fact that more weight is given to the ethnic mix 
in the immediate bounded area. In simulations not reported here, we found that equally high 
levels of uneven distribution and clustering were produced when vision was implemented by 
using large R, immediate neighborhoods of the type used by Laurie and Jaggi. For example, 
when R = 10 rather than 5, the scale of the immediate neighborhood increases from 60 to 
204 housing units and produces higher levels of both uneven distribution and clustering.34 
 

The results shown in the upper left quadrants of Figures 5–9 are based on analyses where 
vision is implemented as the minimal, four-unit, von Neumann neighborhood (R = 1). They 
document a pattern that runs counter to the results obtained by using the three previous 
specifications for vision. Vision specified in this way does not support our hypotheses. As the 
                                                 
34 It also significantly increases the computational burden, and this fact may help to account for why most 

agent-based models consider low settings for R. 
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figures show, segregation changes little as city ethnic mix moves from 90/10 to 50/50, and thus, 
ethnic demography does not condition the impact of preferences on segregation. 
 

The vision implemented in these simulations is the minimum that can be specified and 
should be seen as a special case.35 As Laurie and Jaggi note, this setting for vision tends to 
produce small-domain segregation that forms a dendritic pattern with “snaking” ribbons of ethnic 
homogeneity running randomly through the bounded areas of the SimSeg city landscape. This 
“small-domain” segregation tends not to register at high levels when segregation is measured by 
computing the index of dissimilarity from data for bounded areas. The ribbons of darkly shaded 
households for the smaller group tend to increase in length, width, and overall “coverage” as 
ethnic mix moves from 90/10 to 50/50. 
 

This is an unsurprising function of the changing demography of the city, but it warrants 
mention because it accounts for the fact that the segregation scores are slightly higher when the 
ethnic mix is 90/10 compared to other ethnic mixes. In the 90/10 case, the availability of 
households from the smaller group is low, and the “ribbons” that arise are spread farther apart in 
space and, because of the less extensive coverage, are less likely to join into long sections over 
the course of the simulation experiment. Because their average length is shorter, they are less 
likely to cross area boundaries, and D computed for fixed neighborhoods is slightly higher. 
 

Table 1 summarizes the dissimilarity scores for the experiments just reviewed. It also 
includes dissimilarity scores for several additional experiment sets we prepared to cover all 
ethnic mix combinations on five-point intervals from 95/5 to 50/50. These data further support 
our hypotheses. When vision involves nonminimal spatial domains, ethnic demography 
conditions the impact of preferences on segregation such that high levels of segregation emerge 
when preferences for co-ethnic contact equal or exceed the smaller group’s percentage in the 
population and the level of segregation increases with the magnitude of the discrepancy. 
Significantly, this pattern is seen whether vision is implemented by using either site-centered 
areas (as in the Laurie-Jaggi study) or the variations involving bounded areas. 
 

Table 1 also documents an interaction between ethnic demography and segregation when 
vision is implemented as the minimal, small R formulation (R = 1). We do not view this as 
support for our hypotheses, however; as suggested previously, we believe it should be seen as an 
artifact of the fact that, when segregation is computed from fixed area data, small-scale 
segregation patterns tend to register better when ethnic mix is low. 
 
 The patterns seen in Table 1 are documented more systematically in Figure 10. This 
figure plots the index of dissimilarity from the final city landscapes of 1,200 separate simulation 
experiments by the smaller group’s percentage representation in the city population. Each graph 
in the figure depicts the results from 300 experiments conducted by implementing the four 
versions of vision used in the experiments reported in Figures 5–9 and in Table 1. In each of 
these simulations, the preference for co-ethnic contact is set at 30%, and the size of the smaller 
group in the population is randomly varied from 5 to 50. The three graphs for nonminimal vision 
show that the impact of preferences for co-ethnic contact for segregation are strongly 
conditioned by ethnic demography and in a manner consistent with our hypotheses. Segregation 
is low when ethnic preferences can be “easily” satisfied under integration. But when demand for 
 
                                                 
35 At least, it is the minimum, nonzero vision that can be specified when vision is uniform in all directions. 
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TABLE 1  Scores for the index of dissimilarity for the simulations shown 
in Figures 5–9 plus scores for additional experiments 

   
Moderate to Large Domain Vision 

 
Ethnic 

Demography 
Mix 

 
 

Site-centered 
Vision, R = 1 

 
 

Site-centered 
Vision, R = 5 

 
 

Bounded 
Area 

 
Bounded 

Area + Adjacent 
Region 

     
95/5  0.43 0.79 0.86 0.88 
90/10 (Figure 5) 0.30 0.74 0.85 0.89 
85/15  0.22 0.73 0.82 0.86 
80/20  0.24 0.68 0.84 0.87 
75/25 (Figure 6) 0.20 0.62 0.81 0.94 
70/30 (Figure 7) 0.20 0.60 0.67 0.96 
65/35 (Figure 8) 0.20 0.34 0.42 0.61 
60/40  0.21 0.22 0.14 0.35 
55/45  0.19 0.09 0.07 0.08 
50/50 (Figure 9) 0.20 0.03 0.04 0.05 

 
 

 

FIGURE 10  Index of dissimilarity by the smaller group’s percentage representation 
in the city population under four implementations of vision with preferences for 
co-ethnic contact at 30% 
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co-ethnic contact exceeds supply under integration, segregation emerges and moves to high 
levels as the discrepancy increases. 
 

Two interesting patterns are evident in Figure 10. One is that once demand for co-ethnic 
contact approaches and exceeds supply, segregation climbs to high levels. The transition is less 
abrupt than a “step” function, but the effect involves a region of rapid increase leading into a 
“plateau” where segregation is at consistent high levels. Another pattern is that segregation 
begins to elevate well before demand exceeds supply. Thus, as documented in Table 1 as well as 
in Figure 10, a high level of segregation is generated under the 65/35 ethnic mix, even though the 
percentage representation of the smaller group is a full five points above the relatively low 
preference for 30% co-ethnic contact. 
 

Fossett and Waren (2004) provide insight into this result. They report that segregation 
outcomes in agent-based models are consistently higher than outcomes that can be achieved 
under planning and strategic placement. Under strategic placement, the 65/35 ethnic mix could 
easily sustain stable integration where all households are satisfied. However, in our simulations, 
the initial household placements are random, and many households are unsatisfied and move to 
achieve the co-ethnic contact they desire. Their moves are uncoordinated, not strategic. Stable 
integration is logically possible, but the moves of individual households produce steady “drift” 
toward ethnically polarized neighborhoods and stable segregation. 
 

Fossett (2003, 2004) has termed the powerful interaction of preferences and ethnic 
demography documented in Table 1 and Figure 10 the “paradox of weak minority preferences.” 
The essence of the paradox is that relatively weak preferences for co-ethnic contact can produce 
high levels of segregation when population groups are small. Of course, the broader principle 
involved is not paradoxical. If demand for co-ethnic contact cannot be met under integration, 
goal-directed moves by individual households will create a drift toward segregation that is 
self-reinforcing and unlikely to be reversed. When the preferences for co-ethnic contact are very 
high, this fact is not surprising. But, it is not widely appreciated that the effect can be strong 
when relatively weak preferences combine with unbalanced ethnic ratios. Since such 
demographic conditions are typical, not rare, the paradox takes on particular substantive 
significance. 
 
 
Contrary Results under Minimal Vision Specifications 
 

The paradox is not evident in the results for experiments conducted by using minimal 
vision. Laurie and Jaggi reported that segregation behavior under minimal vision follows 
unexpected and often curious patterns. Our results support that finding. As noted earlier, we 
differ from Laurie and Jaggi on the question that these results hold much relevance for 
understanding residential segregation. We are guided by theory and research on residential 
segregation and know of no influential perspective in that literature to support the view that 
vision should be restricted to the minimal case. 
 

Laurie and Jaggi are guided by theory and research on agent-based modeling where 
segregation behavior under minimal vision receives greater attention. Following model 
specifications of vision from this literature is relevant when von Neumann and Moore 
neighborhoods are reasonable analogs to interaction patterns in the real world. Thus, for 
example, minimal vision models are relevant for segregation in voluntary seating patterns in 
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classrooms, lunchrooms, lecture halls, movie theatres, and assembly halls. Segregation patterns 
in these contexts are substantively meaningful and deserve attention. But we believe caution 
should be exercised before concluding that macro-spatial patterns of residential segregation in 
cities are generated by the same dynamics as segregation in micro-spatial settings. Research on 
segregation in minimal vision contexts should be pursued. Until a clear substantive basis for 
doing so is provided, however, it should not be taken as instructive for understanding residential 
segregation patterns. 
 
 
Varying Preferences for Co-ethnic Contact across Groups 
 

The results to this point are consistent with a simple principle: segregation outcomes 
under voluntary choice by individual households are determined not by the absolute magnitude 
of the preference for co-ethnic contact but by the discrepancy between the preferences 
individuals hold and the demographic supply that can satisfy these preferences under conditions 
of integration (i.e., even distribution). We explored this hypothesis in greater depth by 
performing several thousand experiments in which we set the SimSeg model to implement vision 
based on site-centered areas defined by R = 5 and using our specification for search. For these 
experiments, we sampled the parameter space for the model as follows. We randomly varied 
Whites’ preferences for co-ethnic contact from 0 to 90; we randomly varied Blacks’ preferences 
for co-ethnic contact from 0 to 90; we randomly varied R from 1 to 7; and we randomly varied 
city ethnic mix from 95/5 to 5/95. 
 

For each simulation experiment, we computed the maximum discrepancy between an 
ethnic group’s supply and its percentage in the population. We then categorized this variable into 
five-unit intervals and plotted the distribution of scores on the index of dissimilarity as shown in 
Figure 11.36 The results provide strong support for our hypothesis. The level of segregation is 
always high when the co-ethnic preferences of at least one group equal or exceed the supply 
available in integrated neighborhoods. As seen in Figure 10, the level of segregation is distinctly 
elevated when the balance between supply and demand is merely “tight.” For example, when the 
surplus of supply is under five points, the median value of the index of dissimilarity is about 50. 
Perfect integration is clearly feasible under planning and strategic placement, but it does not 
emerge under the uncoordinated location decisions of individual households despite the fact that 
the city landscape is initially integrated. It is not until supply exceeds demand by a full 10 points 
that segregation levels fall to those that would be expected under random assignment! 
 

Two outcomes in the parameter space for the model merit comment. One is that 
simulations with low levels of preference for co-ethnic contact for both groups produced high 
levels of segregation in cities with imbalanced ethnic mixes.37 This outcome strongly supports 
the Schelling notion that high levels of segregation can emerge when location decisions are not  
 

                                                 
36 The plotted values are residuals from an analysis of variance that controls for categories of vision (1–7) and the 

continuous covariate for percent Black. 

37 This echoes the results presented in Table 1 and Figure 10. 
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FIGURE 11  Distribution of index of dissimilarity by the magnitude of the maximum difference 
between group supply and group demand for co-ethnic contact 

 
 
specifically motivated by the desire to live in ethnically homogeneous areas.38 The other is that 
simulations where one group with strong preference for co-ethnic contact held sometimes 
produced low levels of segregation in cities with imbalanced ethnic mixes. This result occurred 
when the group holding the strong preference for co-ethnic contact was a demographic majority 
and the other group had a low preference for co-ethnic contact. For example, segregation will be 
low in cities with an 80/20 ethnic mix, if the larger group’s preference for co-ethnic contact does 
not exceed 70% and the smaller group’s preference for co-ethnic contact does not exceed 10%. 
The key factor that permits stable integration in this situation is that both groups’ preferences can 
easily be met under conditions of even distribution. This factor further supports Schelling’s basic 
insight that the implications of preferences for segregation are complex and cannot be deduced 
on the basis of knowledge of preferences alone. 
 
 

                                                 
38 In the interest of space, we do not systematically explore the effects of vision and percent Black. The strongest 

effects in the analysis are those presented. As noted earlier, the level of segregation is low when vision is at its 
logical minimum (R = 1), but segregation increases dramatically as vision moves past 2. All effects considered 
are statistically significant at 0.001 or better. The adjusted R-square for the analysis of variance is approximately 
0.84. 
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POSITIVE PREFERENCES FOR DIVERSITY: 
A POTENTIAL BASIS FOR OPTIMISM 

 
Laurie and Jaggi characterized their study as providing a basis for “optimism” regarding 

ethnic segregation. They interpreted their results as suggesting that policies aimed at expanding 
vision and promoting moderate preferences for co-ethnic contact could lower segregation. Our 
results suggest that their optimism must be tempered. Laurie and Jaggi stated that preferences 
need not be “unrealistic” or “Gandhian” to achieve integration. But they did not take account of 
the interaction of preferences and ethnic demography and based their conclusions on results 
obtained by using an ethnic mix that was optimal for producing integration. Our results show 
that, even with expanded vision, moderate and weak preferences for co-ethnic contact can 
produce high levels of segregation under the ethnic demographic conditions typical in most 
cities. 
 

This finding is important and sobering. Realistic reductions in preferences for co-ethnic 
contact may not necessarily be enough to drive existing segregation down and promote stable 
integration. But we do not believe that this finding implies that ethnic segregation is inevitable. 
Rather, we suggest that additional directions in policy options concerning preferences need to be 
considered. One new direction that deserves attention is the potential role that positive 
preferences for ethnic diversity (or aversion to extreme ethnic homogeneity) may play in 
reducing ethnic segregation. Laurie and Jaggi follow the literature on agent-based modeling and 
focus exclusively on preferences for co-ethnic contact. But research on residential preferences 
indicates that people may simultaneously hold both positive preference for co-ethnic contact and 
preferences for contact with other groups. 
 

For ethnic minority groups, this may reflect the mixture of desires to maintain connection 
with the ethnic community while assimilating with the broader society, including greater contact 
with ethnic majority groups. The preference to seek significant levels of out-group contact may 
reflect instrumental motives for assimilation, such as gaining access to the residential amenities 
available only in majority ethnic areas. Alternatively, it may reflect a willingness to relinquish 
ethnic bonds and seek full incorporation into primary social relationships with the majority 
group, including friendship and kin networks. Or it may reflect some combination of these and 
other motives. For ethnic majority groups, desires for out-group contact may reflect a willingness 
to at least partially embrace the diversity of ethnic culture in modern societies and especially 
urban areas and a desire to avoid living an “insulated” life in “bland,” overwhelmingly 
homogeneous residential areas. 
 

What role might such preferences play in segregation? We use the SimSeg model to 
implement simulation scenarios relevant to this question. First, we elaborate ethnic preferences 
to allow for positive preferences for both co-ethnic and out-group contact. These must be 
constrained to be logically compatible, but otherwise, they can be implemented in a 
straightforward way. For example, we modified the experiment set presented in Figure 7 as 
follows. We maintained ethnic demography at 70/30 and preference for co-ethnic contact at 
30%, but we added a preference for out-group contact at 30%. Under this scenario, all 
households would be completely satisfied with neighborhoods that ranged between 30% and 
70% Black, and all households would be dissatisfied in some degree with neighborhoods that 
were less than 30% or more than 70% Black. We implemented the diversity preference in a 
relatively conservative way. We calculated satisfaction scores on out-group contact in the same 
way as satisfaction scores on co-ethnic contact, but we assigned them only half the weight given 
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to the satisfaction scores for co-ethnic contact. This scenario corresponds to a situation where 
households sincerely have the goal of seeking diversity but assign it less importance than the 
goal of seeking co-ethnic contact. 
 

We also performed a set of experiments that used a variation in preferences that was even 
more conservative. Specifically, we departed from the Laurie-Jaggi practice of maintaining 
symmetric preferences for both groups and assigned stronger preferences for co-ethnic contact to 
the demographic majority group (Whites). We set the preference for co-ethnic contact for Whites 
at 50% while keeping the similar preference for Blacks at 30% and maintaining the preference 
for out-group contact at 30% for both groups. Thus, Whites are not satisfied if they are a 
demographic minority but also wish to live in ethnically diverse areas. 
 

Figures 12 and 13 show the results for these experiments. They suggest that positive 
preferences for ethnic diversity have the potential for dampening the segregation-promoting 
consequences of preferences for co-ethnic contact established in previous sections of this paper. 
Across the board in both figures, segregation is at very low levels. The comparison with the 
results presented in Figure 7 are compelling. In Figure 7, segregation was high in all three 
scenarios with nonminimal vision. These high levels of segregation are eliminated by 
introducing positive preferences for diversity. This finding, as so many others, is anticipated by 
Schelling (1971, pp. 165–166). 
 

In our view, this finding provides a realistic basis for optimism regarding the possibilities 
for ethnic integration under unconstrained choice dynamics. The results are encouraging because 
preferences for out-group contact are assigned only half the weight of preferences for co-ethnic 
contact. Future research should direct attention to the question of how diversity preferences may 
reduce segregation. However, the exploratory results here should be kept in perspective because 
the simulations implement conditions that are favorable to integration in two important respects: 
 

• Neither group’s preference for co-ethnic contact exceeds its representation in 
the population. This factor makes it possible for White and Black households 
to meet their preferences for co-ethnic contact and diversity by residing in 
areas that mirror the city’s 70/30 ethnic mix. Obviously, this would not be 
possible in a city with a 90/10 ethnic mix. Future research should investigate 
that situation to assess the limits of the diversity preference effect seen in 
Figures 12 and 13. 

 
• Preferences that depart substantially from those documented in surveys have 

been implemented. Surveys suggest that most White households prefer at least 
80% co-ethnic contact. Relatively little evidence suggests that the average 
White household specifically seeks diversity and assigns this goal a high 
priority.39 The more common “optimistic” interpretation is that Whites 
“tolerate” diversity, and their level of “tolerance” has increased appreciably  
 

                                                 
39 Our analysis of data on residential preferences taken from the Houston Area Surveys (Klineberg, 2003) provides 

some evidence that Whites in Houston, Texas, display a discernible preference for ethnic diversity. White 
respondents in this survey indicate they are more willing to move into neighborhoods that are 10% to 20% 
non-White than neighborhoods that are all White. At present, this is an isolated empirical result, but it merits 
closer examination. 
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Vision = 1; D = 0.02 Vision = 5; D = –0.01 

  

Bounded Areas; D = 0.02 Bounded Areas; D = 0.00 

FIGURE 12  Ending landscapes from analyses where vision R is varied, preference for 
co-ethnic contact P = 30%, preference for out-group contact is 30%, and ethnic mix  
is 70/30 

 
 

over the past four decades. Our earlier results suggested, however, that mere 
tolerance is not likely to be a powerful mechanism for promoting integration. 
That is, tolerance of out-group contact is permissive of greater integration, but 
it does not specifically generate movement toward integration. The models 
explored here show that, when preferences for co-ethnic contact exceed 
demographic supply under integration, neighborhoods drift steadily toward 
ethnic polarization via irreversible neighborhood “tipping” dynamics of the 
type considered by Schelling. The results presented in Table 1 and Figure 10 
show that mere tolerance of diversity does not serve as a “brake” on this 
dynamic. 

 
 We stress that we are couching our assessment of the relative inconsequence of tolerance 
of diversity in the context of models that assess only the direct effects of preferences. In a 
broader view, the permissive role of tolerance may be more important. Residential choices are  
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Vision = 1; D = 0.13 Vision = 5; D = 0.01 

  

Bounded Areas; D = 0.02 Bounded Areas; D = 0.05 

FIGURE 13  Ending landscapes from analyses where vision R is varied, preference for 
co-ethnic contact P = 50% for Whites and 30% for Blacks, preference for out-group 
contact is 30%, and ethnic mix is 70/30 

 
 
driven by non-ethnic residential goals, such as seeking better municipal services, higher-quality 
housing, and closer proximity to employment — all influential factors in residential decisions. 
Tolerance of ethnic diversity allows households pursuing non-ethnic goals to consider a wider 
range of neighborhood ethnic mixes. Thus, while tolerance of diversity may not directly counter 
the segregation-promoting effects of preferences for co-ethnic contact, it may still facilitate 
integration indirectly by allowing non-ethnic dynamics to undermine the “drift” toward 
segregation seen in “pure” preference effect models. 
 
 Our analyses indicate that those who wish to promote integration via preference-related 
interventions should give attention not only to reducing desires for co-ethnic contact but also to 
educational efforts that would foster a meaningful desire for ethnic diversity. With respect to 
majority group preferences, this goal may be “within reach” in cities with imbalanced ethnic 
mixtures such as the 90/10 and 75/25 scenarios used in the experiments presented in Figures 5 
and 6. Cities with ethnic mixtures along these lines are not uncommon. Surveys suggest most 
Whites will tolerate neighborhoods with 90/10 to 75/25 ethnic mixes. If Whites actively sought 
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such neighborhoods, it could help to promote large reductions in segregation. Considering the 
significant changes in attitudes in the past four decades, it is not altogether unrealistic to imagine 
such changes are possible. 
 
 This scenario is more complicated, however, because surveys suggest that typical Black 
households have preferences for at least 50% co-ethnic contact. These preferences are not 
compatible with stable integration in cities with 90/10 or 75/25 ethnic mixes due to the paradox 
of weak minority preferences. Blacks’ preferences for co-ethnic contact are markedly lower than 
those held by Whites’, but they are not integration-promoting relative to ethnic demographies 
found in most metropolitan areas. On a more encouraging note, survey evidence suggests that 
Blacks, more than Whites, often hold positive preferences for nontrivial diversity. The paradox 
of weak minority preferences suggests that demographic minority groups may bear a 
disproportionate “burden” in achieving integration. In most American metropolitan areas, 
integration requires Whites to embrace only moderate levels of out-group contact while still 
maintaining high levels of co-ethnic contact. In contrast, minority groups often must seek very 
high levels of out-group contact and accept low levels of co-ethnic contact, a point noted by 
Schelling (1971, p. 179). For minorities, spatial assimilation implies the potential demise of 
geographically based minority ethnic communities in urban areas. These issues are likely to be 
important and complex and thus deserve attention in future research. 
 
 

SUMMARY AND DISCUSSION 
 

The primary purpose of this paper has been to investigate the implications of a theoretical 
model of ethnic preference effects on segregation. As in the Laurie-Jaggi study, the crucial 
variables in the model are ethnic demography, ethnic preferences, and vision. Laurie and Jaggi 
stressed the interaction of vision and preferences. We conclude that this interaction may be 
relevant to understanding segregation in small-scale, short-duration settings such as lunchroom 
and auditorium seating. However, we do not see it as important to understanding residential 
segregation because larger-scale spatial domains are salient in residential choices in metropolitan 
areas, and basic demographic processes generate random vacancies that unleash the full 
segregation-promoting potential of preferences. 
 

We direct attention toward the interaction of ethnic preferences and ethnic demography. 
This interaction is powerful and, in our view, has clear relevance for understanding residential 
segregation in metropolitan areas. Because Laurie and Jaggi did not recognize this interaction, 
their study adopted a setting for ethnic demography that was optimal for achieving integration. 
We believe this helps to account for their premature willingness to question the Schelling model 
of segregation and offer conclusions about ethnic preferences and integration that were more 
optimistic than those advanced by previous researchers. We provide a more nuanced assessment 
of the implications of ethnic preferences under ethnic mixtures common in American 
metropolitan areas. Our analyses lead us to be more cautious about the possibilities for 
integration under unconstrained ethnic preferences. We find support for the hypothesis that 
preferences are segregation-promoting when demand for co-ethnic contact cannot be satisfied by 
demographic supply under integration. On the basis of this finding, we have a more sober view 
of the changes that may be needed to dramatically reduce segregation, given prevailing 
preferences for co-ethnic contact and the ethnic demographies of most metropolitan areas. 
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We end on a more optimistic note by pointing to the role that positive preferences for 
diversity could play in reducing segregation. We distinguish “diversity preferences” from the 
more passive “tolerance” of diversity. Tolerance of diversity is not inconsequential and may play 
an important “permissive” role in situations where factors other than ethnic considerations may 
promote residential integration. But in models that highlight the segregation- and integration- 
promoting effects of preferences, positive preferences for diversity appear to directly retard the 
segregation-promoting effects of preferences for co-ethnic contact to a much greater degree than 
mere tolerance of diversity. 
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P = 0.30; Vision = 1; D = 0.17 P = 0.50; Vision = 1; D = 0.22 

  
P = 0.30; Vision = 3; D = 0.14 P = 0.50; Vision = 3; D = 0.63 

  
P = 0.30; Vision = 5; D = 0.03 P = 0.50; Vision = 5; D = 0.78 

FIGURE A.1a  Ending landscapes from replications of Laurie and Jaggi’s analyses 
investigating the interaction of preferences for co-ethnic contact P and vision R when 
ethnic mix is 50/50 using the original Laurie-Jaggi search algorithm where satisfied 
households need never move 
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P = 0.30; Vision = 1; D = 0.20 P = 0.50; Vision = 1; D = 0.26 

  
P = 0.30; Vision = 3; D = 0.25 P = 0.50; Vision = 3; D = 0.67 

  
P = 0.30; Vision = 5; D = 0.03 P = 0.50; Vision = 5; D = 0.79 

FIGURE A.1b  Ending landscapes from replications of Laurie and Jaggi’s analyses 
investigating the interaction of preferences for co-ethnic contact P and vision R when 
ethnic mix is 50/50 using the modified search process where households are required to 
move on first search 
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TABLE A.1  Means for the index of dissimilarity for final landscapes  
by vision R and preference for co-ethnic contact P for repeated 
simulation experiments where ethnic mix is 50/50 

  
Vision, R 

 
P 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

Panel 1: Search Process Specifies Satisfied Households Need Never Move 

20 4.5 3.5 1.1 0.6 0.7 0.6 0.5 

25 4.6 5.5 2.4 1.1 0.5 0.7 0.6 

30 14.9 17.6 10.4 4.7 1.5 1.0 1.0 

35 19.6 31.8 44.1 34.2 15.6 6.1 2.7 

40 20.4 37.0 53.3 65.9 71.7 75.8 72.0 

45 20.1 44.1 59.0 68.6 76.1 79.9 83.8 

50 20.8 47.9 64.2 72.8 79.1 83.1 85.0 

Panel 2: Search Process Specifies Households Must Move on First Search 

20 8.8 7.3 1.7 0.6 0.5 0.5 1.1 

25 8.6 12.6 5.1 1.3 0.9 1.0 0.5 

30 20.8 27.4 21.3 9.7 3.2 1.2 0.9 

35 25.9 38.1 50.1 49.6 33.8 15.6 4.9 

40 25.6 41.8 57.5 66.8 73.6 78.4 79.1 

45 26.8 48.0 61.3 71.1 77.9 79.8 82.9 

50 26.8 50.6 65.4 74.3 80.0 83.3 86.4 
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FIGURE A.2a  Index of dissimilarity for final landscape by vision R and preference  
for co-ethnic contact P for repeated simulations where ethnic mix is 50/50 and search 
algorithm specifies satisfied households need never move 

 
 
Note: Figure A.2a replicates results presented in Figures 5 and 7 of Laurie and Jaggi (2003). The 
plotted lines are in descending order of the preference for co-ethnic contact. Thus, the top line is 
for P = 50, the next highest line is for P = 45, and so on. The data plotted in this figure are 
provided in Table A.1. 
 
Commentary: Figure A.2a documents that when P ≥ 40 (top three lines), segregation is high at 
high levels of vision. However, when P ≤ 30 (bottom four lines), segregation is low at high 
levels of vision.  
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FIGURE A.2b  Index of dissimilarity for final landscape by vision R and preference for co-ethnic 
contact P for repeated simulations where ethnic mix is 50/50 and search algorithm specifies 
households must move on first search 
 
 
Note: Figure A.2b replicates results presented in Figures 5 and 7 of Laurie and Jaggi (2003) and 
Figure A.2b of this paper, but using the modified search algorithm where households are 
required to move on first search. The plotted lines are in descending order of the preference for 
co-ethnic contact. Thus, the top line is for P = 50, the next highest line is for P = 45, and so on. 
The data plotted in this figure are provided in Table A.1. 
 
Commentary: Figure A.2b documents that when P ≥ 40 (top three lines), segregation is high at 
high levels of vision. However, when P ≤ 30 (bottom four lines), segregation is low at high 
levels of vision. 
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Initial City Landscape Final City Landscape 

  
Panel 1: Laurie and Jaggi Search Process Where Satisfied Households Need Never Move 

  

Panel 2: Modified Search Process Requiring Households to Move on First Search 

FIGURE A.3  Beginning and ending landscapes from simulations where ethnic mix is 
50/50, preference for co-ethnic contact P is 0%, and vision R = 5 by using the original 
Laurie-Jaggi search process and a modified search process 

 
 
Commentary: The results in Figure A.3, Panel 1, show that the Laurie-Jaggi search process does 
not reveal the potential for preferences to permit integration. In fact, no movement occurs 
because households cannot improve satisfaction by moving. The results in Panel 2 show that the 
modified search process produces integration because final residential outcomes in Panel 2 are 
produced by preference-guided search, whereas final residential outcomes in Panel 1 are 
produced by initial assignment, not search. 
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TABLE A.2  Means for the index of dissimilarity for final landscapes  
by vision R and preference for co-ethnic contact P for repeated 
simulations where ethnic mix is 80/20 

  
Vision, R 

 
P 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

Panel 1: Search Process Specifies Satisfied Households Need Never Move 

20 9.4 14.6 21.0 24.5 26.1 27.4 28.3 

25 8.6 14.5 21.4 24.6 26.8 28.1 27.9 

30 14.5 15.5 21.4 24.8 26.7 27.7 27.7 

35 20.8 18.3 20.6 24.5 27.0 27.5 27.6 

40 21.5 20.4 21.7 24.8 26.9 27.9 27.9 

45 20.4 35.4 26.3 25.8 27.0 27.8 27.8 

50 21.2 43.8 45.4 32.7 28.2 28.7 28.0 

Panel 2: Search Process Specifies Households Must Move on First Search 

20 13.43 25.43 35.53 40.82 44.65 47.26 49.84 

25 13.51 32.08 45.42 53.69 58.11 61.78 64.32 

30 25.02 41.80 54.49 63.14 68.99 72.26 75.02 

35 31.94 47.78 60.90 71.57 76.47 78.96 80.92 

40 31.94 49.90 63.91 73.25 79.67 83.02 84.04 

45 31.11 55.48 67.96 76.45 81.86 84.76 86.08 

50 32.24 56.51 71.48 78.80 83.65 85.68 88.33 
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FIGURE A.4a  Means for the index of dissimilarity for final landscapes by vision R and 
preference for co-ethnic contact P for simulations where ethnic mix is 80/20 and search 
algorithm specifies satisfied households need never move 
 
 
Note: The plotted lines in Figure A.4a are in descending order of the preference for co-ethnic 
contact. Thus, the top line is for P = 50, the next highest line is for P = 45, and so on. The data 
plotted in this figure are provided in Table A.2. 
 
Commentary: When compared with Figure A.2a, this figure documents that the Laurie-Jaggi 
search process produces low segregation at high levels of vision under all settings for co-ethnic 
contact considered in Table A.2 (i.e., P = 20–50). This illustrates how the Laurie-Jaggi search 
process fails to permit the full expression of latent potential for high levels of segregation under 
high levels of vision. “Stable integration” results not because households are satisfied with 
integrated neighborhoods, but because movement promoting segregation ceases when vacancies 
in areas receiving Black in-migrants “fill up.” The resulting city has two kinds of neighborhoods: 
all-White neighborhoods with a 20% vacancy rate and 80/20 neighborhoods with no vacancies. 
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FIGURE A.4b  Means for the index of dissimilarity for final landscapes by vision R and 
preferences for co-ethnic contact P for repeated simulations where percent Black is 20%  
and search algorithm specifies households must move on first search 
 
 
Note: The plotted lines in Figure A.4b are in descending order of the preference for co-ethnic 
contact. Thus, the top line is for P = 50, the next highest line is for P = 45, and so on. The data 
plotted in this figure are provided in Table A.2. 
 
Commentary: When compared with Figure A.4a, this figure documents that our modification of 
the Laurie-Jaggi search process “unleashes” the latent potential for segregation in simulations 
where demand for co-ethnic contact equals or exceeds its supply under integration (i.e., when  
P ≥ C). Segregation is much higher in these simulations because our search process creates 
random vacancies that permit households to act on their segregation-promoting preferences. 
Under this search process, segregation increases with vision and is higher when the discrepancy 
between demand for co-ethnic contact and its supply under integration is greatest.  
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TABLE A.3  Means for the index of dissimilarity for final 
landscapes by vision R and percent Black C for repeated 
experiments where preference for co-ethnic contact P Is 30% 
and search algorithm specifies households must move on first 
search 

  
Vision, R 

Percent 
Black, C 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

        
5 39.7 57.0 67.0 71.7 75.6 77.2 78.5 

10 31.7 49.5 61.6 68.0 73.1 74.1 76.2 

15 28.5 45.0 58.3 66.3 71.5 74.0 75.6 

20 25.7 40.1 54.8 64.8 69.6 73.4 75.8 

25 24.1 37.1 50.9 60.9 65.5 68.2 70.1 

30 22.4 34.5 45.3 51.9 52.8 55.2 56.1 

35 20.8 30.8 36.1 40.7 38.0 36.7 35.3 

40 20.9 29.0 30.3 25.9 21.8 17.7 14.8 

45 20.3 27.3 23.4 14.5 7.1 4.6 2.1 

50 20.1 26.8 21.6 10.2 3.3 1.3 0.8 
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FIGURE A.5  Means for the index of dissimilarity D for final landscapes by percent Black  
in the city C and vision R for repeated experiments where preference for co-ethnic contact 
P is 30% and search algorithm specifies households must move on first search 

 
 
Note: At the furthest point on the left on the X axis (percent Black = 5), the plotted lines are in 
descending order of vision; that is, the top line is for R = 7, the next highest line is for R = 6, and 
so on. The data plotted in this figure are provided in Table A.3. 
 
Commentary: Figure A.5 shows that segregation outcomes are strongly conditioned by ethnic 
mix when vision involves nonminimal spatial domains (e.g., when R ≥ 3). The interaction grows 
stronger at higher levels of vision.  
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FIGURE A.6  Means for the index of dissimilarity D for final landscapes by vision R and 
percent Black in the city C for repeated simulations where preference for co-ethnic contact P  
is 30% and search algorithm specifies households are required to move on first search 
 
 
Note: At the furthest point on the left on the X axis (vision is R = 1), the plotted lines are in 
ascending order of percent Black; that is, the top line is for percent Black = 5, the next highest 
line is for percent Black = 10, and so on. The data plotted in this figure are provided in 
Table A.3. 
 
Commentary: Figure A.6 shows that city ethnic mix conditions segregation outcomes under all 
settings of vision. The pattern is complex. When ethnic mix is balanced, as in the Laurie-Jaggi 
study (e.g., the lowest line corresponding to percent Black = 50), segregation is lower overall and 
is generally lower at high levels of vision. When ethnic mix is imbalanced (e.g., the top line for 
percent Black = 5), segregation is higher overall and increases monotonically as vision increases.  
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TECHNOLOGY TRAJECTORIES  MODELING THE EFFECTS OF SOCIAL 
AND TECHNICAL DIVERSITY ON TECHNOLOGICAL DEVELOPMENT 

 
F.L. SMITH,* The University of Chicago, Chicago, IL, 

and Argonne National Laboratory, Argonne, IL 
 
 

ABSTRACT 
 

What are the general dynamics of technological development within diverse social and 
technical environments? This paper describes an agent-based model designed to 
investigate this question. Simulation results are also discussed. The model consists of a 
heterogeneous population of innovators with different sets of values and social types 
(e.g., mimics, rebels, balancers, and dominators). All have access to several technical 
paradigms that offer different capabilities. Over time, innovators improve the 
performance of products within these paradigms, as a function of their inherent values 
and relationships with other innovators. Preliminary results provide insight into the 
influence of social identity, network density, paradigm structure, and other factors on the 
shape and content of technological development. 
 
Keywords: Social agents, technological development, agent-based modeling 
 

 
 

INTRODUCTION 
 

Modern technologies are developed in a complex environment. Diverse social agents, 
such as individuals, organizations, and states, pursue various technical alternatives for numerous 
interdependent reasons. Although social and technical context are key determinants of innovative 
activity, the interactions between technological development and even simple rules of social and 
political behavior are poorly understood. Nevertheless, these interactive dynamics influence the 
direction and rate of technological change. As such, they are consequential for a wide variety of 
issues, ranging from economic growth to national security.  
 

This paper discusses how agent-based modeling and simulation (ABMS) can be used to 
investigate how a range of social relationships, coupled with different measures of value and 
multiple technical options, affect the trajectory of technological development. First, I highlight 
some of the problems presented by technological development in a heterogeneous environment. 
Then I describe the model (named TecTrajec) and discuss how my treatment of technological 
development relates to the literature on technology and other ABMS approaches. Next, I present 
preliminary simulation results. I conclude by addressing some of the implications of these early 
findings, as well as avenues for further investigation.  
 

                                                 
* Corresponding author address: Frank L. Smith, Department of Political Science, The University of Chicago, 

Chicago, IL  60637; e-mail: flsmith@uchicago.edu.  
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THE PROBLEM 
 

The complexities of technological development are a major barrier to successful 
theorizing. The innovative process is characterized by a high degree of contingency and 
uncertainty, but there are also hints of underlying regularities. This juxtaposition of patterns and 
particulars is most apparent in systems where innovation is influenced by a heterogeneous 
population of individuals, organizations, and states, which all have different values, 
relationships, and capabilities. The analytical problems are only compounded by the diversity of 
technical substitutes, complements, and novelties that are available and often pursued in series or 
parallel. In light of these realities, many theories of technological development are too simplistic 
to account for the variety of outcomes observed or are so caught up in the details of a particular 
historical case that their general applicability is suspect.  
 

Understanding the effects of social and technical diversity is difficult but important. 
Critical outcomes — from the success or failure of commercial ventures, to national security and 
economic competitiveness — all hinge on the interactions between these interdependent and 
overlapping factors. Moreover, analytical progress is possible through ABMS techniques, which 
provide leverage over what might otherwise be intractable problems.1 Although a general theory 
of technological development is far beyond the scope of this paper, the model and simulations  
I discuss offer some insight into the systemic dynamics of social selection, as manifest in the 
direction and rate of technological change.  
 
 

STRUCTURE OF THE TECTRAJEC MODEL 
 

There are many ways to model a phenomenon as complex as technological development, 
and while the model presented here is useful, it is neither definitive nor all-inclusive. TecTrajec 
is built with Java and Repast, and it consists of a population of agents that interact within a social 
and technical environment. It also includes several graphical interfaces, so that various aspects of 
the simulation’s behavior can be easily visualized.  
 

The agents in the TecTrajec model are innovators. They represent the individuals, firms, 
governments, and other organizations that develop new technologies. The identity of each 
innovator is defined by two inherent characteristics — its values and social type. It also 
possesses one or more technological artifacts, which it improves as a function of these inherent 
characteristics and its relationships with other agents.  
 

An innovator’s values determine which aspects of technological performance it is 
predisposed to appreciate. Since individuals, organizations, and states all pursue multiple ends, 
innovators are modeled as having multidimensional value systems in order to accommodate a 
variety of interests. Because real-world actors also share some ends, the innovators in TecTrajec 
have value sets that overlap with others in the population. As do all of the concepts addressed in 
this model, these values are treated abstractly, so they simply consist of a short set of characters 
that form the compass rose of an innovator’s interests (see Figure 1).  
                                                 
1  If satisfactory representations of the relevant actors and factors can be defined, then their interactions can be 

played out in a dynamic, multi-agent system. As long as the computer code is clear and accessible, then the rules 
governing simulation behavior are transparent, which permits critical assessments of the underlying theory and 
implementation. Finally, the histories of the artificial systems generated through ABMS can be repeatedly re-run 
and modified, permitting both quantitative and qualitative analysis.  
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FIGURE 1  Innovator value types (All are present and randomly distributed 
among the social types in the population [except in simulations with only the 
X,Y paradigm, where just the x,y value set is used].)  

 
 

The innovator’s social type is the collection of rules that govern how it will interact with 
others it encounters over the course of the simulation. One can imagine a virtually endless list of 
possible decision rules or strategies. Here, seven intuitively appealing ideal types provide a 
plausible spectrum of social behavior (see Table 1). 
 

Innovators are situated in a technical and social environment. The social environment is 
defined by the number of innovators, the values and social types present in the population, and 
the density of contact between the agents (i.e., their social overlap). The density of the social 
network between innovators can range from a maximum, where every agent is linked to every 
other agent (i.e., an interactive “soup”), to a minimum where each is locked into an isolated 
dyad. 
 

The technical environment consists of one or more paradigms,2 within which innovators 
develop particular artifacts (or products). These paradigms are abstract representations of 
real-world domains like biotechnology or information technology. The artifacts symbolize 
specific instances of these technologies, like a particular drug or software application. Because 
some paradigms are broadly applicable and offer a wider array of capabilities than others, 
TecTrajec includes two-dimensional (2D) and three-dimensional (3D) design spaces. Just as 
different innovators have overlapping sets of values, different technical paradigms are modeled 
as overlapping along common dimensions of performance. Thus, the technical environment is 
characterized by the number of paradigms present, their dimensionality, and the extent to which 
they overlap along common performance dimensions. 
 

A paradigm defines and constrains the multidimensional design space within which the 
artifacts it contains can develop (see Figure 2). Since artifacts provide a particular combination 
of capabilities, they are visualized as points within this space, and the orthogonal axes of the 
paradigms serve as abstract scales along which the performance of different artifacts can be  
 
                                                 
2  What I refer to as a “paradigm” is synonymous to a regime, design space, and several other terms used in the 

technology literature. Although I use the paradigm’s axes to define abstract performance scales for comparing 
the artifacts, it does not matter if the constraints imposed by the paradigms are thought of as being cognitive, 
material, social, or economic. The word “paradigm” is used here to be consistent with the terminology 
associated with technological trajectories as described by Dosi (1982), not to indicate any particular stance on 
the origin or constitution of the constraints they impose. 

x, y 
 x, z 

y, z 

x, y, z 
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TABLE 1  Social types and decision rules (All investments are made in the innovator’s own 
artifacts, with one unit of investment providing one unit of performance improvement.) 

 
Social Type Stimulus Response 
   
Random No social stimuli 1) Select a paradigm at random.  

2) Randomly pick a performance dimension valued by self in this 
paradigm and invest in it.  

  
Mimic Partner’s last action 1) Select the same paradigm that the partner last invested in.  

2) If the performance dimension that the partner last invested in is 
valued by self, invest in it too. Otherwise, randomly pick a valued 
dimension in this paradigm and invest in it.  

  
Rebel Partner’s last action 1) Note the paradigm that the partner last invested in, and if 

possible, randomly pick any other paradigm.  
2) Note the performance dimension that the partner last invested in, 

and randomly invest in any other dimension valued by self.  
  
Balance Partner’s capabilities 1) Select the paradigm where partner’s cumulative capability is 

greatest.  
2) Pick the dimension where the partner is strongest. If valued by 

self, invest in it. Otherwise, randomly pick a dimension in this 
paradigm valued by self and invest in it.  

  
Dominate Partner’s capabilities 1) Select the paradigm where partner’s cumulative capability is 

smallest.  
2) Pick the dimension where the partner is weakest. If valued by 

self, invest in it. Otherwise, randomly pick a dimension in this 
paradigm valued by self and invest in it.  

  
Comparative 
balance 

Partner’s capabilities, 
relative to one’s own 

1) Compare partner’s cumulative capability in each paradigm to 
one’s own. Pick the paradigm where partner’s relative lead is 
greatest.  

2) Select the dimension where the partner is strongest relative to 
one’s own performance. If valued by self, invest in it. Otherwise, 
pick their next strongest dimension to invest in.  

  
Comparative 
dominate 

Partner’s capabilities, 
relative to one’s own 

1) Compare partner’s cumulative capability in each paradigm to 
one’s own. Pick the paradigm where partner’s relative lead is 
smallest.  

2) Select the dimension where the partner is weakest relative to 
one’s own performance. If valued by self, invest in it. Otherwise, 
pick the next weakest dimension to invest in.  
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FIGURE 2  Paradigm options in TecTrajec (Single-paradigm simulations 
include either the X,Y or X,Y,Z paradigm. Multi-paradigm simulations include 
up to three 2D paradigms and one 3D paradigm.) 

 
 
compared (e.g., speed in miles per hour or memory in megabytes). Improvements are made 
through innovation. Over time, a technological trajectory emerges as a line connecting the points 
of past performance as these products are improved over the generations. 
 

The dynamics of the simulation are as follows. All innovators begin with one artifact in 
each of the available paradigms (since they all offer performance along at least one dimension 
that every innovator is predisposed to value). During every time step or “tick,” each innovator 
randomly establishes a relationship with another innovator in its social network. After noting its 
partner’s past decisions or technological capabilities, each improves the performance of one of 
its own artifacts, based on its social type and values (see Table 1).3 At the next time step, these 
relationships dissolve and the sequence begins again.  
 

Agent behavior is governed by both inherent and relational considerations. Innovators’ 
inherent value sets determine which performance dimensions they are predisposed to appreciate, 
but they rely on their relationships to identify the artifact and capability they will improve at any 
given time. Although related, an innovator’s value set is not the same as the performance 
dimensions provided by the paradigms (when labeled with the same letters, they can be thought 
of as being parallel but not equal).4 Combinations of intrinsic values and social context provide 
the frames of reference necessary to give the paradigms’ performance measures meaning and to 
make innovation an intentional and socially motivated activity.  
 
 

LITERATURE ON TECHNOLOGICAL DEVELOPMENT 
 

TecTrajec incorporates several aspects of technology that are frequently discussed in the 
innovation literature but rarely simulated together. The model relies on the concepts of 
paradigms and trajectories, following the analogies drawn by Giovanni Dosi between  
 

                                                 
3  Here the details of the innovative process are simplified, and the complexities of converting innovative intent 

into an actual product are not addressed (except in simulations involving uncertainty).  
4  The origin of the performance space is fixed, providing a constant point of reference for visualizing outcomes. 

Although the orientation remains constant, the origin of each innovator’s value compass can be thought of as 
changing at every tick, as a function of its social type and technical stock relative to that of its partner.  

X, Y X, Y, Z 
Y, Z 

X, Z 
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TABLE 2  The independent and dependent variables studied through TecTrajec (See the 
preliminary simulation results for descriptions of the uncertainty conditions and measures of the 
dependent variable.) 

 
Independent Variable(s): 

Social and Technical Diversity 
Dependent Variable(s): 
Technology Trajectories 

 
Innovator identities: 

•   Social type (see Table 1) 
•   Values (see Figure 1) 

 
Population size (2 → 240+) 
 
Network density or social overlap (min, max) 
 
Number of technological paradigms (1 → 4) 
 
Paradigm dimensionality (2D or 3D, see Figure 2): number and 
dimensionality determine the extent of technological overlap 
 
Uncertainty: 

•   Innovative realism (on, off) 
•   Random initial artifact (on, off) 

 
Direction and rate of technological development 
(qualitative assessment) 
 
Rate of unique artifact creation 
 
Rate of divergence (from the trajectory of a 
hypothetical nonsocial innovator) 

 
 
technological development and Thomas Kuhn’s influential theory of scientific revolutions (Dosi, 
1982; Kuhn, 1962).5 The recognition of multidimensional paradigms within which artifacts are 
represented as points is common in the literature, although rarely abstracted away from 
real-world product characteristics as done here.6 Technological overlap rests at the core of many 
theories, including work on the innovator’s dilemma (Christensen, 1997), technological 
succession (Windrum, 2003), and other models addressing substitution, but it is often implied 
rather than treated explicitly. Finally, social framing and the heterogeneous agents involved in 
innovation are discussed at length by constructivists and others but have not found their way into 
many simulation studies of technology.7 
 

All of these varied concepts are pulled together in this model, but several important 
aspects of technological development are left out — most notably, the sort of selective 
environment necessary for evolution. In TecTrajec, innovators choose to improve artifacts in 
some ways as opposed to others, but every choice is preserved in the analysis of the resulting 
trajectories. Moreover, the social type and value content of the innovator population is constant 
throughout any given simulation. As such, TecTrajec is a complex “reactive” system rather than 

                                                 
5  TecTrajec simulates dynamics within overlapping paradigms. For an example of a simulation approach to 

competition between paradigms, see Wittenberg and Sterman (1999). 

6  Inherent to the multi-dimensional nature of the paradigms in TecTrajec is the notion of orthogonal or 
qualitatively different technological characteristics, a point often emphasized by evolutionary economists. See 
Saviotti (2003). 

7  For example, see the “social shaping of technology” literature (Sorensen and Williams, 2002). 
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a true complex adaptive system, since the agents respond to their environment through preset 
rules that do not evolve. 

 
I do not include a selective environment in my basic model for the sake of simplicity and 

generality.8 Addressing selection requires building in additional assumptions about technological 
fitness, which is a complex and contentious issue, particularly in nonmarket contexts (Nelson 
and Winter, 1977). “Fitness is a relative phenomenon that depends not only on the characteristics 
offered by a set of rival technologies but also the evaluation of norms and selections made by a 
series of political, economic, and other agents” (Windrum, 2003). TecTrajec abstracts away from 
the specific details of any particular selective environment, in an attempt to investigate the 
effects of social and technical diversity on sequential decisions made without (or prior to) 
external selective pressure. The cost of this approach is that the model cannot directly address 
those aspects of technology that are grounded in evolutionary selection and adaptation, like 
learning.9 The benefit is a clear and general analytical platform that provides important insight 
and can be extended to incorporate these additional factors.  
 
 

PRELIMINARY SIMULATION RESULTS 
 

Although TecTrajec is a relatively simple model, it has numerous variables and degrees 
of freedom, generating a large parameter space that is yet to be fully explored. Nonetheless, I 
have sampled some of this space by perturbing the settings and rules, in order to check the 
internal validity of the code and root out any behavior resulting from programming mistakes.10 
Output generated by the asocial random type was used to confirm that the model conformed to 
analytically anticipated results and as a baseline for judging experiments involving social 
types.11 While more testing is always desirable, it appears that the version of the model used to 
produce the results reported here is sound, and any persistent biases are negligible.12  
 

In addition to the prerequisite testing, I ran several experiments on how social and 
technical diversity affects technological trajectories. Some aspects of the simulated behavior 
were retrospectively obvious, even though they were not initially expected. Other outcomes were 
more surprising. In short, social type and social density significantly affect systemic dynamics. 
In a fully connected soup, innovators with the same social type share similar sets of trajectories 
that often differ from those of other types. When they are only minimally connected, this 
difference is no longer true, and all the artifacts collapse into a few common trajectories. Larger 
populations influence some outcomes but not others. Technical overlap and paradigm 

                                                 
8  On the advantages of following the “KISS” principle in ABMS design, see Axelrod (1997). 
9  Diffusion may fall into this category of dynamics as well. 

10  On the importance of internal validity and perturbation as a method for finding idiosyncratic code, see Axelrod 
(1997) and Axtell (2000).  

11  In the simple case where one 2D paradigm (X,Y) is available and only random-type innovators with x,y values 
are present, the model’s behavior should mirror that of a fair coin toss, with outcomes approximating the 
Bernoulli distribution. The mean artifact coordinates and variance appear to do so. Averaging across 80 runs of 
10,000 ticks, the rate of divergence (or the slope of the residual) of such simulations from the analytically 
expected value is small and close to zero (i.e., 0.0045). In contrast, the comparable rates of divergence for all 
experiments involving mixed social types are orders of magnitude larger. 

12  The source code for TecTrajec is available upon request. Please contact flsmith@uchicago.edu. 
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dimensionality affect behavior, but not necessarily as one might expect. The same can be said 
about the outcomes observed when elements of uncertainty are introduced into the simulation. 
The direction of some of these trends corresponds to changes in the behavior of the random 
baseline, however, indicating that further testing and mathematical analysis of the system are 
necessary.  
 

When the density of the social network between innovators is at a maximum, the artifacts 
improved by the different social types coalesce into distinct sets of trajectories (Figure 3). These 
trajectories tend to fall into one of several patterns that reoccur under a variety of settings. What 
I call “diagonal fingers” are common (especially for the mimic, balancing, and comparative 
balancing types), where artifacts reflect equal tradeoffs between the performance dimensions 
offered by the paradigm, just like the random-type baseline. “L-shaped” trajectories emerge 
when innovators consistently improve one dimension or another but not combinations thereof. 
(Usually, comparative dominators follow this pattern of specialization; as a result, they push out 
the edges of the technological frontier faster than other types in mixed runs). “Fan-shaped” 
trajectories that uniformly explore the whole space are also seen under some conditions, as are 
“spirals,” where the trajectories of two social types (often balancers and dominators) twist 
around each other.  
 

Two quantitative measures were used to compare the behavior of the model under 
different settings. The first gauged the rate at which artifacts with new combinations of 
capabilities were generated within each paradigm. Since an innovator can only improve one 
artifact at a time, the improvements it makes in its technological stock may replicate capabilities 
already provided by another innovator’s artifact. Hence, not every improved artifact is unique, 
and the rate that new artifacts are developed is a good proxy for how much of the design space 
provided by the paradigm is being explored. The second quantitative measurement was the rate  
 
 

FIGURE 3  TecTrajec artifact trajectories in a single 2D paradigm (For the simulation on the left, 
social density was at a maximum; on the right, it was at a minimum. All social types except 
random are present [These simulations contained 60 innovators run for 5,000 ticks].)  
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at which the capabilities of the artifacts developed by each social type diverged from the 
expected value for a hypothetical nonsocial innovator (i.e., the rate of change of the residual).13 

 
Preliminary findings on the rate of unique artifact creation are summarized in  

Figures 4 and 5.14 Because of the limited number of simulation runs conducted, the results 
should be considered statistically suggestive rather than statistically significant (especially given 
the stochastic aspects of this model).15 Nonetheless, it appears that the rate of creation of unique 
artifacts increases with the number of innovators and when a paradigm with higher 
dimensionality is present, but the rate decreases with an increased number of overlapping 
paradigms.  
 

The random-type baseline also follows these trends, however, indicating that some of this 
behavior may be explained by a mathematical account of these outcomes.16 Nonetheless, there 
are significant and persistent differences between the high rate of unique artifact creation in 
maximally dense networks versus the low rate in minimal networks, for which the random 
baseline provides no explanation. Furthermore, in both the 2D and 3D + 2D paradigm cases, the 
results for the minimum density simulations do not neatly follow the baseline trend (although 
more testing is required to verify the extent and direction of any differences).  
 

The data for the rate of divergence from the expected value of a hypothetical trajectory 
provide a different perspective on simulation behavior. The rate of change of the residual is 
sensitive to the social types present but seemingly not affected by the number of innovators in 
the simulation. All social types diverge from the expected value faster than the random baseline, 
and in virtually every case, divergence is greatest when social density is at a minimum. (Greater 
divergence under minimum density does not refute the conclusion that minimally dense systems 
create fewer unique artifacts. Given the collapse into a few common trajectories, less new space 
is explored, but more innovators are caught up in trajectories that diverge from the hypothetical 
diagonal finger.) Higher dimensionality appears to increase the rate of divergence in all cases, 
but the effect of additional paradigms on this measure is complicated, may differ for different 
social types, and requires further analysis.  

 

                                                 
13  The trajectory used to calculate the expected values was that of a single imaginary random-like innovator with an 

all-inclusive value set, which pursued an equal tradeoff between performance dimensions (or a straight “diagonal 
finger”) at a constant rate within each paradigm present in the simulation.  

14  For simulation runs up to 10,000 time steps, both the rate of unique artifact creation and the rate of divergence 
appear to be roughly linear (indicating that some of the dynamics discussed here are insensitive to time). 

15  Every data point reported here represents an average across at least 10 runs with different random seed numbers. 
(In some cases, the data for the random baseline represent 2× and 3× as many runs.) 

16  I suspect the decrease in unique artifact creation with increasing numbers of overlapping paradigms is due to a 
buildup of artifacts along the axes in each paradigm. When multiple paradigms are available, innovators of all 
types choose which paradigm to invest in prior to any consideration of how many of their values it might serve 
(given their multidimensional value sets, it will serve at least one, but often it is only one). Therefore paradigms 
that only offer the innovator valued performance along a single dimension are frequently selected, resulting in a 
buildup of artifacts in trajectories that run along the paradigm axes and explore little new space 
(e.g., “L-shaped”). This could explain both the random-type trend and limited effect of paradigm population on 
unique artifact creation in minimally dense simulations (where most artifacts already fall into a limited number 
of common trajectories).  
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FIGURE 4  Total unique artifact creation per tick versus 
population size (Data are from simulations with one 2D 
paradigm run for 10,000 ticks. “All social types” includes 
every type of innovator except for random.) 

 
 

 

FIGURE 5  Total unique artifact creation per tick versus the number (and dimensionality) of 
paradigms present (Data are from simulations with 240 innovators, run for 10,000 ticks.) 
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Brief studies were also conducted on the effects of two additional parameters: 
“innovative realism” and “random initial artifact.” As the name implies, innovative realism seeks 
to achieve a greater resemblance of the innovative process by introducing elements of 
uncertainty. Here the returns gained by each innovator’s attempted improvements randomly vary 
over the course of the simulation, and all innovators experience serendipity, whereby they 
sometimes realize improvements in performance dimensions or artifacts other than those 
intended. Similarly, the random initial artifact setting scatters the capabilities of the products that 
each innovator begins the simulation with, so all the innovators do not start from the origin of the 
paradigm’s performance space.  

 
When both innovative realism and random initial artifact are in effect, the rates of unique 

artifact creation and divergence for the random type are greater than in simulations where this 
uncertainty and variability are not present. When all social types are run together, however, 
unique artifact creation in maximally dense simulations remains above the baseline but decreases 
relative to the rates observed for runs without uncertainty. In minimally dense networks, new 
artifact creation is substantially greater than it is in networks without uncertainty, surpassing the 
random baseline and approaching the rates observed with maximum density. The rates of 
divergence in minimally dense runs with uncertainty are lower for all social types but remain 
well above the random-type baseline, whereas the changes in divergence for maximally dense 
simulations are mixed. 
 
 

IMPLICATIONS AND CONCLUSION 
 

More experiments are needed to determine the full extent and significance of these 
preliminary results. Nonetheless, a few lessons can be drawn from the output generated by 
TecTrajec so far. Persistent differences between the behavior of social innovators and the asocial 
random type support the claim that social identity is consequential. The same is true for the 
social environment, since the density of the interaction topology has substantial effects on 
systemic outcomes. Within sufficiently dense networks, heterogeneous populations generate a 
variety of trajectories not observed in homogeneous or sparsely connected environments. More 
unique artifacts are created in technological paradigms that provide more performance 
dimensions (i.e., the 3D versus 2D cases), but this may not be true when higher dimensionality is 
achieved by overlapping distinct paradigms. These results must be regarded with caution, 
however, and there may be mathematical explanations for some of this behavior.  
 

TecTrajec is a developmental rather than evolutionary model because it does not 
incorporate selection through fitness. Nevertheless, it draws attention to factors that should be 
addressed in simulations that impose stronger selective pressures. In particular, the structure of 
social networks between innovators warrants attention when accounting for the supply of 
technological alternatives.17 Similarly, theories based on the assumption of a homogeneous 
innovative community may be of limited utility when applied to populations that are 
heterogeneous and interconnected. For example, the trajectories and relationships between 
artifacts created in a world consisting entirely of balancers are different from those that emerge 
when both balancers and dominators are present. This has implications for theories of arms races 
between states (some of which assume homogeneous social types), as well as for technological 
outcomes where government, industry, and academia are involved. While uncertainty has 

                                                 
17  For an example of a simulation study addressing this point, see Gilbert et al. (2001). 
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profound effects and deserves further investigation, its influence does not necessarily negate 
these conclusions. 
 

The structure of the technical environment is also important. A tentative implication of 
the results reported here is that the real-world convergence or overlap of biological, information, 
material, and nanoscale technologies (Anton et al., 2001) may actually reduce the diversity of 
products that might otherwise be developed.18 The trajectories that emerge within broad or 
multidimensional paradigms also differ from those in paradigms providing limited performance 
sets. This may restrict the applicability of comparisons made between the nuclear revolution, for 
example, and what we might expect for more general paradigms like biotechnology.  
 

The TecTrajec model can be extended to explore these and other implications. Graphics 
for visualizing developments in 3D space would facilitate further observation. Deriving 
additional analytical solutions for the behavior of the random-type baseline and incorporating 
dimensions beyond the x,y,z set used here could shed more light on the influence of the 
technological environment. Finally, adding population flow (whereby paradigms and innovators 
are born and die over the course of the simulation) may offer insight into technological 
development in nonvirgin environments and provide the foundation for evolutionary dynamics. 
To whatever extent these additions support, refute, or expand upon the results generated so far, 
this model has already proved useful for exploring systemic dynamics of technological 
development.  
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ABSTRACT 
 

The concept of emergence is defined in terms of entities. An entity is an aggregation that 
has properties that do not apply to its components and whose definition depends on the 
forces that bind the aggregation together. Four primary categories of entities are 
identified. Mass-based and attractor-based entities arise naturally and require no energy 
to persist. Designed entities are typically human-designed artifacts. Process/structure 
entities are typically social or biological systems that require the continual consumption 
of energy to perpetuate themselves. In all cases, entities expel entropy into their 
environment. Two other categories of entities, temporal and symbolic, are explored in 
less detail. Entities exist as a result of the binding forces that hold them together. The 
binding forces for mass- and attractor-based entities are fundamental forces and operate, 
in some sense, for free: emergence is built into nature. The binding forces for designed 
and structure/process entities require the application of energy and give rise to entities 
that have come to be known as being far from equilibrium. Entities are built on a 
substrate consisting of component entities and the forces to which those component 
entities are subject. This parallels the notion of levels of abstraction in computer science. 
The approach to emergence in this paper relates to the more traditional notions of 
nominal, weak, and strong emergence. We suggest a relationship between weak 
emergence and recursive enumerability. We discuss relationships between emergence and 
scientific reductionism and downward causation. 
 
Keywords: Emergence, entities, entropy, binding forces, persistence, self-perpetuation 
 
 

INTRODUCTION 
 
 Emergence is a central, although loosely defined, concept within the field of complex 
systems. In a recent paper, Bedau (2002) defined what he called weak emergence as a proposed 
explication for the informal notion of emergence. For Bedau, a phenomenon is weakly emergent 
if it arises in the course of a simulation (or in reality) but cannot be anticipated in advance.1 
Bedau’s primary example is the glider in the Game of Life (Gardner, 1970, 1971). Weak 
emergence is discussed in more detail in the Background section. 

                                                 
* Corresponding author address: Russ Abbott, Department of Computer Science, California State University, 

Los Angeles, CA  90032; e-mail: Rabbott@CalStateLA.edu. 

1  One often hears that a property is not emergent unless one is surprised by its appearance. This is a naïve form of 
what is called epistemological emergence (see O’Connor, 2003). But whether the observer is surprised is not 
relevant to much other than his or her psychological state or intellectual powers. The surprise of an observer has 
nothing to do with a property or whether something displays that property. Bedau’s weak emergence does not 
depend on such a surprise factor. It requires only that the amount of (computational) work needed to show that a 
phenomenon will emerge is at least as great as the amount of work needed to run a system and see the 
phenomenon emerge. 
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 This paper explores a characterization of emergence from a different perspective. We 
identify emergence (in at least some of its forms) with entities. In many, if not most, cases, 
emergence refers to the emergence of something (e.g., an entity such as a glider). But entities are 
troubling to science. Weinberg, perhaps the ultimate reductionist, puts it this way (Weinberg, 
1995): 
 

[T]he reductionist view emphasizes that the weather behaves the way it does 
because of the general principles of aerodynamics, radiation flow, and so on 
(as well as historical accidents like the size and orbit of the earth), but in order to 
predict the weather tomorrow it may be more useful to think [emphasis added] 
about cold fronts and thunderstorms. Reductionism may or may not be a good 
guide for a program of weather forecasting, but it provides the necessary insight 
that there are not autonomous laws of weather that are logically independent of 
the principles of physics. [emphasis added] Whether or not it helps the 
meteorologist to keep it in mind, cold fronts are the way they are because of the 
properties of air and water vapor and so on which in turn are the way they are 
because of the principles of chemistry and physics. We don’t know the final laws 
of nature, but we know that they are not expressed in terms of cold fronts or 
thunderstorms [emphasis added]. 

 
In their hearts, most scientists probably believe that there is something both right and 

wrong about this perspective. I doubt that anyone believes there are laws of nature that magically 
spring into being whenever we find it convenient to speak in terms of higher-level entities such 
as cold fronts. Emergence of this sort is what Bedau calls strong emergence (see the Background 
section). Yet concepts such as cold fronts and thunderstorms are so useful that simply to dismiss 
them as arbitrary though practical constructs seems wrong, too. One way to frame this tension is 
as a question about the ontological status of entities such as cold fronts and thunderstorms. Do 
they really exist, or are they just conceptual or useful conveniences? In this paper, we propose a 
perspective in which higher-level entities really do exist, and we provide a physical rationale for 
this perspective.  
 

We also classify entities. Two are of the most interest: 
 

1. Mass-based entities, for which one can describe both a physical mechanism 
for their existence as entities and a metric for the degree to which they qualify 
as entities, and  

 
2. Structural/process entities (the kind that tend to be most interesting), which 

include biological and social entities.  
 

In both cases (and perhaps the most fundamental point), the mechanisms that lead to the 
formation and persistence of these entities expel entropy from the entity. In the first case, the 
mechanisms that expel entropy run, in some sense, for free, illustrating that emergence is a 
fundamental feature of nature. In the second case, the mechanisms that expel entropy require the 
importation of energy, resulting in entities that are now famously called far from equilibrium. 
Entities in both of these classes are self-perpetuating. Although they are not eternal, they are 
supported by forces that tend to keep them in existence as entities. 
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BACKGROUND 
 
Emergence is typically considered a relationship between macro and micro phenomena — one in 
which a macro phenomenon in some sense emerges from underlying micro phenomena. Bedau 
defines three increasingly restrictive categories of emergent properties, as follows: 
 

• Nominal emergence is characterized by macro-level properties that do not 
apply at the micro level but that can be reduced to them. Bedau’s example 
here is a circle, which he says consists of a collection of points, each of which 
individually has no shape. So being a circle is a property of the whole but not 
its parts. But, he continues, if you know that all the points in a collection of 
points are equidistant from a given point, then you can derive the fact that the 
collection is a circle.  

 
Perhaps a more complex example (but not Bedau’s) is that of a (macro-level) 
house that has the property of having some number of bedrooms. The 
predicate “number-of-bedrooms” does not apply to the (micro-level) 
components of a house — such as paint, lumber, sinks, nails, roofing, and 
drywall. But with enough definitional work, perhaps number-of-bedrooms 
could be defined in terms of these components. This is emergence as little 
(if anything) more than entailment. See the discussion of the designed entity 
(the house) and symbolic entity (the circle) in the Categories of Entities 
section. 

 
• Weak emergence is characterized by macro-level properties that could not be 

predicted from the micro level except by simulation. Bedau uses gliders in the 
Game of Life as his prototypical example.  

 
All weakly emergent properties are nominally emergent (i.e., they are defined 
ultimately in terms of lower-level phenomena, but they are derived in so 
complex a way that the work required to derive them is at least as complex as 
the work required to allow them to emerge). 
 
Although we do not have time to explore this issue here, Bedau’s weak 
emergence is in some sense equivalent (although Bedau does not make this 
claim) to recursive enumerability (i.e., a property that must be computed to be 
observed). In particular, since one can simulate a Turing machine in the Game 
of Life, it can be proved that certain properties of the Game or Life, such as 
whether the number of live cells is bounded or whether certain patterns will 
appear, are recursively enumerable but not recursive depending on the starting 
state of the board.  
 

• Strong emergence is characterized by macro-level properties that cannot be 
explained by any combination of explanations from the micro level. It is 
unlikely that there are any such properties (strong emergence is inconsistent 
with any modern scientific conception of the universe) but if there were, 
consciousness would be a current candidate. If it were to exist, strong 
emergence (e.g., laws of weather that are logically independent of the 
principles of physics) would be emergence that, by definition, is magical, 
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spooky, and mysterious. From here on, we ignore the possibility of strong 
emergence. 

 
 

DEFINING ENTITIES 
 
 When speaking of phenomena or properties that are meaningful at a macro level, one is 
inevitably forced to speak of entities that either participate in those phenomena or that have those 
properties. In this paper, we approach the issue of macro vs. micro as one of macro entities vs. 
their micro components. Our task is to distinguish between (a) macro entities that are composed 
of micro entity components and (b) simple aggregations of micro entities that do not deserve to 
be considered (macro) entities. 
 
 We say here that a property of an aggregation is emergent if its definition depends on the 
means (i.e., the mechanisms, design, structures, forces, or constraints), if any, that bind the 
aggregation’s components together. Thus, if a property of an aggregation depends solely on the 
components of the aggregation, that property is not emergent. To be emergent, the property must 
also depend on whatever (if anything) binds the aggregation together. If there are no such 
binding forces, the aggregation cannot, by definition, have emergent properties. 
 

Here are two examples of aggregate properties that are and are not emergent: 
 

• The mass of a bag of marbles is not emergent because mass does not depend 
on the fact that the marbles are in the bag. (As we will see later, a bag of 
marbles is what we will call a designed entity.) 

 
• The miles-per-gallon rating of an automobile is emergent. The property of 

miles-per-gallon does not mean anything with respect to the components of an 
automobile simply as a collection of parts. It has meaning only with respect to 
the components when bound together as an automobile. (An automobile is 
also a designed entity.)  

 
 This definition of emergence is consistent with Bedau’s notion of nominal emergence —
which includes weak emergence. The distinction we are making is that a property is emergent 
when its nominal derivation depends not only on the component elements but also on how those 
component elements are bound together. 
 
 This seems quite straightforward and reasonable, almost obvious. But the focus on how 
elements are bound together has profound implications. In particular, any property that does not 
apply directly to fundamental particles is emergent because any such property necessarily 
depends on how the elements to which it does apply are constructed. This definition of 
emergence thereby alerts us to pay special attention to the means that bind aggregations together. 
It is the binding mechanisms that lead to emergence. Given this definition of emergent 
properties, we can define an entity simply as follows:  
 

An aggregation is an entity if it has one or more emergent properties. 
 
Thus, an automobile is an entity because it has the emergent property of miles-per-gallon. 
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CATEGORIES OF ENTITIES 
 
 It is useful to group entities into categories. Table 1 summarizes our categorization. 
Mass-based and attractor-based entities are at equilibrium and require no additional energy to 
persist. Process/structure entities and designed entities are not at equilibrium. Mass-based and 
process/structure entities are intrinsically bound, being held together by forces internal to 
themselves. Attractor-based and design entities are extrinsically bound, being held together by 
forces external to themselves. 
 
 
Mass-based Entities 
 
 A mass-based entity has a mass that is less than the mass of its components. The clearest 
example is an atomic nucleus. The mass of any atomic nucleus that has more than one nucleon is 
always strictly less than the sum of the masses of the protons and neutrons that compose it when 
considered in isolation. As illustrated in Figure 1, a helium nucleus (an alpha particle) has a mass 
of 4.00153 u, whereas its components, when considered separately, have a total mass of 
4.03188 u. 
 
 This mass differential exists because less binding energy is needed to hold an alpha 
particle together than is needed in total to hold the quarks in the four nucleons together when 
they are independent of each other. It is that difference that yields the release of energy in a 
nuclear reaction, either fission or fusion. Similar effects occur with other primitive forces: 
 

• Atoms are less massive than their components (nuclei and electrons) 
considered separately. 

 
• Molecules are less massive than the atoms of which they are composed.  

 
• Gravitational systems (such as the solar system or a galaxy) are less massive 

than the components of which they are composed.  
 
 Although the preceding statements may sound strange, they are trivially true. Since 
energy is required to break these entities into their components, and since (at least some of) the 
energy that is applied when doing so is retained by the components after the breakup, according 
to the equivalence of mass and energy and the conservation of mass/energy, the total mass of the 
components after the breakup must be equal to the mass of the original entity prior to the 
 
 

TABLE 1  Categories of entities 

 
Does category require energy 

to be sustained? Intrinsically Bound Entities 
Extrinsically Bound 

Entities 
   
No. At equilibrium. Mass-based (e.g., atomic 

nucleus) 
Attractor-based (e.g., lake) 

   
Yes. Far from equilibrium. Process/structure (e.g., living 

cell, nation-state) 
Designed (e.g., automobile, 
woven cloth) 
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FIGURE 1  Mass of a helium nucleus (Source: Georgia State 
University, 2004) 

 
 
breakup plus the retained applied energy. So the sum of the masses of the components must 
exceed the mass of the original entity. Thus, even a handful of wet sand has less mass than the 
sum of the masses of the sand and the water used to wet it. 
 
 This perspective even yields an entity metric. One can define the degree to which a 
physical aggregation is an entity as the amount of energy required to separate it into its 
components. “Entityness,” at least for physical objects, thus becomes a property with a naively 
intuitive measure — not a Boolean property.  
 
 
A Programming Metaphor 
 
 As a computer scientist (not a physicist, mathematician, engineer, social scientist, or 
philosopher), I find it convenient think in terms that can be expressed in programming language 
constructs. Consider the object-oriented pseudo-program in Figure 2: The two lines in which 
energy is released are the lines in which new objects (entities) are created. Another way of 
putting this is that object constructors (entity constructors or what might be called emergence 
operators) are built into the universe. They have the property that they release energy when 
invoked. In other words, in some sense, they run for free. 
 
 
Entropy 
 
 The Second Law of Thermodynamics tells us that nothing really runs for free. So what 
happens to entropy when an entity is created? Constructors of mass-based entities have the 
property that they expel entropy from the newly created entity into the environment. The entropy 
of a mass-based entity is strictly lower than the entropy of the entity’s components when not 
bound together as an entity. Whatever binds the components together limits the states they may 
assume and hence lowers the overall entropy. But since entropy cannot decrease overall, the 
entropy of the new entity’s environment must increase.  
 
 The significance of this phenomenon is that entity-forming forces have the effect of 
aggregating component entities into new larger entities while expelling entropy from the 
resulting entity into the environment. That this occurs universally and at the most fundamental  
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FIGURE 2  Program for building a water molecule 
 
 
levels of physics seems to me to be quite significant. Without becoming too mystical about it, 
this illustrates that emergence (i.e., the emergence of entities) is a fundamental feature of the way 
the universe works. 
 
 
Attractor-based Entities 
 
 An attractor-based entity is an entity that exists by virtue of the structure of its 
environment. For example, a lake exists as water that collects in a basin of attraction. It is not the 
water that defines the lake, it is the attractor, which is part of the environment, that defines it. 
Attractor-based entities are similar to mass-based entities, except that the entity (the lake) is 
separate from the forces that define it. The stuff collected in a basin of attraction has emergent 
properties (e.g., the volume of a lake), but the basin itself also has emergent properties (e.g., its 
capacity). Energy is required to separate the components from the entity (i.e., to remove 
components from the basin). 
 
 In this case and the previous case, the entropy flow is the same: from the entity to the 
environment. Of particular interest is that in both cases, no energy is required for the persistence 
or perpetuation of entities in these classes. Mass-based and attractor-based entities are formed 
and persist on the basis of primitive forces. 
 
 
Designed Entities  
 
 Designed entities are a structured collection of components that exhibit properties that the 
components would not exhibit either individually or collectively if they were not arranged 
according to that structure. Typical examples, which are almost always human-manufactured, 
range from cloth, clothing, furniture, and mechanical, electrical, and electronic appliances to 
computers and entities that include embedded computers, such as automobiles, houses, satellites, 
and semiconductor chip fabrication facilities. The structures of these entities, if not maintained, 
typically deteriorate over time — especially though use. 
 
 One of my favorite examples of entities in this category is woven cloth, which consists of 
thread arranged according to a weave pattern. Being essentially a two-dimensional object, cloth 
has a property (area) that its components (threads, which are essentially one-dimensional objects) 
do not. Cloth comes into being when a weave structure is (externally) imposed on a collection of 
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thread components. Unlike mass-based entities, cloth has no intrinsic processes to bind itself 
together. Nor is cloth bound together by a simple attractor, although perhaps one could argue that 
it is bound together by the many little attractors that create friction. Although cloth is stable if 
untouched, it may wear, fray, and unravel with use. It requires mending (the application of 
additional external energy to rebuild and repair its structure) to maintain its structure. Like 
virtually all manufactured objects, cloth has a lower entropy than the unstructured threads of 
which it is composed. But the process of making cloth is a result of the application of energy; it 
does not arise spontaneously as a result of fundamental physical forces. 
 
 At the other extreme of sophistication from cloth is a notion that most computer scientists 
are familiar with: level of abstraction. This is the conceptual framework defined by a 
programming language or computer application program. A level of abstraction is a designed 
entity or, more frequently, a collection of designed entities along with a collection of operations 
that may be applied to them. The binding forces that are used to combine lower-level elements 
into a new level of abstraction are the operations that exist at the substrate level. An executing 
computer program is the design that combines these lower-level entities into higher-level 
entities.  
 
 In computer science, one typically ignores the need to import energy: the binding forces 
operate as if they are free once the computer is powered on. When executing a program, a 
computer reduces the entropy within the computer and expels entropy into the environment as 
heat. 
 
 
Process/Structure Entities  
 
 Process/structure entities are characterized by the fact that they have an abstract structure 
that is maintained by one or more internal processes. The internal processes use energy supplied 
externally, and they operate only as long as such energy resources are available. Most (perhaps 
all) biological and social entities are process/structure entities, although not all process/structure 
entities are biological or social. (See the fire, hurricane, and tornado examples below.) The 
abstract structure that organizes a process/structure entity persists even as the physical material 
of which the entity is composed cycles through it. Process/structure entities are distinguished by 
the fact that they tend to be self-perpetuating. 
 
 As an example, consider a corporation, which is defined (in this case formally, although a 
formal definition is not a requirement for process/structure entities) by a combination of state 
law, its articles of incorporation, and its by-laws. The people and property that occupy any 
particular role in the corporation at any specific time may come and go. It is the formal structure 
and processes defined by the corporation’s charter that persist. (The fact that most articles of 
incorporation and by-laws provide a mechanism for their own modification does not change the 
fact that, at any time, it is the structure and processes defined by that charter and those by-laws 
that characterize the corporation.)  
 
 Most social and biological process/structure organizations are not built in so formal a 
manner. Yet they are similar in that they generally have a structure that persists even as the 
physical material of which these entities are composed comes and goes. It is the job of a 
process/structure entity’s internal processes to use the continually recycled physical materials to 
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maintain the entity’s abstract structure. Consider, for example, how the physical substance of any 
biological entity is constantly being renewed. 
 
 A process/structure entity’s ongoing internal binding processes are the means that keep it 
bound together as an entity. These binding processes are analogous to the ongoing processes (the 
exchange of virtual particles) that bind mass-based entities together. The forces that bind a 
process/structure entity together are typically quite complex and not as simple as those that bind 
mass-based and attractor-based entities together.  
 
 Process/structure entities require a source of energy to power their binding processes and 
hence to hold themselves together. This contrasts with mass-based and attractor-based entities, 
whose binding processes run for free. This need for energy is similar to the need that designed 
entities have for external energy (in the form of maintenance) to hold themselves together. The 
difference is that designed entities need energy to allow an external agent to repair their 
externally imposed structures. Process entities need energy to run the internal processes that bind 
them together. Since they tend to persist if that energy is available (old age is a separate issue) 
but also depend on the continual consumption of energy to hold themselves together, 
process/structure entities are what has come to be known as far-from-equilibrium systems. These 
entities are thus self-perpetuating. They are built in such a way that if the environment within 
which they exist remains relatively stable and if the energy they require to power their internal 
processes is available, they perpetuate themselves. 
 
 The framework within which a process/structure entity’s binding processes operate 
defines the entity’s infrastructure. The prototypical example is the circulatory system of a 
biological entity. Like mass-based and attractor-based entities, process/structure entities expel 
entropy. They differ from mass-based and attractor-based entities in that they import energy to 
do it. Here we briefly consider three examples of process/structure entities: hurricanes, fires, and 
a nation-state. 
 
 
Hurricanes and Fires 
 
 Two nonbiological and nonsocial examples of process/structure entity are hurricanes and 
fires (or flames). Both extract energy from the environment, which they use to perpetuate 
themselves and to maintain their internal structures.  
 
 A hurricane feeds off the pressure and temperature differential between the warm ocean 
and dense lower atmosphere and the cooler and less dense upper atmosphere. Here is a 
description of hurricane formation from the National Center for Atmospheric Research (2004): 
 

 One ingredient [in hurricane formation] is a low pressure area which 
forms over a large area of warm water. The air being drawn into the central low 
pressure is curved due to the Coriolis Effect. Surface friction also causes the wind 
around the low to spiral toward the center. This gives the hurricane a circular 
rotation. The incoming air must go somewhere so it rises. This rising air, which is 
saturated with water, cools and condenses to form clouds. The latent heat given 
off when the water condenses causes the upper air to warm and increase in 
pressure. This high pressure area is the reason why weather is nice in the eye of a 
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hurricane. This is the start of a feedback mechanism which continues to intensify 
the hurricane as long as there is warm water from which to draw energy. 

 
Figure 3 illustrates the structure of a hurricane in cross section. 
 
 Similar (but not identical — typically there is no central downdraft) mechanisms produce 
tornados, flames, and fire storms. In all cases, energy is necessary to heat the inward flowing air 
to perpetuate the cycle. A hurricane, or so-called warm-core storm, is unusual (as Figure 3 
shows) in that the core consists of downward-flowing air and the heating takes place in the upper 
atmosphere as a result of condensation of moisture from the rising moist ocean air. The 
condensation occurs at the top of a ring around the eye, called the eye wall. This heating causes 
both increased pressure within the eye and decreased pressure at the top of the eye wall, drawing 
up more moist air. 
 
 What is common to hurricanes, tornados, flames, and fire storms is the operation of a heat 
engine (i.e., the performance of work, typically the movement of some physical material, through 
the application of heat energy). A hurricane is unusual in that the heat is generated as a result of 
condensation in the upper atmosphere, which effectively pumps additional moist air upward into 
the condensation area. 
 
 Hurricanes depend on moist and relatively warm surface air for their self-perpetuation. 
The environmental energy sources upon which hurricanes depend are (a) the energy that 
transfers moisture from the ocean to the surface air before it is pumped upward and (b) the 
continual cooling or dispersal of heat in the upper atmosphere so that the heat generated by 
condensation does not overly warm the condensation area. With these environmental conditions 
in effect, hurricanes can perpetuate themselves indefinitely. 
 
 The infrastructure of a hurricane consists of the pathways along which air is transported. 
If these (especially the upflow of moist air) were blocked, a hurricane’s internal process/structure 
would deteriorate, and the hurricane would die.  
 
 A hurricane’s primary binding force is the physical forces that cause gases to move from 
high-pressure areas to low-pressure areas (i.e., along the hurricane’s infrastructure pathways). 
The binding forces are (necessarily) inherent to the medium (the atmosphere) of which the  
 
 

 

FIGURE 3  Cross-sectional diagram of a hurricane 
(Source: NASA, 2004) 
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hurricane is composed. If gases were not subject to pressure differential forces, there would be 
no hurricane. But because gases are subject to those forces, hurricane structures, once in place, 
can perpetuate themselves. Other binding forces are those that generate heat as a result of 
condensation and those that allow air to absorb moisture. 
 
 Similar analyses can be done for tornados and, perhaps more interestingly, for fires. A 
fire’s primary binding processes are its convection currents and infrared radiation, both of which 
carry heat throughout the area that defines the fire. The convection flows and the radiation 
vectors also define the fire’s (changing) infrastructure. A fire can persist only as long as such an 
infrastructure can be built and as long as there is enough fuel to maintain that infrastructure. 
 
 
Nation-State 
 
 A nation-state has properties (e.g., capital city, laws, currency, foreign policy) that do not 
apply to its components; thus, it is an entity. A nation-state has a process infrastructure that 
provides the means by which it operates as a state and an economy. These include the traditional 
political and economic infrastructure elements, as follows: 
 

• Political infrastructure: Elective, legislative, judicial, regulatory, police 
processes, etc. 

 
• Economic infrastructure: Transportation and communication systems 

(processes), etc.  
 
 The multiple ongoing internal processes that define these infrastructures are what bind 
the nation-state together and allow it to function as a discernable entity. It is the nation-state’s 
structure and infrastructure that persist over time rather than the elements that play particular 
roles within the structure. 
 

• No one individual fills a political role indefinitely. (Even kings die, yet 
kingdoms persist.) It is the political (infra)structure that remains stable, 
although it may evolve.  

 
• No one truck, road, or airport defines a transportation system, for example. It 

is the economic (infra)structure that remains stable, although it, too, may 
evolve. 

 
The authors of the U.S. Constitution recognized and affirmed the importance of infrastructure as 
binding processes by writing a postal system into the Constitution. 
 
 Like a hurricane that develops by using the atmosphere as a substrate, a nation-state (and 
any social organization) is built by using people as the substrate. Consequently, the binding 
forces that hold a nation-state together must be operations that people can perform and forces 
that act on people. The attendees at this conference know far more about this than I. So I will do 
little more than offer a basic list of capabilities and forces that apply to people. 
 
 The capabilities are whatever it is that people are able to do. The analogy to a hurricane is 
that air is capable of both absorbing and releasing moisture. At their most general scope, the 
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capabilities of people include physical self-propulsion, the ability to understand and use 
language, the ability to follow instructions, the ability to perform physical acts in the world 
(e.g., aiming and shooting a gun or digging a ditch), and the ability to manipulate symbols 
(e.g., voting). 
 
 Besides having these capabilities, people are malleable in that they are capable of 
learning new knowledge, skills, values, and even emotional responses. An extremely important 
(if seemingly magical) capability — and one upon which a modern market economy (as well as 
our scientific research infrastructure) relies — is the ability of people to develop new ideas and 
perspectives. All of these capabilities are available for use in developing a social system. 
 
 Besides these capabilities, it is important to catalog the forces that act on people. These 
include emotional forces (e.g., interpersonal love, tribal loyalty, patriotism, fear, anger, and 
compassion, which tend to impel people to take actions), physical forces (e.g., being detained, 
restrained, or killed by force), intrinsic forces (e.g., the need for food, sex, community; the 
impulse for self-preservation; creativity; taking initiative; ethical behavior), and whatever else is 
inherent in the nature of human beings. 
 
 This is certainly a broad and superficial list, which should be elaborated upon much more 
carefully. But whatever the list eventually evolves into, it is these forces and capabilities upon 
which a nation-state must be built. 
 
 
We Can Create New Process/Structure Entities 
 
 One nice feature of entity formation is that we can imagine and create new ones. Clearly, 
any designed object is a human-created entity. So are many of the social systems we have 
created. Perhaps more interestingly, we are also capable of creating the means for creating new 
entities. Most of the infrastructures of modern nation-states provide a basis for the creation of 
new entities. The internet is the latest example of such a generic infrastructure around which new 
entities can grow. 
 
 
Other Categories of Entities 
 
 Besides the categories of entities sketched above, there are a number of other categories 
of entities that do not fit the preceding paradigm. It is not yet clear how to describe the binding 
forces for the following classes of entities. 
 
 
Temporal Entities 
 
 Temporal (performances) entities exist in time. They carry and apply energy. Examples 
include a performance of a musical note/chord/melody, a performance of an algorithm (or a 
play), or virtually any performance. All of these entities exhibit emergence in that they have 
properties that do not apply to their components. A chord, for example, may be dissonant — a 
property that does not apply to individual notes. A performance of an algorithm (or a play) may 
achieve a computational (or an emotional) result that differs from the results achieved by the 
performance of their individual components.  
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Performance entities are different from the descriptions of how they are produced. The 
performance of a note is not the specification of the note. It is the actual production of the sound. 
The same goes for the performance of an algorithm or a play. See the next section on Symbolic 
Entities for a brief discussion of algorithm specifications as entities. 
 
 Two other examples of temporal entities that I do not understand (and that may be 
related) are a ripple on the surface of a liquid (or more generally, a wave carried by a medium) 
and the domino effect (e.g., dominos fall in sequence, as one topples the next). 
 
 It seems to matter that temporal entities are applied to other entities (i.e., they do not 
stand alone). 
 
 
Symbolic Entities 
 
 Symbolic entities require interpretation. Examples include a pair of socks,2 a sentence, 
the set of prime numbers, the constitution of a government, the specification of an algorithm, and 
Bedau’s circle. All these entities exhibit emergence in that they have properties that their 
components do not have.  
 
 An algorithm (specification) may be proved to compute a result that the individual steps 
do not compute individually. An algorithm depends on the control structures that bind its 
components together. Thus, the control structures define an organization for an algorithm, but 
they exert no control over the components other than during its execution. The control structures 
of an algorithm are not binding forces in the sense used earlier. They do not compel components 
to stay together. 
 
 A sentence has a meaning that depends crucially on its syntax, which binds its 
components together. The situation is similar to that of an algorithm. But syntax has an effect 
only in the mind of the interpreter. It is not, in itself, a physically binding force. 
 
 Bedau’s circle is bound together by its definition (i.e., a set of points equidistant from a 
distinguished point). Again, the binding structures exist, but they have no force on their own. 
The definition must be interpreted by an interpreting agent. 
 
 In all cases, an interpreter is required for a symbolic entity. Without something to 
interpret the syntax or other binding connectives of a symbolic entity, it would not exist as an 
entity. 
 
 

DOWNWARD CAUSATION 
 
 We agree with Weinberg that strict downward causation (macro to micro) is as unlikely 
as strong emergence. We do not expect new forces to appear magically at a macro level and then 
have an effect at the micro level. However, downward causation is virtually essential from a 
practical perspective.  

                                                 
2  An individual sock is a designed entity. It is the pair that is a symbolic entity, with the individual socks as 

components.  
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 Consider the trajectory of a proton in a molecule in one of the blood cells flowing 
through the body of a passenger on an airplane. That trajectory depends on the passenger’s 
mechanical and physiological structure and activities. It also depends on the trajectory of the 
airplane in which the passenger is riding. That trajectory, in turn, depends on the weather the 
plane encounters during the trip. It also depends on the rotation of the earth, the earth’s 
revolution around the sun, the solar system’s revolution around the galaxy, etc. This is a more 
elaborate form of the example given originally in Sperry (1969): the trajectory of an atom in the 
rim of a wheel rolling downhill. 
 
 Perhaps more interesting, the plane’s trajectory also depends on decisions made by the 
pilot and various flight controllers. These depend, in part, on regulations adopted and distributed 
(on paper or electronically) by the Federal Aviation Administration (FAA), a governmental 
entity. The passenger’s decision about which flight to book depends on the schedule and rates set 
by the various airlines, which depends on decisions made by analysts and executives of the 
airline companies. These scheduling decisions also depend, in part, on regulations promulgated 
by the FAA, etc.  
 
 It would be impossible to compute any of these effects without taking into consideration 
the entities involved as entities. It would be completely hopeless to attempt to describe all that in 
a purely bottom-up manner, in terms of the laws of fundamental particle physics. 
 
 

SUMMARY AND CONCLUSIONS: BINDING FORCES DRIVE EMERGENCE 
 
 A property of an aggregate is emergent if it depends on whether and how the aggregate is 
bound together. Entities are aggregates that have emergent properties. Mass-based entities occur 
naturally and “for free” in that their construction releases energy. The universe is set up to 
produce entities and thus to exhibit emergence. Process/structure entities, although also naturally 
occurring, are not free and exist far from equilibrium. Their persistence and self-perpetuation 
require the continual consumption of energy. We as human beings are capable of imagining and 
creating both new designed entities and new process/structure entities that have properties we 
want. We are also capable of creating new infrastructures that often provide a basis for the 
development of new entities — whose emergent properties sometimes surprise us. 
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DISCUSSION: 
 

STRUCTURE AND EMERGENCE 
 

(Friday, October 8, 2004, 1:30 to 3:30 p.m.) 
 

Chair: M. Dawson, Harvard University 
Discussant: D. Lee, The University of Chicago 

 
 
Toward a Gendered-based Agent Model 
 

Michael Dawson:  This session is on “Structure and Emergence.” Our first speaker is 
Luis Antunes of the University of Lisbon. The title of his presentation is “Toward a Gender-
based Agent Model.” 

 
Luis Antunes:  Thank you. My name is Luis Antunes. I am from Lisbon, Portugal. This 

is a joint work with Rosa Del Gaudio (University of Lisbon) and Rosaria Conte (Italian National 
Research Council). Basically, we are just starting this project, so I’m going to present our ideas 
and some of our preliminary results. I tried to design my presentation to last less than 
30 minutes, so we can allow time for lots of discussion, which I think would be very useful. 

 
I’ll start by explaining the context of our research, presenting some agent models and 

some preliminary experimental results, then giving a short conclusion and some prospects. 
 
Basically, my background is in artificial intelligence, and I studied some problems related 

to utility in decision problems. I introduced a choice framework that tried to overcome some of 
the problems with traditional utility in neoclassical economy, and I tried to use social simulation 
to test some of the issues. This idea about gender studies just comes as an application setting we 
are using to produce an evaluation system and reinforce these arrows backward to test this 
decision model and also to try to obtain insight into some problems related to social simulation, 
some methodological problems I’ve been addressing. 
 

[Presentation] 
 

Unidentified Speaker:  What is the meaning of traditional and nontraditional child 
caretakers in the context of this research? 

 
Antunes:  Traditional means that the women take care of the kids. So in traditional 

populations, the contribution of women is just one-quarter of the total, and in the nontraditional 
their contribution is 40%. When we have mixed populations, it depends on whether the 
environment is competitive or noncompetitive. If it is competitive, the nontraditional and the 
utilitarians end up with zero total members. And if the environment is noncompetitive, they 
(nontraditional and utilitarians) can survive. Both populations are minorities, but they 
can survive. 

[Presentation Continues] 
 

Dawson:  Thank you very much. We’ll now take questions while the next speaker gets 
prepared. We’ll start the discussion with Doowan Lee, who is the discussant for this session. 
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Doowan Lee:  I am Doowan Lee from The University of Chicago. I really enjoyed the 
second set of experiments in your paper because you have different types of agents and you let 
the different types of agents compete with one another. Then you have some population 
dynamics. I think the second part is really interesting. 

 
My fundamental question deals with the division between sex and gender. When you talk 

about biosocial theory, I think you’re talking about biology and sociology. I think sex can be 
very biological, but gender can be socialized, or at least it can be adaptive. But my fundamental 
question is, then, about the fact that gender identity is kind of hard-wired in your model. It is 
really difficult to see whether the results are coming from that hard-wired gender identity or 
some kind of dynamic aspect of the model. So the question is, is it going to change the basic 
findings of your model quite a bit once you allow the gender identity to be endogenously 
generated, as opposed to exogenously given? 

 
Antunes:  I don’t think — well, except for particular cases — one can choose to change 

his gender, even if it is socially constructed. So I don’t see it as a problem. I think the problem is 
mainly a decision problem. Sex is determined at birth, and when you look at gender as a set of 
constraints or norms or role you define, even though it is socially imposed on you, you cannot 
change it. 

 
Some decisional aspects can change because of the societal dynamics, but for that we 

need more a complex mechanism, such as the ones that come from education. For example, 
30 years ago, it would have been stranger than it is today for a man to do certain jobs or for a 
man to help out in the house. But as we speak, we are looking at a society — for instance, in 
Portugal — where women are a major force in the labor world. Inevitably, that will probably 
change the way that we look at gender as a role. But the mechanisms for that change are very 
complex because it depends on children not being educated by their mother or their grandmother, 
but by some institution like school, and increasing the role of fathers in their education. That is 
the type of mechanism I would like to include, but it is very complex and those things change 
very, very slowly. Of course I would like to study those factors, and one of the advantages of 
simulation is that you can speed up the process and look at what happens. Surely, it is important, 
but right now our model is far too simplistic to consider that. 

 
Craig Stephan:  Craig Stephan, Ford Motor Company. You showed that in the 

competitive environment, traditionalists did better than both utilitarians and nontraditionalists. 
Could you describe the utilitarians in greater detail? I would have thought that under those 
circumstances they would simply become traditionalists because that seems to be the best way of 
surviving. 

 
Antunes:  No, because some stochastic things are going on. They don’t have the power 

to become traditionalists. The utilitarians are somewhere in between both extreme cases. They 
can go for one place or the other. They are always in the middle and therefore cannot reach the 
full traditional behavior. Again, one thing I would like to change is to have more fluidity, more 
flexibility in the way that people choose. 

 
Robert Reynolds:  Bob Reynolds, Wayne State University and University of Michigan 

Museum of Anthropology. One of the things I was wondering about is that in traditional 
agricultural societies and hunter-gatherer societies, men, for example, will focus on hunting, but 
women will collect wild plants — herbs and medicinal plants — and also deal with food 
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preparation and those sorts of things. In some studies I’m aware of, it turns out that often in a 
group, a male skilled in hunting will be mated with a woman who is skilled in plant collection, 
etc. In other words, there are skill levels involved with individuals, not just speed, and the skill 
levels actually play a role in the mating activity. You might think about adding skills in here 
within each group; I think that would be an interesting thing to study. 

 
Antunes:  That is a very good idea, thanks. 
 
William Lawless:  I am Bill Lawless, and I have a brief question: What about 

technology, such as the pill, which changes the dynamics? Have you considered that? 
 
Antunes:  No, not yet. Another good suggestion. 
 
Michael Macy:  I am Michael Macy from Cornell. It’s an interesting model, but I have 

a question regarding what specifically you are using the computation to find out. It seems that, 
from what I understand from the presentation, the nontraditional strategy is not in equilibrium. 
That is to say, if you have a population of nontraditionalists, anyone who switches to a 
traditionalist will gain a higher payoff in both the competitive and the noncompetitive worlds. 
That should be rather straightforward from the assumptions of the model. So if you know that 
nontraditionalists are not in equilibrium and you know that traditionalists are in equilibrium, 
what is the computation showing us? 

 
Antunes:  I’m not very interested in the new equilibrium. I’m more interested in 

observing individual trajectories, for instance, of a different agent inserted into a set of 
homogeneous agents or to set up a group of interacting agents and try to use another strategy just 
for one agent and see it propagate. 

 
In fact, you’ve spotted the weakest point of this model: that it can be solved. Everything 

is obvious here. But, as I said, this is preliminary work, and perhaps we kept it too simple. The 
idea is to set up the grounds to push forward. 

 
Unidentified Speaker:  One feature that might be interesting to add would be to consider 

choices that are asymmetric — where men can have more than one woman. 
 
Antunes:  Half of the students wouldn’t allow that. I should really ask about religion 

because that is not allowed in some religions or sociocultural groups. I would like to consider 
several religions. I talked with Rosa about that, and she is just now starting that research. That is 
one thing I would find very interesting. For instance, consider a Muslim who has several women, 
so they form a stronger family. We would see if it is more effective in this environment than in a 
traditional couple family. 

 
Another thing I would like to consider — and I have also talked with Rosa about this and 

it probably will be done — is to have two different choices for the reproductive activities, two 
completely different sets of measures set up for the reproductive activity and for the mating 
activity, so you can choose to work with someone that’s very effective and cooperates well with 
you. However, when you are going to choose your mate, you use different criteria, as we do in 
real life. For example, we choose a lovely girl or something, but we don’t choose to work with a 
lovely girl if it’s not efficient. Try to put together two strategies and see what happens. So there’s 
lots of ground to explore, yes. 
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Overlooked Implications of Ethnic Preferences for Residential Segregation 
in Agent-based Models 
 

Michael Dawson:  Our next speaker is Mark Fossett, who’s going to talk about 
“Overlooked Implications of Ethnic Preferences in Residential Segregation.” 

 
Mark Fossett:  I want to thank the organizers for including us in the program. We’re 

having a great time and appreciate being here. We’ll try to come back. 
 
Our paper focuses on a well-known topic in agent-based modeling: the effect of 

preferences on residential segregation in the modeling framework. We are looking at a recent 
paper that claims to contradict Schelling’s major insights, which I don’t need to review in detail 
here. We find that although the claims of the authors are strong and published in a very 
prominent place that reaches a lot of sociologists, the claims are overdrawn. We build off that to 
elaborate on some insights about Schelling’s findings that we think are useful to discuss. 

 
One of the implications that comes from this is that the connection between the work 

undertaken by agent-based modelers and researchers and the work done by those involved in the 
broader tradition of research on residential segregation is not well connected. Most groups 
probably need to learn from each other a little bit more. That learning will be discussed in a 
couple of places in this presentation. 
 

[Presentation] 
 

Doowan Lee:  I really enjoyed your paper. I think it has very powerful implications for 
three reasons. First, the model is designed to answer a clearly defined, concrete question. In that 
sense, it’s really easy to follow where you’re going. Second, it sets up a benchmark (namely, 
Laurie and Jackie) to which you compare your own results. That is really nice to follow as well. 
More important, you actually follow a very wide space of permutations in the sense that your 
findings are very universal and thus yield very strong positive implications. At the same time, 
your positive implication is that the minority group will have to bear the burden of having to love 
diversity for a highly segregated society to overcome that kind of structure. 

 
It’s nice that you have found that kind of search space within Schelling’s paradigm. But 

the question is, well, you are a really small minority, and it’s very, very difficult to accept the 
burden of having to have diversity purposes. The question is probably a little beyond the scope 
of the paper, but I’d really appreciate if you could speculate on this question: How can minority 
groups actually achieve those diversity preferences, especially when the distribution of ethnic 
groups is highly skewed? 

 
Fossett:  I have a couple of thoughts. One is that there’s a very strong bias in the broad 

body of literature that segregation is a bad thing. It’s implicit in most of the work. Sometimes it’s 
not explicit, and maybe it should be. If someone feels that way, it ought to be more explicit. But 
it does have very powerful implications for minority populations that should be reconsidered a 
bit. It implies that community-building among minority populations is a negative thing, and in 
this multicultural world, I think people should gravitate to that policy position slowly, and it 
should not be presumed. Ethnic enclaves may be meaningful to people, providing warm, fuzzy 
experiences for life and family that people want to seek out, not just as a refuge from 
discrimination and ill treatment but as a positive thing in itself. So that’s one thing. 
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The other thing (where most of my attention has been focused) is in pointing out the role 
of minority preferences, because both groups’ preferences matter, and minority group 
preferences have been ignored... The presumption in the broader literature — not necessarily the 
agent-based literature — has been that the preferences of Whites dictate the residential system. 
They certainly have in the past. In recent decades, that may be changing. If it is changing, we 
need to consider more fully what everybody’s preferences mean and how they interact. 

 
Some researchers have accused the measurement strategies in this area of being implicitly 

racist by setting zero — the score of integration in the integration measures — as something that 
can only be achieved when minority populations essentially dissolve and integrate fully in all 
neighborhoods. They’re saying, “Why would everybody want to have that goal?” I haven’t 
pursued that myself, but some people have. 

 
Michael Macy:  Michael Macy from Cornell. This is a wonderful paper — a beautifully 

crafted study. I enjoyed it very much. I want to thank you for presenting it and look forward to 
reading the full paper. 

 
Now for the bad news. Elizabeth Brook and Rob Mayer at UCLA have developed a really 

devastating critique of Schelling. What they show is that Schelling uses a deterministic threshold 
function, in which one is indifferent to any change in the ethnic composition both below and 
above the trigger point. More plausibly, as the composition changes, people have a monotonic 
change in their probability of moving. So they replaced the strict deterministic function, which 
you can think of as a Z shape, with a sigmoid; they just smoothed it out. And the sigmoid has a 
slope that is pretty close to a cumulative normal distribution. They played around with a number 
of different slope parameters for the sigmoid. 

 
They found that you don’t get segregation; you get stable integration over the usual 

parameters. Do you have any thoughts about how the Schelling model might be tweaked again so 
that it can be robust, even under the assumption of a stochastic threshold function as opposed to a 
deterministic one? 

 
Fossett:  Yes, it’s a bit frustrating. I’ve heard about this paper, but I haven’t seen it. 

Lincoln Quillian [Associate Professor of Sociology, University of Wisconsin] has told me a little 
bit about it. It’s hard for me to comment on something I haven’t seen. 

 
The SIMSEG development, the prototype for the SIMSEG program we’re distributing 

here, has such a function. It does not have a step function for evaluating satisfaction. It has a 
graduated function, so if you’re a little bit close, that’s better. You know, it’s not all or nothing. 
In my own explorations using a wide variety of satisfaction functions, I find the Schelling effects 
to be extremely robust. 

 
In fact, here is a little personal history. I came to this modeling because I wanted to 

discredit Schelling. I was irritated with some of the conclusions. I thought they were too simple. 
I thought that when you introduced some complexities, you would find that in real urban 
systems, they would go away. I’ve given up trying to make them go away. So I’m looking 
forward to seeing this paper. I know Mayer. I don’t know Brook. Mayer’s book is first-rate, so 
I’m nervous. But I’ll wait until I see the model. It will be interesting. 

 



474 
 

William Bulleit:  Bill Bulleit, Michigan Tech. On your second-to-last slide, the one with 
diversity preferences in it, what caused the dead zones? 

 
Fossett:  That was reported in Schelling’s 1971 paper. Those dead zones emerged 

because they are neighborhoods. If you move into them, you’ll be in a homogeneous 
neighborhood. You’ll be surrounded either by many White households or by many Black 
households. So if he’s surrounded by Black households, a Black who moves in will be in a 
homogeneous neighborhood, which he wants to avoid. So the vacancies separate integrated 
neighborhoods. A very interesting pattern emerges. Maybe there are some implications that 
might be drawn from that. But Schelling first noted it. It’s not an artifact. It’s been seen before, 
so it appears to be a regular property of that type of preference structure. 

 
Seth Tisue:  Seth Tisue, Northwestern University. You studied the effect of actual 

preference for diversity. In ethnically imbalanced situations, like 70/30 or 90/10, did it matter 
more? Did diversity preference matter more if you found it in the minority group or in the 
majority group, or was it the same? 

 
Fossett:  The effects are often complicated, so understand this is a very great 

oversimplification. The in-group preference effects — in fact, all of the preference effects — are 
stronger for minorities. The reason is because it’s easier for their preferences to be out of synch 
with demography. In Minneapolis, Minnesota, if Whites want to live in a 95%-White 
neighborhood, segregation is not needed for that to happen. It’s a very White city. Their 
preferences are inconsequential for segregation. But if minorities in Minneapolis want 30% 
in-group contact, it can’t be achieved under integration in the standard sense of proportional 
representation. They have to gravitate toward an enclave. So their diversity preferences to 
counter that dynamic must be very high. That’s stating the extreme case. Minneapolis is kind of 
‘out there’ with regard to the distribution of city ethnic mixtures. 

 
Many more cities, like Los Angeles and Houston, are more diverse, and Whites are only 

about 50% of the population, depending on how that group is defined. But in those cities where 
you have multiple pan-ethnic groups — Asians, Latinos, African-Americans — Whites are 50%, 
but the individual minority groups are only 10% to 15%. So the diversity preferences become 
important. That’s what the mathematics would say. If you look at the implications of preferences 
through this lens, that’s what it would say.  
 
 
Technology Trajectories  Modeling the Effects of Social and Technical Diversity 
on Technological Development 
 

Michael Dawson:  Our next speaker is Frank Smith from The University of Chicago, and 
he’s going to talk about “Technology Trajectories.” 

 
Frank Smith:  I am a Ph.D. student in political science at The University of Chicago, 

primarily studying international relations and national security concerns. What I’m going to talk 
about today is an agent-based model that I have built using Java and Repast to explore some of 
the dynamics of technological development. I also will discuss my preliminary results. This is 
definitely a work in progress. Please, as I go along, don’t hesitate to interrupt if you have 
questions or if I’m unclear on something. 
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[Presentation] 
 

Doowan Lee:  First, I want to congratulate you on this paper. I have to confess that 
I actually spent an entire summer with Frank [Smith] at ANL [Argonne National Laboratory], 
and I know his work like the back of my hand, so it’s really difficult to find some criticism of 
this paper, but I’ll do my best. 

 
First of all, I think this model is really elegant in its design. It’s very simple, yet it 

captures some of the most important things in international relations, that is, heterogeneous 
social types. I think that is the real strength of the paper. So in that sense I also think this paper is 
theoretically very original. Those are the real strengths of the paper: simplicity and theoretical 
originality. 

 
At the same time, one thing I’d like to push you a little bit about is real-world analogies. 

I think you presented a few in the beginning, but I think, for example, one of your examples is 
that when you have high connectivity you will have more diversity in the artifacts. I think it 
would be very interesting to see some real innovators in the world, or some kind of technological 
paradigms out there where they show a high degree of natural connectivity and then the whole 
ecological distribution of the outcomes is sort of diverse. I think this kind of real-world example 
perhaps will harness the nature of this model. That is one direction I’d really like to push 
you more. 

 
At the same time, I think in your paper you talk about paradigms and fitness. You talk 

about ecological or population dynamics and selective pressure. And I think you defend your 
position in two ways. On one hand, you really want to see how networks and social types affect 
technological development over time. I think that that’s a legitimate justification. But on the 
other hand, you also make this methodological justification that … pressure might complicate the 
overall dynamics of your model. 

 
I’m not so sure about that because you do mention Winter and Nelson, and from their 

perspective, the whole distribution of technological innovation hinges upon individual fitness 
functions. Then that actually drives the whole paradigm, so to speak. I think even programming-
wise, it would not be that difficult to include selective pressure. On the domain-specific issues, 
I’m totally aboard. However, on the methodism side, I’d like to know more about why you 
decided to drop selective pressure from your model because you do have performance in your 
model. For me, it is not very easy to think about performance without some kind of selective 
pressure. If you look at innovators or tech companies, there’s a very high rate of death, and it is 
selective pressure that drives the death rate. Without that I think it’s really difficult to say how 
diversity in artifacts or performance will be properly captured in your model. I’ll end my 
comments here, but I really want to push you on selective pressure and real-world analogies. 

 
Smith:  I’ll take the real-world analogies point as just something to consider. As for the 

selective environment and/or fitness, that will be the next step extension of my model. The 
reason why I didn’t include it at the initial stage was that fitness is a semi-contentious issue, and 
I didn’t want a global fitness function driving the outcomes of my model. In some senses, 
I wanted to see in situations prior to environmental selection based on energy access or whatever, 
what sort of outcomes arise, if you need to care about networks in those situations prior to 
selective pressure. But that is unequivocally the next step. One of the ironies is that I draw 
heavily on … evolutionary and economist literature, and yet I don’t have the evolutionary 
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dynamics in my model. It is a reactive model, as opposed to a truly adaptive model with 
populations and rules changing. That would be a point for an extension, but deliberately 
bracketed for this version just to see what sort of dynamics emerge … to external selective 
pressure. 

 
Spiro Maroulis:  Spiro Maroulis from Northwestern University. I want to ask you a 

question about the network density piece. I’m assuming that in that initial dense network there 
was already a lot of nonredundant information, in that all the social types were represented. And 
when you look at real social networks that are dense, they tend to already be homogeneous, and 
you have to import ideas through brokers or through some other method. So I guess that it struck 
me as a little counterintuitive to say that the maximum density was what resulted in more 
innovation, when really it was the heterogeneity that was able to be passed around in a dense 
network that created that, right? If they were already homogeneous to begin with, then you 
would have had redundant ideas. 

 
Smith:  Even when you have a homogeneous (I didn’t present this) population of social 

types, only balancers or only dominators, network density still has an effect. So network density 
is not new to network analysis. That was the simplest measure, the simplest network, variable. 
Other things I’d like to test are things like centrality. But even when you have homogeneous 
social types, the density affects general systemic outcome. 

 
Maroulis:  In the same direction? More innovation? And if so, did that vary by what type 

of social … 
 
Smith:  It varies by social type. I don’t have on the tip of my tongue whether dominators 

were more or less, but it continued to have an effect though, even in situations where you had 
homogeneous populations. 

 
Luis Antunes:  I’m Luis Antunes, from the University of Lisbon. I quite liked your 

presentation. In fact, I already took some of your ideas for my own Ph.D. project some years ago 
and like the idea of considering values and utilities and multiple values. I also experimented with 
some of the types of characters you have, and I even tried to use some kind of nontransitivity 
function for choice, which led to very interesting results. 

 
One thing I like to see is that you took things further and more systematically than I did, 

but I found it funny that you found the same problem that I did — the lack of fitness and a lack 
of purpose of the entire system. And throughout this day we have been listening to people like 
Michael Macy urging us not to look for realism, and we’ve been listening to people urging us not 
to strive for predictions. It’s very important, I think, that you should keep not looking for some 
kind of perfection in your system or even in your agents, because we ourselves are not perfect. 
And I think in our choices we are adaptive, but not really going toward something, because 
I don’t think there’s anything to find. That’s the methodological problem I mentioned in my talk: 
the lack of evaluation or the problem about evaluation in simulations is exactly the one you 
found. And I would like to know your ideas about this. 

 
Smith:  I am a little unclear about the specific question. In terms of the realism versus 

abstraction, not necessarily predicting or exactly mapping real-world dynamics, my personal bias 
is toward simple models, not trying to model reality, but seeing what a few critical variables, a 
few critical simple rules, can get and how far that can get you before you start to add complexity. 
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In fairness, though, to the critics on this point in the sense of adding a fitness function, 
I am not thinking in terms of adding a single fitness function, but perhaps of adding a mixture of 
fitness functions as my solution to not wanting one global function. Because evolution is so 
potentially important in my particular substantive domain (technological development), however, 
it is a serious criticism. It puts serious bounds on how far I can run with my results until I more 
fully account for it. So I think that there are good reasons to not incorporate it in the base model. 
I also think that there are good reasons as I move forward for adding another dimension of 
complexity to seriously look at those sorts of dynamics. 

 
Unidentified Speaker:  I am Bill Ellis. I think your paper was provocative. I’ve come to 

different conclusions, and I just want to pose them. Maybe you can give a brief comment. 
 
I think the idea that maximum density leads to more innovation might be true within 

Kuhnian and normal science, where the innovation is incremental, but certainly it is not true for 
revolutionary science, such as a patent clerk coming up with a theory of relativity. If it were true, 
in the U.N. Human Development Report (2002) about the great density in Muslim countries and 
extraordinarily low innovation, they would have found just the opposite. I also think that overlap 
is actually quite important because of the stimulative effects, the transference effects, and the 
diffusion effects, and that is why we have such things as universities like Stanford or MIT that 
are great, not only as diffusers of knowledge and innovation, but also as creators. 

 
Smith:  In terms of incremental versus revolutionary change, because I’m looking at 

intraparadigm dynamics, I can’t really speak to the failing of one paradigm and the rise of 
another. If I incorporated an ‘evolutionary population flow’ dynamic, one thing I would want to 
look at is the flow in and out of these paradigm constraints. But as my model stands now, as you 
point out, my density calculations or conclusions can’t speak to incremental versus revolutionary 
change. 

 
As for overlap, I agree, and one of the reasons why I wanted to look at it is because 

I believe it is important. It was just a counterintuitive, potentially counterintuitive, outcome in 
that it reduced the diversity that overlapped and caused a ‘clustering’ of artifacts along the axes 
as opposed to exploring the middle space. And so that is a hypothesis that now, as I go back to 
real-world cases that interest me, I’m taking into consideration as opposed to taking de facto that 
technological overlap will lead to greater diversity. This has forced me to look at the question, 
Does it? And if it does, what are the mechanisms and how do those mechanisms differ from 
things that are potentially represented in my work? 
 
 
Emergence, Entities, Entropy, and Binding Forces 
 

Michael Dawson:  Our next speaker is Russ Abbott, from California State, who is going 
to talk about “Emergence, Entities, Entropy, and Binding Forces.” 

 
Russ Abbott:  Thank you. First, I have to say that I’m nervous in doing this talk because 

it is not similar to the other talks in the session; in fact, it is probably not similar to most of the 
talks in this conference. One reason this talk makes me particularly nervous is because of its title. 
You can see all these big words: emergence, entity, entropy, and I’m actually claiming to say 
something interesting about this. I hope you find it useful. 
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My field is not social science. I’m a computer scientist from Cal State, Los Angeles, and 
the Aerospace Corporation. You probably have not heard of the Aerospace Corporation. It is in 
the same category as Miter and Rand and JPL [Jet Propulsion Laboratory], but it has a much 
more limited focus. What it does is help the Air Force put satellites up. 

 
As a computer scientist, I think of computer science as something like applied 

philosophy. I think of a computer as a reification machine, if you think of reification as meaning 
“to make the abstract concrete.” If you can think of something, and you can write a program to 
do it, that makes it real. It takes an idea and makes reality of it because the computer is real. And 
this is my view of the universe. 
 

[Presentation] 
 

Doowan Lee:  As a modest practitioner of agent-based modeling I have always had this 
computer science envy, so if you think you are nervous, you can’t imagine how nervous I am to 
comment on your paper. You are a computer scientist, and [this is] agent-based modeling, so 
I think you should feel fairly comfortable here. 

 
When I was reading your paper, it reminded me of Hidden Order by John Holland 

because he says that there are so many different definitions when it comes to complex data 
systems. We really need to have some kind of typology or some principles by which we can 
evaluate different types of modeling or different types of systems. So from that perspective, I do 
think you provide a very useful typology of entities in this paper. Also, I like that you provide 
some pseudocode, some programming principles for each type of entity. I see some utility — in 
fact a lot of utility — in the typology you provide in this paper. 

 
At the same time, I would like to make one request and pose two questions. The request 

is that you provide some more programming principles for each of the four entities that you 
expound in this paper. I think you do that only for one type of entity. If you expand that 
pseudocode practice for the rest of the entities, I think it would help us quite a bit in following 
the typology and trying to understand how this typology of entities might affect our actual 
programming practices. 

 
As I said, I also have two questions. When it comes to mass-oriented entities, it sounds to 

me very much like simple aggregation. To go back to John Holland, he has four properties and 
three mechanisms for general complex data systems. Those properties are aggregation, 
nonlinearity, flows, and diversity. And the three mechanisms are pegs, identification 
mechanisms, internal models, and building blocks. 

 
Your first noted category, mass-based entity, sounds very much like aggregation as 

defined by John Holland. So my first question from that comparison is that when you have those 
four distinct entities, are they continuous hierarchies or are they just nondescript? If we want to 
have a complex entity, do we have to include the first three and then we … [inaudible] … 
entities? So that’s the first question: How would you elaborate the fourth category of entities, 
especially compared to John Holland’s typology of complex entity systems? 

 
The second question deals with what you describe as binding forces. That sounds very 

much like flows [as defined] by John Holland. When you have ecological systems, they are very 
unstable, but once you have some flux of food chain or some kind of prey/predator relations, you 
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can actually sustain the system. Then it is the flux that should drive the interaction of 
heterogeneous agents in a system. It seems like what you described as binding forces are quite 
equivalent to what John Holland defines as flows. Could you elaborate on the differences? I 
think you would help us relate your work to John Holland’s typology much better. 

 
Abbott:  First, it has been a while since I read Holland’s stuff because it’s fairly old now, 

about five years ago. Let me say that I find it difficult to distinguish between saying something 
that’s rather trivial and saying something that’s significant. I almost titled this talk, “Walking the 
Line between the Trivial and the Significant.” When you read a lot of the things that people 
write, often it sounds like lots of words. You try to put your hands on it and say, “Well, what’s 
really there?” My hope, my goal, is to try to make some of these concepts more concrete. So 
when I talk about mass-based entities, I claim that there’s a reality to mass-based entities, and it’s 
not just an aggregation. I distinguish aggregation from mass-based entities in terms of 
mass-based entities having less mass than the components separately. So I try to make a 
distinction there. 

 
Regarding the notion of entities that hold themselves together with a flux, I don’t have 

much more to say about it other than it does seem to me, as Holland said, that internal processes 
that hold the entities together are really important. That is an important category to think about, 
independently from everything else. It’s not like they’re built upon mass-based entities, but that’s 
an independent category, and it’s a worthwhile category to think about. What is also important 
about them is that they require energy from the outside. They consume energy, and there is some 
sort of internal structure that you as social scientists know a whole lot more about than I do, and 
I would like to see you elaborate. What is that internal structure? What is necessary to keep 
organizations, or states, or social systems together? I don’t have much more to say about that 
in detail. 

 
Unidentified Speaker:  Well, maybe I’ll jump in here for a second. If we are going to 

acknowledge John Holland, I would like to also acknowledge Ilia Prigogene, who has given us 
the concept of … [inaudible] … far from equilibrium process entities. That is indeed a very 
powerful concept and one that’s worth some reflection. So I appreciate your articulating it and 
putting it into context. 

 
Now, I don’t think I’m held too responsible for soccer moms because the thrust of what 

I was saying had to do with fragmentary, fluid, and attributed entities. Calling our assumption of 
discreetness about entities into effect, I would point out that soccer moms are raised precisely 
because coherent behavior is attributed to them. I don’t know if that makes them an entity or not, 
just probably one of my subentity categories, and I don’t even know if it’s true or not that they 
exhibit coherent entity in an electoral sense. But I do have a great deal of confidence that they 
exhibit coherent behavior after school on weeknights and that may give them a certain element 
of “entityness.” 

 
Finally, I want to say that your presentation allows me to take heart because I came to the 

conclusion that a model of meaning-oriented agents gives us perhaps the best gross model of its 
movement that we have available right now. 

 
Luis Antunes:  Luis Antunes from the University of Lisbon. I have a problem with the 

difference between an aggregation and an entity. It strikes me that an aggregation is an entity 
because its aggregatedness is emergent. So where does that leave us? 
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Abbott:  When you say its aggregatedness is emergent, I’m not quite sure what 
you’re saying. 

 
Antunes:  The fact that it is an aggregation. It is in your eyes, not in the aggregation 

itself, so it’s emergent. 
 
Abbott:  Well, a pair of socks is a good example, I think. A pair of socks is a pair of 

socks because we call it a pair of socks. So a pair of socks is two socks that were aggregated 
together. It’s a designed entity because we impose that design on it. But there’s nothing about 
two socks, even if they match, sitting around that holds them together independently of us 
looking at them so. 

 
Antunes:  I’m arguing that two of them were made equal to constitute a pair of socks. So 

they’re both, in your eyes and in the eyes of the manufacturer, in everyone’s eyes, an entity. 
 
Abbott:  Well, again, it requires someone’s eyes to make it an entity. 
 
Antunes:  Well, what doesn’t? Can you give me an example of an aggregation that 

doesn’t require anyone’s eyes? 
 
Abbott:  An atomic nucleus. That is my example of an aggregation that doesn’t require 

anyone’s eyes to be an entity. 
 
Antunes:  I’m not so sure. I think it’s an abstraction also, built by men to talk about 

the world. 
 
Abbott:  Well, to the extent that anything we say is an abstraction we construct to talk 

about the world. I mean, this is the sort of realism — science is realism — that what we talk 
about really exists. If it doesn’t, where are we? 

 
Dawson:  I’d like to thank everyone for their comments. Our time is up. Let’s take a 

short break. 
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SOCIAL NETWORKS AND SIMULATIONS 
 

M. ROLFE,* The University of Chicago, Chicago, IL 
 
 

ABSTRACT 
 

In standard introductions to agent-based modeling, agents have attributes, use decision 
rules, and occupy a space. Although the interactions between agents drive the model, the 
actual pattern of local interactions (random, grid, or torus based or in a circle) are often 
an afterthought. Recent work on the small-world effect in interaction networks (Watts 
and Strogatz, 1998; Watts, 1999) led to the introduction of new agent network topologies: 
typically circles with a few long-distance ties. Do these modifications accurately capture 
the properties of the social networks of interest?  
 
It may not be immediately apparent that the shape and form of agent interactions could 
substantially affect simulation results. However, Gould (1993) showed that behaviors 
spread very differently through different types of networks. Gould found that the 
structures of the interactions between individuals shape the spread of cooperation, even 
when initial individual attributes and decisions are the same. Similarly, Macy and 
Skvoretz (1998) found that a neighborhood’s size and interaction frequencies affect 
outcomes and successful strategies in prisoner’s dilemmas.  
 
This paper extends this line of research by looking systematically at the effects of 
network structure on a very simple threshold model of contagion. It begins by reviewing 
what is known about the composition of social networks, noting structural differences 
between different kinds of social networks. It then compares five techniques for 
constructing agent interaction patterns. First, agents may look at global, not local, infor-
mation. When agents look at local information, they can model local networks in four 
basic ways. Three are standard: random graphs (Rapoport, 1979), two-dimensional 
lattices, and small-world one-dimensional lattices (Watts and Strogatz, 1998). A fourth 
rarely used technique generates biased random graphs (Jin et al., 2001). The paper looks 
at how well these techniques reflect social networks and at whether simulation results 
vary depending on the network construction technique. It finds that biased random graphs 
(Rapoport, 1979; Skvoretz, 1985, 1990) are unique in allowing the researcher to 
manipulate both the average size and average density of local agent networks, and that 
the average density of local agent networks has a substantial independent impact on 
simulation results. Biased network construction represents a promising technique for 
researchers interested in studying social phenomena through simulations, although more 
work in this area is necessary. 

 
Keywords: Social networks, small worlds 
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SOCIAL NETWORK PROPERTIES 
 

The driving force behind agent-based simulations is local interactions among agents who 
use decision rules. Together, these multiple local interactions form a network. The agents form 
the nodes or vertices of the network, and the interactions between them form the links or edges. 
While it is possible to talk about contagion or the spread of innovations in a relatively small class 
of well-defined networks (Rapoport, 1979), in the complex social networks found in everyday 
life, it is clear that simulation is the best way to look at the spread of innovations. 

 
The properties of the various social networks in which real people participate on a daily 

basis can be observed. Moreover, these everyday social networks are likely to form the reference 
group used by most people when they are making the sorts of decisions that are of great interest 
to social scientists (e.g., who to vote for, whether to invest or consume, which policies to 
support, or where to send a child to school). Before assessing which network construction 
methods are the most suitable to use for the decision to be modeled, one must know something 
about who is likely to affect that decision.  
 

In social network research, two different types of networks may be of interest. The 
personal or ego-centered network is used most often. This type of network can be represented as 
a list of all of the different people, or alters, with whom the individual, or ego, has relations, as 
well as of the interrelationships among the members of the ego’s personal network (Wasserman 
and Faust, 1994). Since there are a variety of types of relationships (kin, neighbor, co-worker, 
political discussion partner, church member), a full representation of an ego-centered network 
will capture both the numbers and types of ties between the ego and all of the other alters in his 
or her network.  
 

Networks in which all the members of a well-defined group are enumerated, sometimes 
termed whole or sociocentric networks (McCarty and Bernard, 2003; Wasserman and Faust, 
1994), are more comprehensive, so data collection is more difficult. In order to represent 
interesting sociometric properties, such as centrality, cliques, and structural equivalence 
(Wasserman and Faust, 1994), it is necessary to have information on social ties from a complete 
and bounded population. A researcher with the inclination can construct very successful and 
highly descriptive stories of social action from such data (Galaskiewicz, 1976; Krackhardt and 
Porter, 1985; Krackhardt, 1990; Padgett and Ansell, 1993). In these stories, it is the structure of 
the network that is as important, if not more important, than the individual-level ties; the 
influence of a person depends on his or her structural location and the structural properties of the 
network.  
 

The problem for agent-based modelers is that although a simulation model maps the 
sociocentric network of agent populations, estimates of sociocentric social networks are not 
commonly available. Creative examples of sociocentric networks on which data have been 
collected include marriage and business relationships between medieval Italian families (Padgett 
and Ansell, 1993), coauthorship or citation networks (Newman et al., 2001), actors in the same 
movie (Amaral et al., 2000), and cosponsors of legislation in the U.S. Congress (Skvoretz, 2002, 
citing Burkett, 1997). The major drawback to these data sets is that they typically do not reflect 
the structure of intimate interpersonal relationships but instead reflect the verifiable transactions 
within a bounded population. With the exception of the work by Padgett and Ansell (1993), these 
data do not represent the structure of the fundamental relationships likely to affect much of 
everyday human behavior.  
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Therefore, although there are valid concerns about the reliability of network data 
collected directly from respondents (Bernard et al., 1979; Newman et al., 2001; Butts, 2003), 
there is too much information in egocentric network surveys to overlook this rich source of data 
on the structure of network interactions. The following section quickly reviews the methods used 
to obtain information on egocentric methods. It then summarizes available estimates of two key 
properties of personal networks — average size and density — in each of three “types” of 
commonly described social networks. 
 
 
Surveys of Personal Networks  
 

Collecting information about ego-centered networks is similar to collecting information 
about other individual attributes. A set of individuals can be surveyed and asked about relations, 
and from the responses, estimates can be made about the shapes and compositions of the 
personal networks in some larger group. A handful of collection methods are commonly used; 
most often, they are survey questions involving name generators, such as these: With whom do 
you discuss important matters? To whom do you turn for help? With whom do you socialize? 
With whom do you discuss politics? (See Fischer, 1982; Burt, 1984; and Huckfeldt, 2000.) Other 
methods include small-world and reverse-small-world (reverse-S-W) experiments used to elicit 
the composition of larger functional personal networks and phone book and first-name list 
methods used to generate weak-tie or acquaintance networks (Milgram, 1967; Travers and 
Milgram, 1969; Killworth and Bernard, 1978; Pool and Kochen, 1978; Bernard et al., 1990; 
Killworth et al., 1990; McCarty et al., 1997).  
 

This literature produces rough but remarkably consistent estimates of the average degree 
(number of friends of actor i = ki) and density (percent of friends who know each other) in three 
distinct types of networks. (McCarty et al., 1997, has a good review and introduction.) The three 
types of networks can be roughly described as acquaintance networks (past and current), regular 
contact networks (past and current), and core personal networks.1 These networks are 
characterized by differences in average degree, density, and method of collection.  
 

Acquaintance networks are very large (500−20,000 people) and include people who the 
respondent would recognize and call by first name. Typical methods of eliciting acquaintance 
networks include phone book methods (Pool and Kochen, 1978; Freeman and Thompson, 1989; 
Bernard et al., 1990) and subpopulation estimates (Killworth et al., 1984). Past acquaintance 
networks (i.e., “Name people you have ever known”) are much larger than current acquaintance 
or “weak tie” networks (Granovetter, 1973), which can be collected through use of a contact 
diary (Pool and Kochen, 1978, reporting Gurevich, 1961). Acquaintance networks are very 
similar to scale-free networks (Newman et al., 2001) in that the distribution of degree is very 
skewed to the right-hand side (a few people have very many contacts) (Pool and Kochen, 1978; 
Freeman and Thompson, 1989), and they are probably well-represented by the small-world  
 
 
 

                                                 
1 This is, of course, a vast oversimplification, which is rightly the subject of debate among network analysts. 

However, this simple schema still captures important differences in the types of interactions likely to be 
simulated. 



486 

TABLE 1  Estimates of personal network size and density 

 
Study 

 
Method 

 
Degree 

 
Density 

    
Gurevich (1961) Contact log  500−200 – 
Pool and Kochen (1978)  Phone book  3−4,000 – 
Killworth and Bernard (1978)  Reverse-S-W  35−210 – 
Hammer (1980)  Observation  39 – 
Wellman (1979)  “Feel closest”  4.7 0.33 (non-kin) 
Fischer (1982)  11 support items  18.5 0.44 
Killworth et al. (1984)  Reverse-S-W  134 (65)  
Marsden (1987)  GSS impt. matters  3.0 0.40 
Willmott and Young (1967)  Non-kin support  12 0.34 
Campbell and Barrett (1991)  Neighbors  14.7 0.52 
McCarty (2002) Free list  60.0 0.27 
McCarty et al. (1997)  First names  14/432 0.36 
Freeman and Thompson (1989)  Phone book  3−5,000 − 
Killworth et al. (1990)  Subpopulations 5,000 − 
Bernard et al. (1990) GSS impt. matters 6.88 (4.89) − 
− Fischer 11  21.8 (16.7) − 
− Reverse-S-W  128.6 (67.6) − 
− Phone book  − − 

 
 
network topology. There are no good estimates of the density of acquaintance networks, 
although any estimate is likely to be small.2 
 

Regular contact or support networks are much smaller (10−60 people on average) and 
include neighbors, coworkers, and family members with whom the respondent has regular social 
contact and from whom the respondent receives help and support. Examples of questions, or 
name generators, used to elicit regular contact networks include these: Who are neighbors you’ve 
talked to? With whom would you spend Saturday night? From whom would you borrow a cup of 
sugar? Whom would you ask to watch your house while you’re gone? (See Fischer, 1982; 
McCarty et al., 1997.) Included also would be an invitation to list friends freely (McCarty, 2002). 
A larger network of up to 300 current and past friendships is often elicited by use of the 
small-world and reverse-S-W methods (Killworth and Bernard, 1978; Bernard et al., 1987; 
Bernard et al., 1990). The distribution of degree in regular contact networks is still somewhat 
skewed, but much less so than it is in acquaintance networks. 
 

                                                 
2 Imagine an individual with acquaintances in many spheres: high-school friends, parents’ friends, family 

members from two to four extended families, current coworkers, coworkers from a previous job, friends from 
church or another organization, etc. Although density within the spheres will be high, few ties will exist across 
the spheres, resulting in a low percentage of possible ties being present; therefore, the network will not be very 
dense (McCarty, 2002). 
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Core personal networks are very small egocentric networks (0−10 people) and include 
people with whom the respondent discusses “important matters” (Wellman, 1979; Fischer, 1982; 
Marsden, 1987). The variation in average degree in these networks is quite small, and clustering 
varies with the size of the network and respondent attributes. In general, if the costs associated 
with maintaining ties are low, then degree distributions are often exponential; otherwise, they 
tend to return to slightly right-skewed but with relatively normal distributions (Newman et al., 
2001). 

 
In some cases, a respondent is asked if his or her friends know one another, producing an 

estimate of the density of his or her personal networks. These density estimates typically range 
from about 0.25 to 0.45 in both core and regular contact networks. However, attempts to validate 
the existence of close ties among the friends of a respondent through use of a snowball sample 
have found that respondents may overestimate the existence of ties among friends (Fischer and 
Shavit, 1995). Also, the use of different questions to measure tie existence between alters  
(i.e., Do ‘j’ and ‘k’ know each other? or Do they know each other well?) complicates 
comparisons across studies. Including household members in density estimates also greatly 
changes them. Campbell and Barrett (1991) found that an average personal network density of 
more than 50% drops to about 33% after household members are excluded. A variety of 
considerations suggest that the median (not mean) density in personal networks may be around 
15% to 35%.  
 

The survey work on personal networks has two major implications for agent-based 
modelers. First, the network type chosen (acquaintance, support, or core) and the subsequent 
distribution of network degree and density chosen reflect a substantive question about who is 
likely to influence an agent’s decision. Acquaintances are probably not particularly likely to 
influence important decisions (such as who to vote for or where to send a child to school), but 
they may influence tastes in clothing or food (although there is little evidence that addresses this 
concern). An important question for a simulation researcher to ask, therefore, is this: What are 
the properties of the interaction networks being modeled?  
 

Second, the network construction technique chosen should ideally reflect a sample of the 
likely patterns of interactions between agents. The following section takes a closer look at five 
different interaction patterns that could be used by agent-based modelers. Two questions are 
asked: How well do the techniques capture the network degree and density reported in egocentric 
surveys? Do the differences in network structure that were induced by the selected technique 
result in substantive differences in simulation results?  
 
 

NETWORK CONSTRUCTION TECHNIQUES  
 

Once a decision has been made about the type of interaction to study and the likely 
structure of that interaction, it is necessary to implement this theoretical construct through the 
choice of a network construction technique. Modelers typically can choose from one of a few 
network construction techniques: global information about other agents, random graphs, two-
dimensional lattices or grids, and one-dimensional lattices or circles. Another alternative, rarely 
used, is biased random net construction. 
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Global Reference or Full Information Networks 
 

In a global reference network, agents have information on, can respond to, and are 
affected by the actions of all other agents in a population. Global reference networks may be 
chosen to represent the influence of mass media or the behavior of crowds (Granovetter, 1978). 
Global reference groups vary only in the size of the population n being modeled. 
 
 
Random Graph Local Networks  
 

Another approach is to create a population of n agents in which the links between agents 
are generated randomly, called a random graph in network terminology (Rapoport, 1979). In the 

simplest form, the projected degree ik̂  is assigned uniformly across agents ( ikki ∀= ,ˆ ). Thus, 

the probability that a link exists between any two agents (represented as i ↔ j) is simply the 
density of the sociocentric network:3 
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This method produces a network in which the degree across agents follows the binomial 

distribution, approaching the Poisson distribution as network size increases (Newman et al., 
2001). Because the nodal degree of many networks follows a skewed distribution (as opposed to 
a Poisson distribution), Newman et al. (2001) considered an interesting extension of this random 
model, in which they allowed the nodal degree to vary across agents and generated random 
networks by using a predetermined degree distribution.  
 

The primary drawback to random graph methods is that they create networks in which 
any two agents who are friends are not likely to know each other’s friends. In other words, 
random graphs create personal networks that have a very low density relative to surveyed 
egocentric networks. Random network construction methods create little, if any, overlap between 
friendships. The probability of having an overlapping friendship is independently determined and 
thus simply the square of the density of the network, or  
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This is a very small probability compared to the clustering percentages found in the survey 
literature on personal networks, and this increase in indirect contacts increases the effective size 
of personal networks for spreading behaviors relative to the size of networks constructed by 
using different methods. 

 

                                                 
3 This notation assumes symmetric friendships, a necessary assumption for comparison to lattice-based networks. 

However, one benefit of the random and biased random methods is that this assumption can be relaxed, thereby 
allowing networks to further reflect observations of real social networks. 
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Two-dimensional Lattice- or Grid-based Networks  
 

Two-dimensional lattices or grids are the most commonly used method for creating 
networks in ABM simulations. While this is a simple method and may be preferred for spatially 
constrained networks, it is inconsistent with the data gathered on actual social networks in three 
important ways. One problem is that the agents are spread too far apart from one another in 
networks that consist of more than 100 people or so. This violates the “six degrees of separation” 
rule (i.e., “Kevin Bacon” rule) that a short chain of intermediaries separate any two people, even 
in the larger American or global world (Pool and Kochen, 1978; Watts and Strogatz, 1998). 
 

The second problem with the grid method is that friends are shared perhaps too closely. 
The social network of an agent’s friends (or ego network) has a density of more than 40%. The 
8-person local network of A is illustrated in Figure 1(a), and the overlap between the friends of A 
and those of A’s friend B is shown in Figure 1(b). By looking at each of A’s friends, one can see 
that a total of 24 friendships out of 56 potential ones exist, for a personal network density of 
0.43.4 In 4-person neighborhoods, however, the personal network density is 0; no overlapping 
ties are present. The available data indicate that the clustering percentage in 8-person networks is 
almost too high, and the percentage in 4-person networks is too low. 

 
The final issue is that degree in a grid network does not vary across agents. All agents 

have exactly the same number of friends.5 This is not a property of core networks in the real 
world (Marsden, 1987). Moreover, grid-based networks make it difficult to study the effects of 
centrality or network variation on the basis of personal attributes. (Lustick and Miodownik, 
2004, has an innovative exception.) 
 
 
One-dimensional Lattice or Small-world Method  
 

The inaccurate representation of the small-world character of social networks mentioned 
above has drawn attention from researchers (Watts and Strogatz, 1998). The small-world or  
 
 

 FIGURE 1  Two-dimensional lattices or grids 

                                                 
4 The personal network density of A is calculated as follows: A has four friends who are middle agents, like B, 

who know four out of the other seven friends of A, and A has four friends in the corner who have 2/7 possible 
ties present, so the sum across all eight friends is 4 × 4 + 4 × 2 = 24/56. 

5 At least if a torus is used. Otherwise, agents at the edge of the graph do not have as many friends as do the other 
agents in the center of the graph. 
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Watts-Strogatz method represents one possible solution. It makes an important modification to 
the simple grid method in order to create networks that are likely to have the six degrees of 
separation property (Watts and Strogatz, 1998; Newman, 2000). A small number of existing 
one-dimensional lattice links are broken and then reattached to a randomly selected agent from 
the population. The result is a network of agents who have friends primarily drawn from 
proximate agents, with a small number of links that span geographic areas to create shorter paths 
to agents in different areas. While this method successfully addresses the problem of widely 
separated agents, it does not address the problem of an excess of overlapping friendships or 
uniformity of degree distribution. It also lacks the ability to associate personal characteristics 
with network characteristics to any great extent.  
 

The density of Watts-Strogatz circles varies in relation to the size of the network and the 
number of long-distance ties. With no long-distance ties, 4-person neighborhoods (two steps) 
have a density of about 0.5. In 8-person neighborhoods (four steps), the density increases to 
almost 0.64 (36/56). Long-distance links decrease the average density. Larger personal networks 
constructed by using the Watts-Strogatz method are much denser than actual social networks, 
whereas density decreases as the network size increases in most social networks (Fischer, 1982; 
McCarty, 2002). As a result, Watts-Strogatz networks are effectively smaller than surveyed 
personal networks.  
 
 
Biased or Structured Random Networks  
 

Another approach is to create networks that accurately reflect actual social networks 
through the use of known network biases. The construction of biased random networks achieves 
this goal by re-creating the process of actual friendship formation and the biases that typically 
affect the process (Rapoport, 1979; Skvoretz, 1985, 1990; Skvoretz et al., 2004). There are two 
sources of bias to consider in the creation of a network (Skvoretz, 1990): structural bias and node 
or compositional bias. Structural bias is inherent in the structure of the network itself. It includes 
processes such as reciprocity, or the trend toward mutual friendships, and triad closure, or the 
trend toward mutual friends of person i to become friends as well (Skvoretz, 1985, 1990). Node 
bias is the bias in the network created by differences in agents and their attributes. Sources of 
node bias include agents who choose more friends than others or who have a tendency to choose 
friends with similar attributes (homophily) (Fararo, 1981; Fararo and Skvoretz, 1984).  
 

Despite the potential importance of node or compositional biases, particularly homophily, 
in affecting interactions in the real world, this paper looks at a biased net technique, which works 
primarily through a triad closure bias to increase the density of personal networks above the 
density typically found in random graphs.6 The method described by Jin et al. (2001) is used for 
this work, although approaches that focus on a more comprehensive account of network structure 
directly may be more accurate and/or flexible (Skvoretz, 1990; Snijders, 2002). 

 
The basic logic of the Jin et al. (2001) method is that it proceeds in steps. During each 

step, a few pairs of actors are first selected to be friends, and the appropriate ties are added to the 

                                                 
6 A variation in personal network degree could easily be incorporated, and this paper has done so by specifying the 

proposed distribution of k from which ik̂  will be drawn (Newman, 2000). The incorporation of both node and 

structural biases in the same framework is difficult and left for future work. 
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network. Then, mutual friends of these actors are selected to also be friends. This process is 
repeated until all actors have the maximum number of friends, although a third step could be 
added in which ties would be removed, and thus the network would always be gradually 
changing itself. In the Jin et al. model, the average density of personal networks can be changed 
by changing the relative proportion of selections made in the first (random) and second (mutual 
friends) substeps of network creation.  
 

Biased network construction is unique in that it allows researchers to build networks with 
user-designated properties of interest. These properties can be based on existing empirical 
evidence about the properties of the networks that the user is trying to simulate. A table gives 
parameter values to use with the Jin et al. (2001) method in Repast (Collier, 2002) to create 
networks of approximately the desired average degree and density (contact the author to find out 
parameters used). While the Jin et al. method does seem to replicate variation in personal 
network density, results suggest that there is still “additional social structure in the network that 
is not captured by the graph” (Jin et al., 2001, p. 1). 
 
 

COMPARISON OF RESULTS  
 

To assess whether the network construction method affects simulation results, a very 
simple threshold decision model (Granovetter, 1978) was replicated. The choice of a simple 
model with derivable asymptotic properties and intuitive sample properties allowed for a 
relatively independent consideration of network construction techniques. This paper first 
describes the model and then presents the simulation results.  
 

In a threshold model, a community of n agents (i ∈[1, 2, 3 ... n]) is created. Agents are 
assigned ki friends, with a friendship from i to j denoted i ↔ j. The agents can take one of two 
actions: participate (di = 1) or not participate (di = 0). They decide to participate only when a 
threshold (ti) percentage of other actors also participates: 

 

( ji
k

d
t

i

j
i ↔∀≤ , ). 

 
Agent thresholds ti are randomly assigned and are drawn from the uniform (0, 1) distribution. A 
first-mover percentage is also chosen (e.g., 1% of all agents), and all agents whose thresholds fall 
below that percentage are willing to move in the first round (time = 0).7 The simulation continues 
with additional agents joining in at each time step if their thresholds were met in the previous 
round. The simulation stops when no agents are willing to participate, either because full 
participation has been reached or because no agents have sufficiently low thresholds. Some 
threshold models have a tendency to snowball and add many participants under some conditions, 
while others induce little or no participation (Granovetter, 1978). Therefore, this paper looks at 
both Granovetter’s original model, with 1% acting as first movers, and a second threshold model, 
with 10% acting as first movers, to see if network construction has a different effect depending 
on expectations of what the model results will be. On the basis of Granovetter’s results, one 
would expect to see much higher participation in the populations with 10% of the agents acting 

                                                 
7 Technically, it is necessary to lower all thresholds by the first-mover percentage, .to],1,0[ fttf ii −=′∈  Then 

all agents whose thresholds fall at or below 0 move in the first round. 
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as first movers. These two threshold models were run by using five different reference group 
construction techniques (i.e., methods of assigning i → j): global, random, grid, Watts-Strogatz, 
and biased random (Jin et al., 2001). Median participation levels in the final round appear in 
Table 2. Row entries are for the average personal network size (4, 8, 12, 16, or 20 people in the 
local networks) and either 100 or 1,000 in the global reference networks.  
 

Simulations with 1% first movers confirm Granovetter’s original conclusion that in 
100-person groups with global information, participation rarely snowballs. The median turnout 
in these groups is 1% of the population, or 1 person. More surprising is the result found for 
1,000-person global reference groups: more than 20% of the population participates. This finding 
points to the potential impact on simulation results that could result from how interactions are 
modeled, even when agents have no local networks.8 
 

Completely random networks provide a large indirect source of information to agents and 
also produce substantial participation rates, in a range of 15% to 22% of the population, on 
average. These networks clearly produce more turnout than the other local network interaction 
patterns, and they appear to be close to, or even more effective than, global reference groups in 
encouraging the spread of innovations. One interesting point is that there is not a uniform size 
effect at work in this 1% first-mover uniform threshold model. The small increase in median 
turnout between the 1,000-person global reference populations and those where agents refer to 
randomly constructed local networks is the result of an interaction between two emergent 
properties of contagion models: the ability of smaller groups to incubate the nascent participation 
when it is less likely to spread easily, and the ability of larger and less dense personal networks 
to remove barriers to the spread of participation when it is likely to spread (Rolfe, 2004).  
 

The differences between grid, Watts-Strogatz, and biased random networks are largely 
minimal, as shown in Table 2. Participation in all of these agent populations is higher than in a  
 
 

TABLE 2  Final-round participation by 1% first movers 

  
Type of Network 

 
No. in 

Network 

 
 

Global 

 
 

Random 

 
 

Grid 

 
Watts-Strogatz 

Circle 

 
 

Biased 
      
4 − 111 42 40 38 
8 − 220 61 54 50 
12 − 200 71 61 71 
16 − 241 − 75 87 
20 − 150 − 62 87 
100 1 – – – – 
1,000 218 – – – – 

                                                 
8 In a paper in progress, I discuss the theoretical implications of this finding. The tendency for riot behavior to 

spread more easily in large crowds than in small ones may reflect the statistical anomalies of sampling and 
sample size, and reflect nothing unique about the physiological or psychic reactions of humans to crowds 
(LeBon, 1995). 
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100-person global reference population (4%−9% versus 
1%), an outcome traceable to the ability of small groups 
to incubate cooperation (Rolfe, 2004). None of the 
network construction methods produce consistently high 
or low median levels of participation. However, the 
differences between Watts-Strogatz networks and biased 
networks are somewhat more pronounced as average 
network size increases. This is because the extremely 
high density of the Watts-Strogatz networks decreases the 
ease with which innovations can spread through the 
population. This point is reinforced by a breakdown of 
simulation results in the biased network populations by 
average personal network density, as shown in Table 3.  
 

Table 3 shows relatively systematic changes in median participation relative to network 
size. In general, increases in density correspond to decreases in median participation. This 
finding is not surprising, given that network size increases participation in the 1% first-mover 
uniform threshold model. Since increases in network density split the population into tightly knit 
clumps, network density serves as a barrier to the spread of cooperation. Small deviations from 
the pattern in Table 3 appear to stem from the difficulty of creating networks directly comparable 
in terms of size and density and not from any discontinuities in the relationships among size, 
density, and participation.  
 

The median level of participation, while a useful statistic, actually understates the 
difference in simulation results that these network construction methods produce. In many of 
these simulated populations, the range of participation is more diverse than indicated by the 
median. For a point of comparison, a histogram of participation among agents placed in 
16-person networks constructed by using random, Watts-Strogatz, and biased networks of 
appropriate density (0.15−0.25) appears in Figure 2. 
 
 

 
 (a) Random  (b) Watts-Strogatz (c) Biased Random 

FIGURE 2  Final-round participation by 1% first movers in 16-person 
local networks  

 

TABLE 3  Final-round partici-
pation by 10% first movers in 
biased networks, by density 

  
No. in Network 

 
Density 

 
4 

 
8 

 
12 

 
16 

 
20 

0.15−0.25 46 49 83 93 89 
0.25−0.35 37 65 86 91 80 
0.35−0.45 38 53 61 56 89 
0.45−0.55 29 42 55 − − 
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A comparison of Figure 2(b) and 2(c) reveals a clear difference in the distribution of 
simulation results from using the Watts-Strogatz and biased random methods. While the Watts-
Strogatz method produces participation rates that go above 15% of the population only 1 time 
out of 10, the agents in populations using the biased random method reach participation rates of 
15% of the population more than twice as often, or in about 25% of simulated populations. This 
is a substantial difference in simulation results.  
 

Agent participation in simulations of the uniform threshold model with 1% first movers 
clearly varies in relation to the patterns of interactions in which the agents are engaged. In 
addition to striking differences between global and random methods and the other three local 
methods, there were smaller but still noteworthy differences between the Watts-Strogatz method 
and biased random method. However, a second model was run to confirm the differences noted 
between the network construction methods.  
 

The second model run was again a uniform threshold model, with the sole exception 
being that this time, 10% instead of only 1% of the population was willing to participate during 
the first round. This model should produce very high participation in large populations and 
provide a similar but distinct test of the differences that interaction structure may induce in 
simulation results. Table 4 summarizes median final-round participation by reference group type.  
 

Results for the global reference groups indicate that, as expected, these simulated 
populations regularly achieve nearly universal turnout. As noted earlier, the 1,000-person groups 
have higher median participation (96%) than the 100-person groups (75%), which confirms the 
need to consider not only agent interaction patterns but also agent population size when 
designing simulations. The random networks also encourage the nearly universal spread of 
participation, with the spike at 16-person networks noted and accounted for. All four local 
methods exhibit the expected relationship between size of personal networks and participation 
rates in easily contagious models (Rolfe, 2004).  
 

The differences in participation rates induced by local network patterns are even more 
obvious in the 10% first-mover model than in the 1% first-mover model. Around 100 more 
people in 1,000-person populations are willing to participate if they are embedded in biased  
 
 

TABLE 4  Final-round participation by 10% first movers 

  
Type of Network 

 
No. in 

Network 

 
 

Global 

 
 

Random 

 
 

Grid 

 
Watts-Strogatz 

Circle 

 
 

Biased 
      
4  – 843 369 351 336 
8  – 974 463 426 435 
12  – 980 525 476 530 
16 – 984 – 531 606 
20  – 970 – 569 662 
100    75 – – – – 
1,000 963 – – – – 
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random networks instead of Watts-Strogatz networks. 
The difference in the two methods is again largely 
due to the difference in personal network density. As 
a comparison with Table 5 shows, participation is 
very similar in the high-density biased networks and 
the Watts-Strogatz networks in all networks except 
the very small personal ones ( 44=k ).  

 
Figure 3 offers a final look at the histograms 

of participation in simulated populations where 
agents referred to 16 friends when making decisions. 
Here again, the differences among the three network 
construction methods are highlighted. Random 
networks encourage very high levels of participation, 
and Watts-Strogatz networks encourage participation in a very small range, while some of the 
biased random populations come close to nearly universal participation.  
 
 

DISCUSSION 
 

This paper systematically compares five methods for creating reference groups for agents 
in simulations. The goal of this exercise was to determine whether the choice of reference group 
construction affected simulation results, when the choice of the model to be simulated was held 
constant. Two variations of a simple threshold model were used. The social network construction 
method was found to have a substantial, significant impact on simulation results. Much of the 
difference between the two methods that attempt to more accurately replicate observed social 
networks — biased random networks and the Watts-Strogatz circles — was traceable to 
theoverestimation of personal network density by the Watts-Strogatz method in intermediate-size 
networks of 8 to 20 people.  
 
 

 
 (a) Random  (b) Watts-Strogatz (c) Biased Random 

FIGURE 3  Final-round participation by 10% first movers in 16-person  
local networks 

TABLE 5  Final-round participation 
in biased networks, by density 

  
No. in Network 

 
Density 

 
4 

 
8 

 
12 

 
16 

 
20 

      
0.15−0.25  373 487 595 618 689 
0.25−0.35  362 460 552 576 613 
0.35−0.45  325 441 523 583 605 
0.45−0.55  284 357 460 – – 
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While the theoretical implications of the relationship between reference group size and 
density is reported elsewhere (Rolfe, 2004, 2005), this relationship also has clear, practical 
significance for researchers who model human decision-making and social phenomena. This 
paper suggests that model results could be misleading if proper attention is not paid to the 
creation of agent relationships. Ideally, authors should give a full account of the effects of agent 
interaction patterns on model results. At a minimum, authors would be well-served if they looked 
at empirical evidence to constrain their choices of both the network construction method and the 
projected size and density of the network. For those who wish to experiment with the method 
used in this paper, please consult the author. 
 

Finally, this paper suggests that more work is needed before the same sorts of network 
patterns observed in the real world of intimate personal connections can be simulated. One 
modification that could easily be implemented in the Jin et al. (2001) method would be to allow 
variation in the projected degree across agents. Preliminary results suggest that this approach 
produces a more natural-looking distribution of personal network degree. However, further 
modifications would undoubtedly produce more useful and realistic biased network methods that 
would also allow the researcher to associate personal characteristics or network position with 
behaviors, attitudes, or influence.  
 

Rolfe (2005) shows that the known relationship between demographic variables and 
network structure may account for much of the relationship between turnout and education. 
However, a full test of this and similar hypotheses would require a biased network technique that 
would incorporate compositional biases, such as homophily, and would also perhaps address the 
structural biases in network creation more rigorously. The ability to actually model the process 
of network creation would allow researchers to create populations of agents who not only created 
their own networks but also made decisions about other behaviors either sequentially or 
simultaneously — a prospect that would open up doors in pragmatic and theoretical simulation 
research.  
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ABSTRACT 
 

We investigate how the efficiency of a system performing a density classification task is 
affected by a modular structure of the network, that is, a structure where the units can be 
divided into communities. We find that noise plays a fundamental role in allowing the 
system to reach global consensus. We also observe that to reach consensus the system 
needs at least a minimum fraction of the connections to be established outside the 
communities and that this fraction depends mainly on two factors: the number of 
connections per unit and the intensity of noise. 
 
Keywords: Modular networks, self-organizing systems, density classification 

 
 

INTRODUCTION 
 
 Many systems in nature organize themselves into collectives without the need for 
centralized controls. Well-known examples in biology include flocks of birds, schools of fish, 
and swarms of insects. In social settings, examples include conventions and norms (Young, 
1996; Boyd and Richerson, 1995), social learning in animals and humans (Boyd and Richerson, 
1995; Heyes and Selten, 1996), as well as fads, rumors, and revolts (Bikhchandani et al. 1998). 
Such emergent goal-oriented behavior results often from simple local individual behavior rules, 
where the system is capable of adapting to new environments. Moreover, such behavior is 
robust; it does not rely on a fixed leader and does not easily get derailed in the face of 
disturbances.  
 

Insights from self-organizing natural systems can also be fruitfully used in the design of 
man-made systems. Possible applications include the design of communication networks and 
protocols in social organizations, computational devices, and even “man-made swarms,” for 
example, in military applications. Such systems would have to satisfy various performance 
requirements, such as:  

 
• Accuracy. Agents need to coordinate on the desired collective behavior.  
 
• Speed. The desired behavior needs to be reached in a realistic time.  

 
• Error tolerance. Removal of agents or mistakes in processing information should 

only lead to a moderate decrease in system performance  

                                                 
∗ Corresponding author address: Daniel Diermeier, Managerial Economics and Decision Sciences,  

Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA; e-mail:  
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• Scalability. The resources (e.g., time) to perform the collective task should increase at 
a slow rate as the number of agents (and the system capabilities) grows more rapidly.  

 
Given a desired emergent behavior, we then need to know (1) what capabilities are 

needed of the individual agents to accomplish such design requirements, and (2) how to design 
the interaction rules to achieve the desired behavior. 
 
 

MODEL 
 

We model systemwide coordination as a computational task. Specifically, we use density 
classification as a measure of coordination and global information processing (Crutchfield and 
Mitchell, 1995). For a system comprised of units whose state is a binary variable, the density 
classification task is completed successfully if all units converge to the same state and the 
coordinated state is identical to the majority state of the initial configuration.  
 

Density classification is a trivial task for systems with centralized control; one span of the 
system immediately yields the correct result. In contrast, a decentralized system performing 
density classification has to overcome two challenges: (1) information aggregation — the ability 
to extract global information from local interactions, since each unit accesses only a small 
fraction of the units in the system — and (2) system coordination — all units have to converge to 
the same state. Moreover, noise is an unavoidable component of real-world systems. The noise 
acting on a system may originate from external factors, such as fluctuations in the environmental 
conditions, as well as from intrinsic properties of the units comprising the system or the way in 
which they communicate. Naively, one might surmise that the presence of noise must increase 
the difficulty in completing the classification task.  
 

We generalize a standard cellular automata dynamics in order to incorporate noisy 
communication among units. To update its state, each unit takes into consideration the states of 
its neighbors. We consider the case where the presence of noise may corrupt the information 
obtained from the neighbors. Formally,  
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where i

j
~σ  is the value unit i reads for the state of unit j; jσ  is the true state of j; and η, which 

parametrizes the intensity of the noise, ranges from η = 0 (noiseless dynamics) to η = 1 (random 
dynamics). Note that the noise is not the probability that a unit chooses a state in disagreement 
with the majority of its neighbors, but the probability that a unit receives a false input from a 
particular neighbor.  
 
 In addition, for practical applications the time to reach the correct classification should 
scale, at most, linearly with the number of units in the system. For example, for a system 
comprising 99 units, initially in a configuration where 50 units are in state “1” and 49 are in state 
“–1,” the density classification task is successfully completed if all units converge to state “1” 
within 2 × 99 = 198 time steps. To estimate the efficiency of the system, we perform 
1,000 evolutions, changing the initial condition and network pattern for each evolution, and 
measure the fraction of times in which the correct classification is reached.  
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 In a recent paper (Moreira et al., 2004) we have shown that, under the general conditions 
of noisy environments and complex topologies, a strategy as simple as the majority rule — 
where a unit changes its state to agree with the majority of its neighbors — can successfully 
reach consensus and perform the classification task with high efficiency. Surprisingly, the 
presence of noise plays a fundamental role in allowing the system to achieve consensus. Here, 
we investigate how the efficiency of a system performing a density classification task is affected 
by a modular structure of the network, that is, a structure where the units can be divided into 
communities. 
 
 To build a modular network, we start with N individual units divided into communities of 
equal size S. Then, each unit establishes k connections; with probability p, the connection is 
directed to a random unit in the network and with probability (1 – p), the connection has to be 
established within the unit community. The fraction of extra-community connections p controls 
the network topology: for p = 0, one has completely disconnected communities, while for p = 1 
one has a random graph.  
 
 

RESULTS 
 
 In the density-classification problem, each unit has to evolve toward the final state with 
only local information about the current configuration of the whole system. A modular structure 
of the network may result in a configuration where consensus is reached only within each 
community but not in the system as a whole. If the fraction of extra-community connections and 
the noise intensity are low, this configuration will be stable and global consensus may never be 
reached. In Figure 1, we show the system efficiency versus fraction of extra-community 
connections p for systems with noise intensity η = 0.2. When the number of communities is 
large, there is a minimum fraction of extra-community connections pc below which the system 
never reaches consensus. Note that when the majority of inputs come from within a unit’s 
community, the units will tend to agree only within their communities and the global consensus 
may never be reached. Yet, with as much as 3/4 of the connections solely among units of the 
same community, the system is still able to achieve global consensus.  
 
 To understand why the system converges to consensus even with a low fraction of 
connections outside the communities, we study the effect of the noise intensity η in the 
efficiency of the system. In Figure 2a, we show that the critical threshold pc decreases as the 
noise intensity η increases. These results suggest that noise and intergroup connections work as 
substitutes. Noise can drive the system to a global consensus even in cases where most of the 
connections are inside the respective communities. In Figure 2b, we show the efficiency curves 
for different values of the number of connections k and noise intensity η = 0.2. With a larger 
number of connections, the onset of the transition for fixed noise shifts to larger values of p.  
 
 We can now understand how the noise enables the system to reach consensus. Suppose 
that the system evolves toward an intermediary configuration, in which the larger part of the 
system converges to the correct state, but a few communities reach local consensus on the 
opposite state. If the noise acts on some of the connections inside these communities with 
positive probability, a fraction of the units in the communities will switch their states. These 
units then act as seeds, promoting other units inside the community to switch their state. 
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FIGURE 1  The minimum fraction of connections outside the communities to reach 
consensus (We show the efficiency of the system as a function of the fraction of p. These 
results are for networks with k – 6 and noise intensity η = 0.2. We study networks 
comprising [1a] 5 communities and [1b] 100 communities, for different community sizes S. 
System classification efficiency does not show a strong dependence on the size of the 
communities. As expected, the efficiency grows with p, starting from a value close to zero  
in p = 0 and saturating in a value above 0.8. Interestingly, as we increase the number of 
communities, the curves go from a smooth to a sharp transition. This means that large 
systems will have a minimal value of p below which a global consensus is never reached.) 

 
 

 

FIGURE 2  The roles of noise and the number of connections (These results were 
obtained for networks comprising 100 communities of size S = 64. In 2a, we show the 
efficiency curves for networks with k = 6 and noise intensity η = 0.1, 0.2, and 0.3. 
Increasing the noise causes the onset of the transition to shift toward smaller values of p. 
This shows that noise plays a fundamental role in allowing the system to reach consensus. 
In 2b, we show the efficiency of systems with η = 2 and different values of the number of 
connections k. As we increase k, the onset of the transition shifts to larger values of p. 
This happens because with more connections the units are more robust to the effect of 
noise.) 
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Eventually, most units in the respective communities will switch to the correct state until the 
system reaches consensus. The number of inputs that the seed units need to disregard to switch 
their states is proportional to k(1 – 2p). This explains why pc increases with k. On the other hand, 
more densely connected networks are also more robust to noise. This suggests that there is an 
optimal noise intensity that depends on k in which the system is most efficient.  
 
 The effect of noise on the efficiency of the system is stressed by the results present in 
Figure 3. In Figure 3a, we show the efficiency curves for networks for noise η = 0.2 and 
different sizes N. As N increases, the transition becomes sharper, but the onset of the transition 
remains approximately the same. In contrast, when η = 0 the onset of the transition moves 
toward larger values of p. In a system of infinite size one may expect a noise-free system to 
reach consensus only when the majority of the connections are outside the communities, that is, 
p > 0.5. 
 
 

DISCUSSION 
 
 Simple heuristics, such as the majority rule investigated here, are efficient in achieving 
global coordination and information aggregation in interaction systems characterized by complex 
topologies and noisy information transmission.  
 
 

 

FIGURE 3  The transition to the efficient regime (These results were obtained for networks 
with k = 6, comprising communities of size S = 64, and with different system sizes N. As 
we increase N while keeping S constant, we also increase the number of communities in 
the system. In 3a, we show the efficiency curves for a noise intensity η = 0.2. As N grows, 
the curves become more steep, but there is no shift in the onset of the transition. In 
contrast, in 3b in a noiseless system, η = 0; as we increase the system size the onset of 
the transition moves toward larger values of p. One may expect that in the limit N → ∞, 
there will be no efficient regime unless p > 0.5, that is, the number of connections outside 
the communities surpasses the number of connections inside the communities.) 
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 Many complex networks exhibit a modular structure, that is, they are comprised of 
smaller communities that may interact only in a limited fashion. Our results demonstrate (1) that 
a modest level of intergroup connections can lead to systemwide coordination and (2) that the 
presence of noise can overcome insufficient cross-community interaction, ensuring efficient 
global coordination on the correct state. 
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ABSTRACT 
 
How does group memory affect sociality? Most computational multi-agent social 
simulation models are designed with agents that lack an explicit internal information-
processing structure in terms of basic cognitive elements. In particular, memory is usually 
not explicitly modeled. We present initial results from a new prototype called 
“Wetlands,” which is designed to investigate the effect of group memory characteristics 
and interaction situations on emergent patterns of sociality, or collective intentionality. 
Specifically, we report on initial computational experiments conducted on culturally 
differentiated agents endowed with finite and degradable memory that simulate bounded 
mnemonic function and forgetfulness. Our principal initial findings are that memory 
capacity and engram retention both promote sociality among groups, probably as 
nonlinear (inverse) functions. Wetlands 1.1 is implemented in the new MASON 6 (Multi-
Agent Simulator of Networks and Neighborhoods) computational environment developed 
at George Mason University. 
 
Keywords: Memory, collective intentionality, MASON, wetlands, agent-based 
modeling, computational social science 
 
 

INTRODUCTION 
 

Mnemonic storage capacity is fundamental for computational human and social 
dynamics, because every real-world agent, whether individual or group, necessarily relies on 
memory — and other internal cognitive structures (such as learning) — to estimate its own state, 
compute a plan, and produce behavioral acts based on experience.1 Accordingly, systems of 
short- and long-term memory are essential (functionally and logically) for retaining and 
accessing information concerning external situational environments and internal states. Without 
memory capacity, an agent cannot function, making memory a cross-cultural universal for both 
individuals and cultures. Memory thus links micro- and macro-scales in human and social 
dynamics.  
 

Interestingly, memory is not uniform across agents, whether individuals or aggregates 
(groups, societies, or nations), because different agents have different mnemonic structures. 

                                                 
* Corresponding author address: Claudio Cioffi-Revilla, Center for Social Complexity, 237 Robinson Hall MS 

3F4, George Mason University, Fairfax, VA  22030; e-mail: ccioffi@gmu.edu. 

1 This ontology is based on a view of agents as consisting of knowledge, goals, and behavior/acts. Throughout this 
paper, an “agent” may refer to an individual, such as a single person, or an aggregate of individuals, such as a 
group, society, nation, or system thereof. However, as explained later in this paper, the agents in our 
computational model (Wetlands 1.1) consist of groups, not individuals. 
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Exactly how does memory affect “sociality”2 or collective intentionality? Is memory significant 
or secondary for collective action? How do different mnemonic structures — diverse memory 
attributes such as capacity and retention — affect collective social behavior? How do societies 
interact when agents have heterogeneous cultural identities? How do mnemonic transformations 
affect human and social dynamics? 
 

Most computational multi-agent-based social simulation (MABSS) models are designed 
with agents often capable of generating collective intentionality, in a generative sense (Epstein, 
2004), but computational social agents commonly lack an explicit internal information-
processing architecture in terms of basic cognitive structures. Cognitive structures include 
memory, learning, affect, and other common human cognitive properties. As a result, the 
“internal environment” (Simon, 1999) of agents often remains a black box. 
 

We present preliminary results from a prototype model designed to investigate the effect 
of mnemonic function on emergent patterns of sociality or collective intentionality. We have 
intentionally kept our model simple in order to easily identify experimental results caused by 
manipulations of mnemonic structure. Specifically, we present a series of computational 
experiments derived from an initial model (Wetlands 1.1) populated by group-level agents 
endowed with memory and bounded rationality. We explore the effects of variations of memory 
capacity and retention on sociality or collective action. Our principal findings seem to suggest 
that both memory capacity and engram retention promote or facilitate the emergence of 
collective behavior. 
 
 

METHOD 
 

We are interested in collective intentionality and cognitive processes such as memory and 
learning. Among the senior authors, we combine expertise in computational social science 
(Cioffi), computer science and artificial intelligence (AI) (Luke), and computational 
neuroscience (Olds). Our investigative procedure involved two stages. First we constructed an 
experimental model — the first of several — to generate a minimal, but nonetheless interesting, 
artificial society of agents endowed with mnemonic structure and communication, in a simple 
multi-agent social simulation model called “Wetlands” (as described below). We then conducted 
two initial experiments in Wetlands 1.1 to examine the effects of memory capacity, retention, 
and simple communication on emergent behavior. 
 
 
Wetlands Model 
 

Wetlands 1.1 is based on Paus’ earlier “Floodland” model (Paus, 2003) and uses the 
MASON 6 multi-agent simulation framework for complex adaptive systems.3 The architecture, 
dynamics, initial social calibration, and other aspects of Wetlands are described below.  
                                                 
2 “Sociality” means the essence of — what fundamentally constitutes — social phenomena, similar to physicality, 

chemistry, religiosity, or musicality in their respective domains. 

3 MASON [Multi-Agent Simulator of Networks and Neighborhoods (Luke et al., 2003)] is an open source 
simulation code written in Java, available at http://cs.gmu.edu/∼eclab/projects/mason/. MASON is a 
collaborative project of the Evolutionary Computation Laboratory and the Center for Social Complexity of 
George Mason University. 
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Architecture 
 

Wetlands 1.1 consists of a class of situated, autonomous, adaptive, bounded-rational  
(in the sense of Simon, 1999), group-level agents interacting at two levels: (1) among themselves 
and (2) with an environment composed of physical landscape, simple weather (moisture from 
rain), sites with food, and sites with shelter. The Wetlands 1.1 landscape is composed of 
hexagons to avoid the limited orthogonal interaction opportunities of a von Neumann 
neighborhood, or the arbitrary corner effects of a Moore neighborhood (Gilbert and Troitzsch, 
1999; Cioffi-Revilla, 2002). Wetlands’ hexagons may be thought of as elementary Thiessen 
polygons, commonly used for modeling neighboring social interactions among sites or 
interaction nodes on a regional scale. Socially, each agent in the Wetlands model corresponds to 
a small group of kin-related individuals in a real (“target”) world, on the scale of a family or 
extended family (approximately 2 to 20 individuals).4 
 

Wetlands 1.1 is inhabited by two types of groups (societies), called Atis and Etis, on the 
basis of the culture attribute defined on the group class. Ati and Eti groups are shown in black 
and red (or black and gray), respectively, in Figures 1a and 1e. In addition to having cultural 
identity, agents also have memory, such that each group-agent can “remember” at most some N 
stored engrams, which degrade over time. Thus the memory has both a capacity and a retention 
quality.5 In addition, each society — Ati and Eti cultures — will have its own memory in future 
versions of Wetland. 
 

Moisture, food, and shelter are randomly distributed over the Wetlands landscape, as 
shown in Figures 1b–d. Food grows where the landscape has sufficient moisture. 
 
 
Dynamics 
 

Each agent-group goes about searching for food, avoiding rain, and seeking shelter to 
stay dry. The main simulation loop may be described as follows. Each time-step begins with 
agents located at various sites in the landscape with a given memory state containing an engram 
(record) of food and shelter locations stored in memory as an n-tuple. Each agent looks around 
its neighborhood to acquire additional information on food quality and locations nearby. In 
addition to discovery, information on food and shelter is also acquired through exchange during 
an encounter (within radius 2) between culturally similar groups (e.g., Ati-Ati or Eti-Eti). 
Information is not exchanged during encounters between dissimilar groups (Ati-Eti or Eti-Ati), 
to model the idea of lack of trust between “foreigners” (Polk, 1997). We expect to make further 
use of this in-group (“we”) vs. out-group (“they”) feature in subsequent work; here we use it 
only for expressing simple communication between similar groups. 
 

                                                 
4 We identify the scale of each computational agent in Wetlands as a kin-based group, rather than an individual 

person, because all agents exhibit formally homogeneous dynamics in searching for food, shelter, and avoiding 
rain. Such behaviors are anthropologically (ethologically) consistent with kin-level societal aggregation, not with 
strictly individual behaviors. 

5 An engram, in the sense of Lashley (1929), is a physical (in our case computational) memory trace that records 
information. Sociologically, an engram can be the computational representation of an infon, in the sense of 
Devlin (1991). 
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FIGURE 1  Wetlands initial visualization and layers (Composite visualization [a] consisting of 
moisture layer [b], food sites layer [c], shelter sites layer [d], and agents layer [e]. Agents are 
mobile, but all environmental components are fixed in Wetlands 1.1 [although environmental 
components may change in value]). 
 
 

Fresh information is entered into the agent’s memory. If memory is full, then new 
information will dislodge prior information that is inferior, even if (by Simon’s Satisficing 
Principle) the new information is only locally (not necessarily globally) superior. Once memory 
is updated, the agent moves one step toward its preferred food (or shelter — depending on 
whether or not it is raining). The agent moves toward the “best” food or shelter it remembers by 
using a weighting scheme that considers both the believed distance from the food/shelter (closer 
is better) and the “quality” of the food/shelter (higher-quality shelter is surrounded by other 
shelter; high-quality food is based on the moisture content). In a future version of the model, 
agents’ engrams will be degraded through the addition of random noise and other loss processes. 
 
 
Interactions  
 

The two main agent-based interactions in Wetlands are (1) between agents and their 
environment (food, moisture, shelter), and (2) among groups of similar or different culture 
(homogenous or heterogeneous interactions).6 Memory plays an explicit and key role in each 

                                                 
6 Other object-based interactions not involving agents include those between weather (moisture) and food. In 

Wetlands 1.1, food grows around moisture concentrations and propagates toward arid areas. Moisture 
regenerates food after agents consume it as the agents move around the landscape. 
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form of agent-based interaction. In the environmental context, memory stores qualitative and 
locational information about food, moisture, and shelter. In the cultural context, memory is 
updated by — and hence benefits from — homogeneous, or within-culture, contacts. Contact 
with “foreigners” (dissimilar groups, i.e., Ati-Eti or Eti-Ati) (Polk, 1997) does not produce 
information exchange. 
 
 
Emergence  
 

On the basis of these minimal simple attributes and rules, we are able to generate and 
observe two significant emergent collective patterns in the Wetlands artificial world. The first, 
and arguably most important, consists of clustering among groups of Atis and Etis, as shown in 
Figure 1a. This basic pattern occurs for both feeding and seeking refuge, thereby lending 
additional external validity to the model: culturally similar groups ultimately tend to seek food 
and shelter collectively as a community (qua comunitas), not autonomously, as they exchange 
memories of high-quality food and shelter. The model purposively avoids generating any other 
more complex social patterns in order to provide a simple experimental bench for conducting 
memory experiments. 
 

The second significant emergent pattern of collective behavior that is observed is 
diachronic: after the initial burn-in period of a few hundred time-steps, we observe periodic 
migrations between food areas and shelter areas, similar to the daily movement of groups, or the 
seasonal movement from hunting and gathering regions in the summer to refuge areas in the 
winter. The food cycle would seem to indicate the former, but in any case the periodic movement 
of groups is distinct.7 
 
 
Calibration 
 

In relative chronology, the Wetlands target world may be akin to a Holocene environment 
inhabited by Paleolithic to early Neolithic human groups of hunter-gatherers searching for food 
to survive and seeking shelter away from rain to protect themselves from the elements. 
Wetlands 1.1 contains no other phenomenology, making it somewhat comparable to 
hunter-gatherer models by Reynolds (2002) from a social evolutionary perspective. In addition, 
Wetlands lacks any explicit technology. 
 

In this study, we used Wetlands as an experimental artifact for conducting memory 
experiments. In principle, other MABSS models that display comparable sociality 
(e.g., Schelling’s segregation model, HeatBugs, Sugarscape, and others [Epstein and Axtell, 
1996; Gilbert and Troitzsch, 1999, pp. 158–193; Macy and Willer, 2002]) could be adapted for 
conducting similar memory experiments, but this would require modifying the architecture of 
agents. We chose to develop Wetlands because it provides an initial model for early social 
evolution with minimally complex and yet interesting collective intentionality (“sociality”), 
desirable properties for investigating memory. 
 
 

                                                 
7 We are developing an appropriate indicator of collective migratory behavior to portray collective “swarming” in 

terms of a time-series metric M(t). We thank G. C. Balan and L. Panait for their assistance in this task. 
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Memory Experiments 
 

Agent mnemonic structure and dynamics, or how information is maintained and accessed 
in the short- and long-term memory of an agent, can be modeled in variety of ways as part of an 
agent’s “inner environment” (Simon, 1999). In this initial study, we conducted two experiments, 
as described below. 
 
 
Experiment 1: Variation of Memory Size or Capacity  
 

In the first computational experiment, we conducted a series of variations of the agent’s 
memory size. Specifically, we varied the memory capacity, C, of each agent by using values of 1, 
10, and 25 engrams to observe if any effects occurred in the qualitative or quantitative 
emergence of collective behavior (swarming). Our research hypothesis in this first experiment 
was that more memory capacity would accelerate the emergence of collective action, because 
memory capacity can support a larger volume of interagent information exchange. However, the 
precise form of such covariation — whether linear, nonlinear, concave, convex, polynomial, 
exponential, or other — seems impossible to derive from first principles. Some form of 
nonlinearity would seem likely (albeit not certain), given the nonlinear properties of information. 
 
 
Experiment 2: Variation of Engram Duration or Retention  
 

In the second experiment, we varied memory retention, R, by manipulating the duration 
of engrams stored in an agent’s memory. Our research hypothesis in this experiment was that the 
longer the time that engrams lasted in an agent’s memory, the more efficient the agent’s 
movements — searching for food and finding dry shelter — would be, especially when boosted 
by information exchange from encountering other culturally similar groups. Operationally, 
variation in memory retention was implemented by varying the number of time-steps that a given 
engram would remain stored in memory. In Wetlands 1.1, engram loss was modeled as a simple 
step function without noise, not as a gradual process (e.g., exponential or logistic memory loss). 
This process will change in future versions. 
 
 
Other Memory Experiments  
 

We are continuing other memory experiments with the Wetlands model to test for 
episodic effects, noise, memory loss and degradation, traumatic stress memory disorders, and 
other cognitive conditions related to mnemonic structure. Results will be reported in future 
papers. All simulation runs are being conducted with MASON 6. 
 
 

RESULTS 
 
 
Emergent Sociality and Memory Capacity 
 

Repeated simulation runs showed that the time required for the emergence of sociality 
(collective behavior) T decreased with increasing memory capacity C confirming our first 
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research hypothesis. Groups take less time to display spatially clustered formations (they start 
“hanging together” more quickly) when their memory capacity is larger. Conversely, they take 
longer to gather as a culture when the lower group-level memory is lower. 
 

Moreover, our initial results also indicate that the observed negative relationship appears 
to be both monotonic and nonlinear (concave), with time to emergence T decreasing in 
approximately inverse, and marginally decreasing, proportion to memory capacity C, or 
 

 T ~ ,
C

a
k

 (1) 

 
where a and k are scale and shape parameters, respectively, both positive. 
 
 
Emergent Sociality and Memory Retention 
 

In terms of our second experiment, repeated simulation runs also showed that the time 
required for the emergence of collective behavior T decreased with increasing memory 
retention R. This finding confirmed our second research hypothesis. Here again, groups employ 
less time to achieve spatially clustered formations when they are able to retain memory for a 
longer period of time (number of time steps). Conversely, groups take longer to “start hanging 
around together” when their group memory is brief. 
 

In the second experiment, our results indicated a similar relationship to that found in the 
first experiment  the observed negative relationship again appears to be both monotonic and 
nonlinear (concave), with time to emergence T decreasing in inverse, and marginally decreasing, 
proportion to memory retention R, or 
 

 T ~ ,
R

b
h

 (2) 

 
where b and h are scale and shape parameters, respectively, both positive. 
 
 

DISCUSSION AND FUTURE RESEARCH 
 

Moving from the specific focus of this investigation to broader considerations beyond the 
experiments reported here, in the following discussion we examine our results in terms of 
computational findings, broader theoretical implications for sociality and collective 
intentionality, and future research directions. 
 
 
Computational Findings 
 

Results from this study within Wetlands demonstrate that sociality or the social behavior 
of groups — for example, groups’ propensity to cluster together — is not independent of 
group-level memory structures and processes. Both memory capacity and engram retention seem 
to have significant effects on how promptly sociality emerges among groups. Both features also 
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have qualitatively similar effect in terms of increasing the probability of emergent collective 
behavior (Equations 1 and 2). This preliminary finding would appear to argue against the idea 
that more and longer memory in multi-ethnic societies degrades or hampers sociality. Instead, 
memory capacity and engram retention accelerate the emergence of sociality. 
 
 
Verification  
 

Our initial Wetlands 1.1 model has undergone extensive verification, so we feel confident 
about the veracity of the observed experimental effects of memory capacity and retention on the 
emergence of collective action. We also rule out the possibility that sociality or intracultural 
aggregation may be caused solely by weather or food patterns. Nonetheless, we continue to 
examine the simulation runs closely to ensure that sociality remains unaffected by bugs. 
 
 
Robustness  
 

Repeated simulation runs of both experiments under different stochastic conditions have 
thus far failed to invalidate our main results. In the future, we can use MASON’s intrinsic 
separation of computation from visualization to execute a large number simulations in a short 
amount of time to explore the parameter landscape for robustness. 
 
 
Theoretical Implications 
 

What theoretical inferences from the computational world of Wetlands 1.1 may be 
warranted in terms of our computational experiments? Our findings suggest a number of 
plausible theoretical implications extending beyond “the observed facts” (Lave and March, 1993) 
in terms of broader social science themes, Simon’s Conjecture, social scale, and subsequent 
formal analysis of computational results. 
 
 
A Broader Social Science and ALife Perspective  
 

Thus far, our research with Wetlands has touched upon half of the six major research 
themes in Max Steuer’s recent assessment of the social sciences, The Scientific Study of Society 
(Steuer, 2003): migration, kin-groups (family), and shelter (housing).8 While Steuer’s survey 
covers only statistical research on these topics, our computational analysis of the effect of 
memory on social patterns takes advantage of the unique experimental environment provided by 
an agent-based model such as Wetlands. Whereas most statistical social science research is based 
on survey research, even when cross-cultural in scope, computational social science research can 
contribute new insights through virtual experimentation (Epstein and Axtell, 1996). 
 

                                                 
8 The value of Steuer’s survey cannot be overstated, particularly in terms of highlighting the growth of positive 

knowledge about society. However, the absence of conflict as a major research topic across the social sciences 
— according to Steuer’s otherwise excellent survey — is unfortunate, particularly in light of the growing body 
of knowledge that exists in this area (Conflict Research Consortium, 2004; Diehl, 2004). 
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In terms of social science and ALife perspectives, our progress with Wetlands so far 
seems promising, especially in the area of providing cognitive attributes to agents. Experience 
with Wetlands should also prove helpful as we attempt to generate other emergent patterns of 
sociality, such as trade or conflict (Min et al., 2003). 
 
 
Simon’s Conjecture  
 

Herbert A. Simon (1916–2001) hypothesized that emergent social complexity — 
observed patterns of sociality and collective intentionality — is caused primarily by the adaptive 
behavior of bounded-rational agents (individuals or groups) interacting in complex 
environments, not by any internal complexity of the agents themselves (Simon, 1999, pp. 7–8). 
Social complexity is environmentally induced, not the product of agent complexity (“Simon’s 
Conjecture”). Holland’s (1995) approach to modeling complex adaptive systems is similar. 
Simple agent rules can generate complex emergent patterns if the environment or task is 
sufficiently challenging.9 Indeed, one could argue that the epistemology of generative or 
computational social science is fundamentally based on what may be called Simon’s Conjecture: 
social complexity emerges from the adaptation of simple agents to complex environments, not 
from inherently complex agents. 
 

In terms of Simon’s Conjecture, our computational findings from the Wetlands 
experiments — summarized by Equations 1 and 2 — thus far suggest that complex adaptive 
behavior (such as social aggregation) could indeed result from simple internal mechanisms, and, 
interestingly and beyond Simon’s Conjecture, simple linear variations in mnemonic structure 
(namely, capacity C and retention R) cause nonlinear effects on the timing T of emergent 
behavioral complexity. This theoretical (“generative”) implication is new, based on 
computational findings, and does not seem to follow (nor arguably contradicts) Simon’s 
Conjecture. 
 
 
Memory and Social Scale  
 

Scale and complexity are long-standing classical puzzles in the physical and biological 
sciences (Asimov, 1983; Labrador, 2002; Morowitz, 2002). Unfortunately, social scientists pay 
less attention to issues of scale and complexity, with some notable exceptions (Singer, 1961; 
Schelling, 1971; Eulau, 1996; Young, 1998). 
 

Memory is essential to understanding different human and social scales, from individual 
to societal (and perhaps to global). Our findings offer new insights on multiple scales of 
sociality. For instance, although agents in Wetlands seem to approximate groups, our results may 
suggest new research hypotheses on the effect of mnemonic stricture on individual (micro) or 
supra-group (macro societal) collective behavior. To wit, are individuals and entire societies 
(i.e., social entities below and above the group level modeled in Wetlands) affected in the same 
way by changes in memory characteristics? Would true experiments confirm or refute these 
results on other scales? 

                                                 
9 In computational social science, the view of society as “a complex adaptive system” was formulated shortly after 

World War II by Karl W. Deutsch (1940–1949, 1951a,b, 1963), under the influence of W. Ross Ashby and 
Norbert Wiener. Among early pioneering works, see also W. Buckley (1967, 1968). 
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Formal Analysis from Computational Results 
 

From a more formal perspective, Equations 1 and 2, which for now we view only as 
approximate computational generalizations, suggest a number of implications. Both functions 
represent power laws in terms of the independent variables C and R, so their asymptotic behavior 
is intrinsically interesting. Estimating the necessary parameters in Equations 1 and 2 is possible 
by running a very large number of fast simulations, a core task for which MASON is designed 
(Luke et al., 2003). 
 

In addition to formal inferences that can be derived from Equations 1 and 2, estimating 
the numerical value of the corresponding exponents, k and h, is important because such values 
have implications for the relative (marginal) effects of memory capacity and retention. For 
instance, knowing even just the values of these parameters (which is larger?) can shed light on 
their relative importance to derive “dominance principles” (Cioffi-Revilla, 1998, p. 289). In turn, 
such theoretical principles can be used to answer questions such as: Is the emergence of sociality 
(collective behavior) more sensitive to variation in memory capacity or to variation in engram 
retention? In general, since Equations 1 and 2 are computational laws generated by code (not by 
nature), can such laws also be derived from classical mathematical (noncomputational) models? 
If not, then clearly Equations 1 and 2 represent unique contributions by generative computational 
science. 
 
 

CONCLUSIONS 
 

This investigation began by asking the question: How does group memory affect 
sociality? More specifically, we asked, How does memory capacity and the duration of engrams 
in memory affect the probability of sociality or collective intentionality? Most computational 
MABSS models are designed with agents that usually — or most typically — lack an explicit 
internal information-processing structure in terms of basic cognitive elements. In particular, 
memory is usually not explicitly modeled. 
 

We presented initial results from a new prototype called Wetlands, an MABSS model 
designed to investigate the effect of group memory structures (such as capacity and retention) 
and interaction situations on emergent patterns of sociality or collective intentionality. 
Specifically, we reported on initial computational experiments conducted on culturally 
differentiated agents endowed with finite and degradable memory that simulate bounded 
mnemonic function and forgetfulness. 
 

Our main initial findings are that memory capacity and engram retention both promote 
sociality among groups, probably as nonlinear (inverse) functions. Wetlands 1.1 was 
implemented in the new MASON 6 computational environment developed at George Mason 
University as a collaboration between the Evolutionary Computation Laboratory and the Center 
for Social Complexity. 
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ABSTRACT 
 
Game and other rational theories built on “methodological individualism” assume that the 
value of an organization is constituted by the sum of its members. This means that 
nothing about an organization is unique. From this perspective, where “social” means a 
simple aggregation of individuals in a stable and fully accessible reality, a single rational 
worldview, business model, or government policy makes sense. But game theorists have 
known for some time that the claims and interpretations of individuals shift during the 
social interaction; it is no longer a surprise that measuring individuals does not reproduce 
a group, nor does measuring a group tell us about its members. But this measurement 
problem from a rational or “methodological individualism” perspective should not exist. 
As part of our quantum perturbation theory, the measurement problem is fundamental to 
the difference between the belief convergence common to rational cooperation processes 
under consensus-seeking rules (CR) and the truth-seeking common to competitive 
processes under majority rules (MR) found in democracy and science. In a recent field 
test, we had found that CR groups focus more on values and MR groups more on 
instrumental action. We are making plans to simulate group decision making with a 
quantum-based, multi-agent approach, designed using Wagner’s Agent-Object 
Relationship Modeling Language. This formalism will allow identification of agent states 
and the process of shifting states.  
 
Keywords: Consensus-seeking rules, quantum-based social modeling, organizational 
uncertainty gap theory, multi-agent perturbation model, bistable models 

 
 

INTRODUCTION 
 
 A wide-ranging scientific approach is needed to understand the various dimensions of the 
micro-macro link in social and cognitive sciences. According to this general idea, the goal of our 
research is to propose a multi-paradigm approach to the study of relationships between 
individual and social cognition. More specifically, we propose the adoption of multi-agent 
quantum-based modeling of social relationships to the current context of decision making in 
organizations, extending this model to organizational structure in the future. This approach 
allows representation of micro and macro interaction effects simultaneously, permitting a 
broader perspective of complex phenomena in social science.  
 
 Considering recent propositions adopting quantum principles to explain agency in 
society, application of the quantum model to social representations illustrates cognition not as a 

                                                 
* Corresponding author address: W.F. Lawless, Paine College, 1235 15th Street, Augusta, GA 30901-3182; 

e-mail: lawlessw@mail.paine.edu; homepage.mac.com/lawlessw. 
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collection of stable cognitive structures, but as composed of stable and transient parts. The 
quantum model is not constructed by simply relating whatever quantum theory says about the 
atomic world as a metaphor to whatever social and cognitive scientists say about individuals in 
society. Instead, the quantum method is applied directly to the elements of observation and 
action in the interaction as Bohr (1955) and Heisenberg (1958) intended. Such analytical models 
have specific domains of application, like the explanation of consciousness phenomena (Wendt, 
2003), describing the quantum principles of the particles comprising the brain, or the Quantum 
Perturbation Model (Lawless and Grayson, 2004), formalizing uncertainty in the interactions 
between agents or organizations in a multi-agent system of bistable agent states. The paradigm 
shift permitted by the quantum approach for the first time allows representing with mathematics 
or agents the duality between interdependent, conjugate, or bistable states of observation and 
action; membership in an in-group or out-group; or membership in organization 1 or 
organization 2 or culture 1 or culture 2.  
 
 At its simplest, bistability occurs when an agent exists in one of two tightly coupled or 
interdependent states, as when an agent observes another in an attempt to model its behavior, or 
an agent in action may be performing a target behavior for the benefit of an observing agent; 
(e.g., teacher and student, actor and audience member, basketball player and fan). A different but 
related example is when agents are members of different political parties, religions, or 
organizations, each group competing for the goal of gaining the energy E to survive and control 
its environment (Eldridge, 2004).  
 
 Another example is to be in the same organization but at different states, as a job tutor to 
another agent, as two sequential members of a production line, or with one as a member of a 
planning section for strategy and another in an operational section to execute strategy. All 
organizations are organized to exploit bistable states (e.g., military counterintelligence attempts 
to increase the uncertainty between friendly and enemy troops or the self-serving behavior of 
competing attorneys in a courtroom, considered the best path to justice [Freer and Perdue, 
1996]). The key point from Bohr and Heisenberg, who were the first to apply their uncertainty 
principle directly to a model of social systems, is that not only does uncertainty exist in these 
interdependent states, but it is mathematically linked so that as uncertainty decreases in one state, 
interdependently, uncertainty in the other state increases (Lawless and Grayson, 2004). Beyond 
the simple model of bistability illustrated here, from computational quantum theory (Rieffel and 
Polak, 2000), our model poses that neutral or undecided agents can be in two incommensurable 
states simultaneously.  
 
 

JUSTIFICATION FOR BISTABLE SOCIAL MODELS 
 
 Our quantum model, as at the atomic level, is not meant to represent or copy social reality 
or phenomena. Instead, just as at the atomic level, our quantum model serves to organize theory, 
mathematical structure, and human experience. Axtell (2002), however, has questioned the 
application of the quantum model to the social interaction. But from our perspective, there is 
ample evidence to justify its consideration. It is well established that the measurement of social, 
psychological, and organizational phenomena changes the properties of what is measured 
(Lipshitz, 1997; Carley, 2003). Humans focus on only one interdependent aspect of an object at a 
time (Cacippo et al., 1996), such as either the meaning of a painting or its construction (Gibson, 
1986), and cognitive convergence processes within a group or organization increase out-group 
uncertainty (Tajfel, 1970), generating what Schama (1995) labeled as “social memory” to 
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describe the series of competing history beliefs that spontaneously arise between all groups, like 
in the courtroom, different scientific schools of thought, or merger opponents.  
 
 These findings make no sense from a stable and individual rational perspective, nor does 
deception, denial, or corruption. However, if human interactions are bistable, measurement 
collapses interaction information I into classical I, the convergence processes within the brain or 
an organization or culture reducing in-group uncertainty, consequently precluding the 
reconstruction of the original bistable state. Further, in his review of receiver operating 
characteristics curves versus the discrete E levels of the quantum model proposed by Bèkèsy in 
the 1930s and Stevens in the 1940s, Luce (1997) concluded that the quantum model remained a 
satisfactory alternative. The eye is a quantum I processor (French and Taylor, 1979), and 
Bekenstein (2003) has proposed that reality from the mind’s eye is a quantum illusion. Penrose 
has suggested that, if the uncertainties of E and time t, given as ∆E and ∆t, are interdependently 
related by ∆E∆t > c, with c assumed to be Planck’s constant h, with E = hω from quantum 
mechanics, it becomes ∆ (hω)∆t > h or ∆ω∆t > 1. This suggestion has been confirmed with data 
averaged over 30 subjects in a study by Hagoort et al. (2004, Figure 2, p. 440), who reported that 
object acquisition in the brain with 40-Hz gamma waves should occur in no less than 25 ms, 
while working memory tasks with theta waves at 5 Hz should take no less than 200 ms, 
illustrating E • t interdependence in the brain.1 While this basic physics is important, it is the 
collapse into individual histories that cannot be recombined to recreate the interaction that makes 
the measurement problem at the organizational level analogous to the atomic level (Zeilinger, 
1999), alone justifying the quantum model for competing social organizations. 
 
 

THEORY AND A QUASI-FIELD EXPERIMENT 
 
 Game theory and other rational theories built on “methodological individualism” (Nowak 
and Sigmund, 2004) assume that the value of a group or organization is constituted by the sum of 
the value of the individuals in the group. This rationale means that nothing about the group or 
organization is unique. From this perspective, a single rational worldview, business model, or 
government policy makes sense, such as the anti-free market merger policy of France to protect 
its national security, industry, and jobs. France employed this policy recently when it coerced 
Aventis, a French-German company, to merge with a hostile bidder Sanofi, a French company. 
(French officials threatened Novartis, an open contender for Aventis, against its friendly merger 
attempt.) In this view, the “social” is a simple aggregation of individuals, and reality is stable, is 
fully accessible, and can be apprehended by elites or scientists to produce a single best 
interpretation or representation. However, Luce and Raiffa (1967) raised theoretical questions 
about these assumptions, and from a practical perspective, government intervention in the 
European Union has motivated the more competitive pharmaceutical companies to relocate to the 
United States. 
 
 Game theorists have known for some time that the claims and interpretations made by 
individuals shift during the social interaction (Kelley, 1992), leaving it as the major unsolved 
problem in social psychology (Allport, 1962); a related unsolved problem is why individual 
humans have a poor grasp of how their behavior and self-identity relate (Baumeister, 1995). It is 

                                                 
1  That is, with gamma waves at 40 Hz, ∆ω∆t > 1 leads to ∆t > 0.025 s, and with theta waves of 5 Hz, ∆ω∆t > 1 

leads to ∆t > 0.2 s. Similarly, shortening by one-half the time of a digital voice track doubles its energy  
(i.e., ∆ω > 1/∆t = 1/(1/2) = 2 Hz [Kang and Fransen, 1994]). 
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no longer a surprise that measuring individuals does not reproduce the group, nor does 
measuring the group tell us about the individuals who comprise it (Levine and Moreland, 1998), 
what has been termed the measurement problem (Lawless et al., 2005). This measurement 
problem means that the collected histories of individuals who form a group cannot be summed to 
recreate the group (Schama, 1995). It explains the common occurrence of multiple 
interpretations for every context, which, from a “methodological individualism” perspective, 
should not exist. The measurement problem is fundamental to the difference between the belief 
convergence of consensus-seeking common for command decision makers (dictatorships) and 
the self-organizing cycles of belief challenges, information processing, and action feedback 
loops common to democracy and science. 
 
 

PERTURBATION MODEL: THE MEASUREMENT PROBLEM 
 
 In our perturbation model (Lawless and Grayson, 2004), instead of disturbances that must 
be avoided or resolved from the traditional perspective, the perturbation of an organization 
generates feedback that becomes the primary source of I for the attacker and attacked as well as 
for observers of the conflict, the latter being the all-important but often overlooked social 
dimension. In our model, there is no need to determine the value of cooperation or competition. 
Instead, observers neutral to an attack contribute to the solution of an ill-defined problem 
reflected in the attack by choosing or selecting a winner (as in the courtroom), by buying a car 
from a dealer, or by watching or listening to a media channel. Winners gain power by securing 
sources of E or its distribution (Eldridge, 2004). Thus, we avoid the unsolvable problem of 
determining preferences or normative values in “methodological individualism” by measuring 
the result of a perturbation. For example, the outcome of Southwest Airline’s low-fare maneuver 
in 2004 against US Airways in Philadelphia was predatory, but beneficial to consumers; the 
inability of AT&T Wireless to enact phone number portability made it prey for a merger; and in 
the 2003 Iraq War, the plan for multiple attacks to get “inside of the enemy’s decision cycle” 
(Franks and McConnell, 2004, p. 466) executed by the coalition forces caused the Iraqi troops to 
panic and its military organizations to break apart (Keegan, 2004).  
 
 We replace the unsolvable “normative” problem of values with a difficult but solvable 
one — the measurement problem. Measuring an interdependent or bistable phenomenon, such as 
a human organization, produces classical I that cannot recreate the original phenomenon. In the 
bistable model, uncertainties between acting and observing are interdependent, as they are 
between individuals and organizations, and between two organizations contemplating a merger. 
Thus, mathematically and phenomenologically, reducing uncertainty in the observable of interest 
increases the uncertainty in its conjugate factor. That is, the more that is known about, say a plan 
to merge, the less that can be known simultaneously about its execution, or the more known 
about the costs to merge, the less that can be known simultaneously about the time involved in 
completing the merger. These uncertainties are illustrated in Figure 1, with K = knowledge,  
∆K = I, and v = ∆K/∆t, and given the inertial effects of reactance j, ∆v∆K = ∆ (∆K/∆t) ∆t/∆t ∆K 
= j∆ (∆K/∆t)2 ∆t, giving ∆v∆K = ∆t∆E > c (Lawless and Grayson, 2004). 
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FIGURE 1  Measurement problem from the perspective 
of a merger target (parallel uncertainty relations exist 
for the acquiring organization)2 

 
 
 In sum, if “methodological individualism” is all about accessible I, the mathematical 
physics of organizational behavior is all about information that is mostly inaccessible to an 
organization and its outsiders. To uncover this hidden I about an organization requires that it be 
disturbed, an idea traceable to Lewin (1951). But if social reality is bistable (interdependent), 
measurement produces classical information that cannot recover the character of the 
organization, the essence of the measurement problem. A common perturbation in economics is 
a price war between competing organizations; for our field study below, a familiar perturbation 
on the Citizen Advisory Boards (herein called “Boards”) providing cleanup advice to the 
Department of Energy (DOE) is the conflict caused by incommensurable views, interpretations, 
or beliefs. While “cooperation” rules attempt to dampen conflict, “competition” rules harness it 
by driving random searches among multiple sources of information for the idea that withstands 

                                                 
2 For example,  

• Strategy: After AT&T Wireless put itself on the auction block in early 2004 and Cingular made the first 
offer, AT&T Wireless did not know whether bids would be received from other players, such as 
Vodaphone, or how much more would be offered.  

• Execution: Cingular expected that AT&T Wireless would execute its strategy by choosing the best bid by 
the deadline it had set, an expectation that turned out to be incorrect.  

• Energy: AT&T Wireless did not know whether Cingular or Vodaphone would increase their bids to an 
amount it considered sufficient.  

• Time: While the bidders believed incorrectly that the deadline was firmly established, AT&T Wireless 
was uncertain of the time when the bids would be offered.  

Finally, although power goes to the winner, it was not easy to determine who won and who lost in this auction. 
AT&T Wireless was unable to enact number portability and became the prey, but its CEO exacted a superior 
premium for his company and stockholders; while the merger on paper made Cingular the number one wireless 
company in the United States, it may have overpaid for the merger. Also, during the uncertainty of regulatory review 
(both the length of the regulatory review period and the regulatory decision), AT&T Wireless lost customers as 
competitors exploited the regulatory uncertainty, so it was unknown how costly the eventual merger would be based 
on the assets remaining once the merger had been consummated. 
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all challenges (exemplifying stochastic resonance). From a bistable perspective, the primary 
difference between the two styles of decision making is that consensus-seeking methodologically 
converts an organization into accessible individuals, consequently devaluing neutral observers; 
in contrast, the competition between two or more opponents under majority rule exploits 
bistability by converting neutral members into judges. 
 
 

CASE STUDY OF A MEASUREMENT PROBLEM:  
DOE CITIZEN ADVISORY BOARDS 

 
 Recently, we had an unexpected opportunity to test our model in a field test among 
Citizen Advisory Boards working to help DOE clean up its sites across the United States. 
(Lawless et al., 2005). Comparison of the two Boards with the largest budgets, of about 
$1 billion each, showed that the Hanford Advisory Board (HAB) used consensus-seeking rules 
(CR) and the Savannah River Site (SRS) Advisory Board (SAB) used majority rule (MR)  
(see Table 1). In an earlier study, we had found that the HAB with CR relied primarily on 
promoting its values at Hanford, while the SAB, with its method of MR, focused on the 
instrumental action of cleaning up SRS (Lawless, 2004). 
 
 As one example of what we had found, both DOE sites had to consider shipments of 
transuranic (TRU) wastes3 to their respective sites for interim storage before eventual transport 
to the TRU waste repository at the Waste Isolation Pilot Plant (WIPP) in New Mexico 
(Figure 2). In response, the CR Hanford Board concluded: “The recent shipments of TRU wastes 
from Battelle Columbus (BCK) and Energy Technology Engineering Center (ETEC) to Hanford  
 
 

TABLE 1  Site-specific Citizen Advisory Boards (SSABs)  
associated with DOE sites  

 
Active SSABs (N = 9) 

 Inactive SSABs (N = 
3) 

 
 

Site 
Decision 
Process 

 

Site 
Decision 
Process 

     
Fernald  
Hanford  
Idaho (ID)  
Nevada Test Site  
Northern New Mexico  
   (NNM) 
Oak Ridge (OR) 
Paducah  
Rocky Flats Plant  
Savannah River Site (SRS)  

CR 
CR 
CR 
MR 
MR 

 
MR 
MR 
CR 
MR 

 Pantex  
Sandia  
Monticello  
 

CR 
CR 
MR 

 
Source: Lawless et al. (2005). 

                                                 
3  TRU wastes are contaminated with uranium-233 or elements beyond uranium on the periodic table in 

concentrations of more than 100 nCi/g. These isotopes have half-lives of more than 20 yr but consist mostly of 
plutonium-239 with a half-life of about 24,000 yr. 
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FIGURE 2  Transuranic (TRU) wastes are being shipped in TRUPACT II containers to the 
repository in a salt formation at WIPP near Carlsbad, NM (www.wipp.carlsbad.nm.us) 
 
 
caused grave concern to the [Board]” (HAB, 2002). In contrast, the MR SRS Board concluded, 
“Due to the considerable taxpayer savings, the relatively low risk, and the use of funding 
external to SRS for the activity, the SRS CAB recommends that DOE-SR accept the [off-site] 
TRU waste shipments from Mound as long as the following conditions are met: … DOE receives 
approval to ship more TRU waste volume from SRS [to WIPP] than received from Mound. The 
SRS CAB preference is to see at least twice the volume … ” (SAB, 2000).  
 
 Differences in the field as a result of these two decisions were dramatic. Prior to 2003, 
with the inventory of TRU wastes at Hanford at about twice that of SRS, shipments of TRU 
waste to the TRU waste repository at WIPP from both sites were about 1% of their respective 
inventories (see DOE, 2003). However, today, Hanford has made only 2,500 shipments 
compared to 10,934 shipments by SRS (Lawless et al., 2005). But would this finding for two 
Boards hold for all Boards?  
 
 Assistant Secretary of Energy Roberson called for an acceleration of the cleanup in 2002, 
including TRU wastes destined for WIPP. In response, DOE scientists developed 
13 recommendations to accelerate the disposal of TRU wastes (Table 2). In 2003, these 
recommendations were submitted to representatives of all of the Boards for their approval. 
 
 
TABLE 2  Three of the 13 recommendations by DOE scientists to accelerate TRU waste 
disposition  

 
• DOE should characterize TRU waste as required to reduce risk and minimize transportation and 

handling of waste while making the confirmation process cost-effective. 
 
• DOE, in consultation with stakeholders and regulators, should reexamine the categorization of 

TRU waste using a risk-based approach.  
 
• DOE should expedite the design, fabrication, and certification of container transport systems 

(Arrowpak and TRUPACT III) and accelerate the adoption of rail transport as appropriate.  
 
Source: Lawless et al. (2005). 
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 One example of the trade-offs inherent in the recommendations is the middle 
recommendation (bolded item in Table 2), which indicates that some waste currently classified 
as TRU waste, requiring it to be packaged and sent to the TRU waste repository at WIPP for its 
ultimate disposition, might be left at the individual sites if a scientific risk analysis indicated that 
it could be safely buried in situ. If implemented, the decision would save money and time, but it 
would leave a long-lived waste in near-surface disposal, increasing risk to citizens and the 
environment. 
 
 The measurement problem requires a prediction of how an organization reacts to a 
perturbation, such as the request by DOE scientists that Boards support their recommendations to 
accelerate the disposition of TRU wastes. Figure 3 illustrates mathematically the effects of 
interdependence on uncertainty; that is, as uncertainty in strategy increases (e.g., more emphasis 
on values), uncertainty in execution decreases, and similarly for E and t. 
 
 The request by the DOE scientists amounted to a perturbation felt across all of the Boards 
over four domains. Figure 3 assumes the perspective of DOE:  
 

• Strategy uncertainty: Could DOE’s sites respond with an aggressive plan to 
accelerate TRU wastes to WIPP (e.g., SRS planned to dispose of all of its 
TRU wastes by 2006)?  

 
• Execution uncertainty: Could accelerating TRU waste shipments occur when 

shipments are contingent on new containers for large objects (TRUPACT III) 
and high-activity TRU (ARROWPAK for plutonium-238 wastes)?  

 
• Energy uncertainty: Are sufficient funds available to accelerate the 

acquisition and licensing of containers to accelerate TRU waste shipments?  
 

• Time uncertainty: Could new containers be licensed in a timely fashion?  
 
 

 

FIGURE 3  The measurement problem from the 
perspective of DOE for its transuranic wastes 
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Shifting to the perspective of the Boards, the terms in Figure 3 become:  
 

• Strategy uncertainty: Would the Boards believe in the plan?  
 
• Execution uncertainty: Would the Boards vote for the plan?  
 
• Energy uncertainty: Would the Boards expend effort in support?  

 
• Time uncertainty: Would support by the Boards be timely?  

 
On the basis of our previous research, we expected that MR Boards would adopt the measures to 
accelerate TRU waste disposition at their respective sites, that CR Boards would take longer to 
make this decision, and that ultimately the focus by CR Boards on values would produce less 
complex decisions than those by MR Boards.  
 
 At the SSAB Transuranic Workshop in Carlsbad, NM, in January 2003, representatives 
(N = 105) from all of the Boards discussed the recommendations by the DOE scientists and 
reached unanimity. The representatives from each of the Boards were expected to return to their 
respective sites and present these recommendations to their own Boards for a consensus vote. 
The result (Figure 4) was as follows: Five of nine Boards approved these TRU waste 
recommendations (four MR Boards and one CR Board), and four of the nine Boards disapproved 
(one MR Board and three CR Boards). Figure 4 is interpreted as follows:  
 

A. MR Boards bring opposing views together to seek the best decision and 
compromise (∆K low; Lawless and Schwartz, 2002), generating instrumental 
action (∆v high; shown in Figure 4: 4 MR Boards agreed, not shown in 
Figure 4: 1 MR Board did not).  

 
B. After expressing multiple reservations (∆K high; Bradbury et al., 2003), 

CR Boards mostly did not accept the complex request on TRU wastes by the 
DOE scientists (∆v → 0; shown: 1 CR Board accepts; not shown: 3 CR 
Boards do not).  

 
C. Conflict on MR Boards is intense (∆E → ∞; e.g., Lawless et al., 2000 

Hagoort, 2003) but among few participants and thus short-lived (shown:  
∆t = 0.5 hours).  

 
D. Instead of instrumental action, CR Boards repeatedly restate values with many 

speakers over long and uncertain periods of time (shown: ∆t = 2 hours, 
suggesting a possible lack of interest in many observers (∆E → low; Hagoort 
et al., 2004). 

 
 The interdependence observed in Figure 4 agreed with predictions. The time to complete 
consensus seeking was much longer than for majority rule (and the energy expended was less). 
More important, MR Boards mostly adopted the recommendations by DOE scientists, while CR 
Boards mostly rejected them, possibly reflecting that as participants sought consensus, they 
became more motivated to reach “understanding,” as claimed in a recent evaluation of these 
Boards (Bradbury et al., 2003), rather than motivate their respective sites to take instrumental  
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FIGURE 4  Mathematical interdependence of uncertainty 
(from Lawless et al., 2005) 

 
 
action to clean up their sites. Thus, the trade-off observed was that CR Boards were more 
focused on values, whereas MR Boards were more focused on accelerating cleanup. 
 
 From a practical perspective, normative social scientists have long argued that 
cooperative (consensus) decision making improves social welfare more effectively than the 
competition used as part of truth-seeking in a democracy. In a recent evaluation of its policy on 
consensus (Bradbury et al., 2003), the DOE encouraged its SSABs “to work toward consensus” 
in order to be “fair,” thereby improving American democracy. But no empirical evidence was 
collected from the field by DOE to validate its policy (Lawless et al., 2005). In contrast, the 
literature and field data contradicted DOE: consensus-seeking retarded cleanup, the coercion 
necessary to seek consensus reduced trust, and consensus-seeking favored risk perception rather 
than scientifically determined risk. As shown by the first application of mathematical physics for 
heterogenous competing organizations, we have found that the competition of ideas driven by 
truth-seeking significantly accelerated DOE’s cleanup and improved trust. 
 
 What we have found in this study of organizations is inconclusive because of the 
incomplete trail of data (Figure 4), but the results fit sufficiently well to provide a well-organized 
path forward in the laboratory with human subjects and simulations, and in the field for 
mathematical, theoretical, and applied organizational science. 
 
 

NEW THEORY: ORGANIZATIONAL K GAP THEORY 
 
 Beliefs (K) arise and become established or learned as a subset of beliefs within a set of 
world views of believers, constrained within a range (diameter) of influence (family, school, 
organization), producing psychological, social, and physical dimensions. Under CR, beliefs are 
freer to be expressed without constraint (Susskind et al., 1999; Habermas, in Bradbury et al., 
2003). However, under MR, beliefs are constrained by the competition of truth-seeking, forming 
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gaps that take E to overcome (∆A). Beliefs are expressed or articulated with waves (brainwaves, 
vocal waves) but have locality (neurons, individuals, organizations) and thus experience 
constructive (resonance, reducing E expenditures) and destructive interference (resistance, 
increasing E expenditures) found with agreement or dissonance, respectively. Each belief can be 
represented uniquely by a wave number, similar beliefs being multiples of the underlying belief; 
as unique beliefs flow around the circumference of an organization (∆v), they are restricted to 
integral numbers, with different beliefs requiring separation, the separation establishing discrete 
E values. The smaller the circumferential unit of analysis (brain, group, or organization), the 
larger the separation required between allowed E values to moderate dissonance. Thus, a new 
previously unarticulated belief requires sufficient E to jump over a “social” barrier (∆A) into the 
lowest E state permissible to be conducted around a group, in turn determining the belief gap and 
the strength of the group. These belief gaps represent information I; the fewer gaps in a group, 
the more cohesive and ideological the group.  
 
 In CR, the widespread freedom to express any belief (increasing ∆K) is associated with a 
low level of execution by the group (decreasing ∆v), reflecting high inertia. In contrast with MR, 
the constraints against multiple belief articulations (decreasing ∆K) are associated with a high 
level of execution (increasing ∆v), reflecting low inertia. 
 
 

SIMULATION 
 
 The first task of simulating the model in a computer is the design of the overall system, 
interaction protocols, and the internal agent architecture. The multi-agent model is illustrated by 
using AORML — Agent-Object Relationship Modeling Language (Wagner, 2003). The 
AORML formalism allows the representation of multi-agent systems where several states and 
behavior models co-exist in one diagram. In addition, the AORML approach distinguishes 
between external and internal models, permitting us to take into account the phenomenon of 
agent cognitive internalization. Finally, it uses and visualizes the important concept of reaction 
rules for behavior modeling.  
 
 The external AOR diagram is depicted in Figure 5, representing a generic situation where 
agents are individuals participating in an organizational decision-making process. Agents 
communicate according to a given protocol, allowing the belief revision cycle illustrated in the 
figure.  
 
 On the other hand, an internal AOR diagram is used to propose the architecture of a 
generic social agent (Figure 6). An agent consists of three main modules. The cognitive model 
stores decision-making strategies and other nonspecific beliefs. This module also includes 
reasoning procedures. The communication mechanism is responsible for communicating in 
accordance with some established protocol. Communication protocols concern message types, 
sequence, and meaning, allowing the implementation of decision-making mechanisms, such as 
democracy (MR) or consensus. Finally, the mechanism of interpretation is in charge of 
recognizing the meaning of messages received by the agent. Incoming messages, however, are 
interpreted according to the cognitive model, generating understanding. But incoming messages 
may also revise beliefs and decision-making strategies that exist in the cognitive model. 
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FIGURE 5  Multi-agent modeling  external AOR diagram  
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FIGURE 6  Multi-agent modeling  internal AOR diagram 
 
 
 Aiming to implement the idea of linking each aspect of every agent to interdependent 
uncertainties, the internal state of a social agent is characterized by various variables, 
representing the availability of E that an agent can expend; its uncertainty concerning the 
execution of a given strategy; the energy expended to execute it; and the uncertainty about 
beliefs, strategies, and the time to execute them. These variables permit us to model agents 
according to the constraints of the “measurement problem.” 
 
 We begin with the traditional assumption that an agent is exclusively in one or another 
state. As an example with a single agent, if the agent has a well-learned schema of an 
organization and is performing within that schema, it will be in its lowest energy state. If the 
agent is criticized while learning its schema, it will be in a higher state. Or, if a well-skilled agent 
following its schema is reviewing it and notices an error, it shifts from a low to higher energy 
state. This assumption parallels Hagoort’s data on human cognition and information processing. 
But in addition, for our simulations, we will apply the more difficult quantum assumption that 
undecided agents can be in two states simultaneously, with measurement shifting the agent into 
one state or another, regenerating the measurement problem. 
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CONCLUSION 
 
 In rational portrayals of social theory, cooperation is assumed to be superior to 
competition, but this assumption has never been confirmed (Nowak and Sigmund, 2004). This 
state of affairs permits users of conclusions drawn from these theories by those unfamiliar with 
its assumptions to make far-reaching claims, such as the one by Dennett (2003) that competition 
represents a “toxic excess of freedom.” But self-organization is not possible without an excess of 
freedom. Further, the more rigid the control of a social system (e.g., dictatorship), the greater its 
instability, requiring the reduction of freedoms, most easily gained by using censorship (May, 
2001, p. 5). Contradicting Dennett, by making organizations flatter to permit innovation, 
competition shifts governance from command decision making to self-organization, one of the 
key ideas in organizational advertising campaigns and the emerging field of military 
expeditionary warfare (NEC, 2004). 
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DISCUSSION: 
 

SOCIAL NETWORKS AND AGENT COGNITION 
 

(Friday, October 8, 2004, 3:45 to 5:45 p.m.) 
 

Chair and Discussant:  M.J. North, Argonne National Laboratory 
 
 

Michael North:  Our next speaker is Meredith Rolfe from The University of Chicago. 
She will talk about her work on social networks and simulations. 
 
 
Social Networks and Simulations 
 

Meredith Rolfe:  I was looking at voter turnout. There’s a well-known, long-standing 
empirical correlation between education and voter turnout. People who have higher education in 
the United States turn out to vote more often than people with lower education. This has 
typically been attributed to some sort of creation of civic skills or civic concern in the 
educational system. Each year you sit there, you get a little bit more civic-minded, or something 
along the lines of you have lower costs of turnout. This, again, is hard to see. My four-year-old is 
quite good at putting the ballot in the actual voting booth. 

 
[Presentation] 

 
North:  I’d like to thank Meredith for a very interesting and very concise presentation. 

That was excellent. First, I was very impressed with the use of sensitivity analysis, testing the 
assumptions, or at least some of the assumptions, in the model. In this case, one of the critical 
assumptions that was identified is the structure of the underlying networks, which I thought was 
a very good thing to do. Also particularly interesting was the use of agent-based modeling as an 
insight tool to help you understand more about what might be present in the data, and then 
feeding that back into the data. I thought that was excellent in terms of a use for agent modeling. 
It was also very good to see that sort of hypothesis-driven research, not only in terms of the 
overall big question, but also in terms of whether you are seeing the things that the agent model 
predicts — do you actually see these in the real data — and then going back and finding that in 
the real data. Even if you didn’t find it in the real data, it’s a good procedure — a good 
methodology. Of course, I’m happy to hear that you actually did find the prediction in the data, 
but even if you didn’t, the idea of doing hypothesis-driven research is very interesting. 

 
I have two questions. First, what other important variables do you think are present in this 

model — other things that should be given sensitivity analysis? Second, does that suggest future 
research for you? 

 
Rolfe:  Yes, very much. I think I alluded to that part of the assumptions when I said there 

could be a relationship between who is more or less likely to be a first mover and what his 
network position is because right now everyone is equally likely. Another thing is that at this 
time, an assumption (which is, again, just a basis of computer power) is that I have separated out 
people with larger and smaller networks into totally different worlds and hopefully (once I get 
the memory) will actually be able to put them all together. 
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North:  That’s great. Just as background, we have some big clusters at Argonne, so we 
can probably help you with that. 

 
Doowan Lee:  I’m Doowan Lee from The University of Chicago. I have a quick question 

about your last slide. You said your basic finding was supported by some survey data, etc. Did 
you actually control for education and everything else, so the only thing that actually affected the 
turnout rate was social structure? 

 
Rolfe:  Yes, there was maybe a moderate effect of education at very, very low levels, but 

I did it through cross tabs — a direct one-on-one comparison. I went back and did some pre-bets, 
taking care of the fact that people are selecting into the model and everything, and it kept turning 
up. 

 
Lee:  Did you try an interaction term between education and social structure? 
 
Rolfe:  Yes. I tried a few different specifications, and the model I have is actually a 

dummy variable for social structure. I also have a direct measure; it’s the GSS-1985, so it has a 
direct measure of great size. There are a few different ways I would love to look at. I don’t know 
if anyone here is that interested in the survey part of it, but I’ve gone about the survey in a bunch 
of different ways, and it would just keep showing up pretty consistently. 

 
Daniel Diermeier:  I am Daniel Diermeier from Northwestern. I have a technical 

question with respect to the threshold models. There is a way to interpret the threshold models 
with a game theoretic micro-foundation, where you just say people maximizing their utility and 
then, depending on cost and benefit parameters, there’s a likelihood of getting caught that’s 
decreasing and so forth. If you do that, you can show that in the game theoretic analysis, you get 
multiple equilibria. You get one where everybody participates, and another one where nobody 
participates. Then you can show if you’d like to write the game as a stochastic process, so you 
write it down as a Markov chain. You can show there’s a limiting distribution and it collapses to 
a function if you let the noise go to zero. So you identify a unique state, so to speak. 

 
The interesting thing is that this was always independent of the network structure. I’m 

trying to connect your results with that, and I’m not quite sure how. It seems like a lot is going 
on if you don’t go to the limit, and it would be interesting to look at that. But I’m curious 
whether that’s something that we can connect — those two results at all. 

 
Rolfe:  I would love to be able to connect them. I think it would be fantastic because I do 

think there is very much …. I haven’t done a lot of work on it because I’ve been trying to match 
up what the agents are doing with experimental research on how people play public goods 
dilemmas. But I would really be interested in matching that back up with a game and limiting 
distributions. I think the social network part comes in because, in part, it seems like you move 
away from limiting distributions into limits. The social networks actually place those limits. 

 
Noshir Contractor:  I’m Noshir Contractor from the University of Illinois in Urbana-

Champaign. Actually, you preempted one of the questions that I had by mentioning that your 
data set was the GSS-85. Was that the one that had the social networks data? 

 
Rolfe:  That’s the only one that is related … 
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Contractor:  So, of course, when you mentioned that, it struck me that in that particular 
data set, there was the option to guess empirically, without any agent-based modeling, the effects 
of group structure and education. Did you try that out outside of the agent-based modeling to see 
if, in fact, based on the empirical data alone, you were able to see any effects of the group 
structure that overwhelmed or were overwhelmed by education? That’s one part. The second 
part, which is again related, is that you mentioned toward the end of the presentation that social 
structure made a difference. Could you expand a little more about which particular properties of 
the social structure made a difference, and talk about in what direction, etc., those differences 
went? 

 
Rolfe:  Yes. I guess I should have presented my actual substantive work, not the network 

work. What I found was that I had the GSS (I mean, everyone’s had the GSS for a long time), 
and I just wasn’t thinking about it right. What I found through doing the agent-based modeling 
was that there was a big difference between the people that had bigger and smaller networks and 
being in a world where there were, in general, bigger or smaller networks. So I went back, after 
having been through the modeling, and came up with an indicator (which was already there) for 
the size of close networks, which, again, I think is probably not the greatest one. It would 
probably make more sense to think about 8 to 12 people, based on the survey network literature, 
that are actually doing the influencing — probably a weighted version of those. I then divided up 
to the stratifying principle, which is segregating people off into worlds. 

 
It turned out that it actually wasn’t the individual’s education, but it was the education of 

one’s friends that started to have this very “class” connotation. Some people with a high school 
education had friends (all or a portion of them) that were college educated. The vast majority of 
the high-school-educated people had no friends with a college education, and they seemed to be 
living in different worlds. That became the sort of variable that I used to talk about social 
structure because, again, it was being in a high-network degree, low-density structure that 
actually made the difference. 

 
Luis Fernandez:  I’m Luis Fernandez from the University of Michigan and 

U.S. Environmental Protection Agency. You had an impressive project. I’m looking forward to 
reading the paper. I have a side comment on the concept of costs related to education level and 
voter turnout. 

 
I think education levels generally have a pretty strong correlation with household income. 

Those with lower incomes are much more likely to hold lower-paying jobs that offer less 
flexibility and less paid time off, so they usually don’t have the ability or the time to vote. The 
question is that given that they’re pretty closely correlated, have you taken a look at income, and 
does it hold when you’re trying to control for that? 

 
Rolfe:  That’s a fantastic question. One of the weird things about traditional SES 

[socio-economic status] that slowly became the civic volunteerism model in survey research was 
that income really didn’t have a huge effect before. This is very counterintuitive in some way. It 
all seemed to be in education. 

 
One of the nice things that occurred after I put in these controls was that, all of a sudden, 

income had a really big effect. I’m now exploring that further. I have campaign contributions, 
and I’ve got GIF, which I’m getting ready to work with. We’re possibly going to get some nice 
GIF simulations going. I’ve got political mobilization and candidate locations (where candidates 
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live). I’m going to start looking at the spatial indirect and direct mobilization idea and also limits. 
I’ll be looking at how much of it is due to direct or indirect contact with the political system and 
how much is due to the limits that income can place on you. That is actually where I’m going 
next. 

 
Michael Macy:  I’m Michael Macy of Cornell University. Meredith, this is fascinating 

work, and I really enjoyed your paper. My question is (I think it may be similar to the earlier 
ones) whether these network effects depend decisively on whether there is threshold homophile 
in the network. If we make the assumption that people are tied to those who have, let’s say, 
identical thresholds, then it’s useless because you’re preaching to the choir. Also, if their 
thresholds are random, it doesn’t work because you don’t have the nice domino arrangement, so 
the really important thing is to have almost homophile. I’m wondering whether you need to look 
carefully in the GSS data with regard to whether the homophile of the thresholds violated the 
assumption of randomness, which I think you have in the model. 

 
Rolfe:  One of the things that I started off with — and I’m going to address this in a 

substantive way to give you the best idea that I have — is that this is what I would call the 
political interest idea (i.e., where people who have similar levels of political interest are grouping 
together and in some ways reinforcing each other’s political interests). So what I did to assume 
basically the distribution of first movers (who are the most important people with similar 
interests) was to look at a cross tab along my social worlds idea. I found that the distribution of 
high, high levels (i.e., first-mover levels) of political interest was the same across the two groups. 
What varied was the responsiveness of other people to them, so that it was being reinforced in 
the very high degree/low-density networks, and the political interest wasn’t basically spreading. 

 
So, yes, in my models, I assume that across the two types of worlds — those with four to 

five, six, eight friends versus more friends (lower density) — thresholds are randomly distributed 
and that people are just grouping up without any responsiveness to that. I was able to check that 
in the data. I found that the number of first movers (which, according to public goods models 
experimental work, should be about 10% to 15%) was, in fact, the percentage that was actually 
in the data. So it’s a roundabout way of getting there, but I felt pretty good about it. 
 
 
Global Coordination in Modular Networks 
 

Michael North:  I’d like to introduce Daniel Diermeier, from Northwestern University, 
who’s going to discuss “Efficient System-wide Coordination in Scale-free Networks.” 

 
Daniel Diermeier:  Thank you. It’s a pleasure to be here. I’ve expanded the title a little. 

I’m going to talk about efficient coordination and information aggregation in complex networks. 
I’m also going to talk about some related results, but I want to spend one minute on a new 
initiative at Northwestern called Northwestern Institute on Complex Systems, or NICO (for the 
Velvet Underground fans). This aim of this university-wide initiative is to bring together in a unit 
— people from medical school, law school, biology, mathematics, political science, economics, 
and so forth. We already have a research group of 25 to 30 people. One result of the initiative is a 
conference with only outside speakers the last weekend in October. If you’re interested in 
attending, particularly if you’re local, let me know, and I’ll tell you where to register and so 
forth.  
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[Presentation] 
 
North:  That was a very interesting and thought-provoking paper. I thought it was 

particularly fascinating about the importance of noise in the system. That also shows up in areas 
of biological control, where noise is an important factor in keeping the biochemical networks 
functioning properly. I was interested to hear the correlation between rat nausea and voting. 
I thought it was interesting. I was also very interested to hear that some of the classic paradoxes 
or surprises from behavioral economics were actually caused by taking people out of context, 
essentially, and getting them — really tricking them — into using the wrong rules or using rules 
inappropriately, rather than actually being strictly wrong or foolish.  

 
I do have a question. You came up with a very provocative conclusion: simple rules in 

complex environments versus the converse. I was wondering about the generality of the 
conclusions. Certainly, I believe you in terms of the majority rule in the various networks that 
you talked about. Have you considered simple rules other than the majority rule in order to draw 
that conclusion? 

 
Diermeier:  Yes. So the right question is exactly that: what’s so special about the 

majority rule? Maybe there are others out there. What we are doing now is replicating the 
Crutchfield approach. We’re basically allowing genetic algorithms to run in complex networks, 
so we ask what type of rules emerge. That’s preliminary work; it’s not finished yet. But what we 
see is that the rules that emerge are awfully close to the majority rule. There’s an underlying 
rationale for why these rules would emerge in this context. Of course, the next step you want to 
think about is whether you can come up with a model where these things co-evolve. That’s a 
much bigger question that we can’t conceptualize at this point.  
 

Unidentified Speaker:  This is very stimulating. The third plane from the bottom is 
important to keep in mind — the link between social structure and cognitive processes. Without 
giving anything away, I couldn’t agree more. I think the experiment you’re about to see in the 
next presentation is … 

 
Diermeier:  That’s how we planned the whole conference: one paper is built on the last 

one. 
 
Unidentified Speaker:  I noticed that in one of the efficiency graphs — the one on the 

left — the asyntopic behavior began to level off at about 0.8. I mean, that’s three scaled 0.8. You 
didn’t even have a 1.0 there. Why is that? Is that because of the presence of noise? What’s 
causing that? 

 
Diermeier:  In this particular case, it’s like a simulated annealing idea. You let the 

system run, then you turn off the noise. In this particular case, it would go to 1, but that’s not 
always the case. For large enough “n”, you essentially go to 1— not really to 1 — the residual 
noise is driven by the fact that there’s underlying noise in the system — persistent noise with 
respect to the input. 

 
Robert Reynolds:  I’m Bob Reynolds of Wayne State University and the Museum of 

Anthropology, University of Michigan. You mentioned the majority rule. In artificial 
intelligence, majority rule can be viewed as a very simple, basic way of learning and 
generalizing. Typically when you learn, you learn with positive and negative examples. By 
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adding noise into your mix, you’re providing negative examples. In other words, you can’t learn 
a concept completely unless you have some of each, so by adding in the noise, you are 
inadvertently or systematically adding in the ability to focus in on and fine-tune your conceptual 
results. 

 
Diermeier:  That’s a very interesting idea. The way we conceptualized it is that basically, 

socially, we don’t get stuck. I’m not getting in trajectory that kind of self-enforcing in the wrong 
way. There’s enough variation in the system. 

 
Reynolds:  Basically, what you have is that the majority rule is generalizing, yet the 

noise is producing the ability to specialize by removing the situation. So specializing and 
generalizing together provide the flexibility to backtrack, to extend, and then to contract again. 

 
Diermeier:  That’s a very nice connection. 
 
Kostas Alexandridis:  Kostas Alexandridis from Purdue University. In looking at those 

dynamics, I couldn’t help thinking of the whole mainland/islands dynamics in native population 
research in ecology. It’s very impressive to see the same dynamics in noise. There, the existence 
of some dynamics — the introduction of in- and out-migration — increases the persistence. The 
question deals with whether you can think of the noise and its properties. I would agree that it 
indicates that there is some meaning behind the noise in terms of negative feedback mechanisms 
that get to the dynamics. 

 
Diermeier:  I’d love to hear more about that. That’s a connection I haven’t thought 

about. How does this connect to those dynamics? That’s a very interesting question. 
 
Scott Christley:  Scott Christley of the University of Notre Dame. I have a somewhat 

technical question. Do you define the notion of cooperation in the network as a global measure? 
When you’re saying that everything is cooperating, are you saying that all the networks are able 
to communicate and cooperate? To follow up on that, is a local node able to essentially 
determine what the result of the local coordination was, without having to resort to global 
information? 

 
Diermeier:  Yes. Technically, it’s really not cooperation. I think the cooperation 

metaphor may bring you in the wrong direction because it’s more like a classification issue or a 
coordination problem. Think about the following problems. Do I drive to the left or do I drive to 
the right? Do I eat with a fork or do I eat with chopsticks? The intuition is that if you go to 
Thailand, people in Thai restaurants always give you chopsticks. But there, they eat with a fork. 
So that’s something where there’s so much social pressure to ask for chopsticks in the United 
States. You come in and everybody is using chopsticks, so you think that you’ve got to use 
chopsticks. So we “miscoordinate” here. If there was enough connection, however, that wouldn’t 
happen. I guess that’s the way the model would be structured in this case, so it’s not a 
coordination issue. It’s really just about which state am I in, and I determine which state I am in 
— what I want to do — by looking at other people. That’s all. 

 
Now, these types of models can be generalized to do the type of stuff that you’re talking 

about. In this case, though, we’re not. It’s the simplest possible problem from a coordination 
point of view. In the structure that we have, you can also interpret it as an information 
aggregation problem. Because there’s information in the system, the majority …. Think about a 



545 

jury. Is the person guilty or innocent? Everyone has his own view, but at the end, we all want to 
agree, and we want to make sure we do the right thing. That’s what it is. You get a correct 
classification, if we all do the same thing, and the state is correct in the sense that it represents 
the initial majority state. 

 
William Lawless:  Bill Lawless. I liked your talk and have two quick questions. First, 

what do you mean by majority rule producing a certain amount of time to reach consensus? 
Second, what do you mean by linking together majority rule and consensus? 

 
Diermeier:  Consensus is just another word for what I just said. In this case, consensus 

means everybody does the same thing, and the state where everybody is ending up is the same 
state as the majority in the initial state — the more likely state or the more prominent state in the 
initial distribution, that’s what it means. 

 
Lawless:  I’ll show something somewhat similar [in my presentation]. I liked it because 

most people think majority rule is very “conflictual” and that you don’t actually reach consensus 
and that it leaves people divided. I think that’s a good result. The other thing is that you started 
off showing these networks, but you didn’t wind up with those pictures of networks. I wondered 
if you’d given any thought to using your model to reproduce those networks. 

 
Diermeier:  This is not a model of how networks form. This is a model of what happens 

if you live in a network like that. One could think about a model that would do both (that would 
have a model of how networks form and then how I interact with that), but that’s not what this is. 
It’s a dynamic on the network rather than a dynamic off the network. 

 
 

Mnemonic Structure and Sociality: A Computational Agent-based 
Simulation Model 
 

Michael North:  I’d like to introduce Claudio Cioffi-Revilla from George Mason 
University. He’ll be talking about “Group Mnemonic Structure and Sociality: A Computational 
Agent-based Simulation Model.” 

 
Claudio Cioffi-Revilla:  I want to thank the organizers of this event. I’m particularly 

fond of this meeting for several reasons. One is that it is medium scale in size. It is larger than a 
small workshop, but it has more of a workshop flavor than the large national and international 
meetings, although it has a fair amount of international participation. 

 
This presentation deals with work in progress. We think we have reached a stage where 

it’s “decent enough” to talk about it in public. I’m not going to give the same presentation next 
year. You will see that there are important aspects of this work that need further analysis and 
further model building. 

 
I also want to say that this is very much a team effort. The five co-authors of this paper 

will soon be joined by a sixth member. He’s not here because, in the last few weeks, he’s been 
doing a lot of work on features that I will explain in a moment. That would be one of our 
graduate students. I am a political scientist and a modeler by training. The second author, Sean 
Paus, is a graduate student in the Computer Science Department and the original designer of the 
model from which Wetlands came, which is called Floodland. Wetlands evolved from 
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Floodland. Sean Luke is my Computer Science Department faculty colleague. Last year, he and 
I brought the first presentation of the MASON [Multi-agent Simulator of Neighborhoods] 
simulator to this meeting in the workshop session [see page 45 of the Agent 2003 proceedings]. 
Jim Olds is the director of the Krasnow Institute for Advanced Study. Jim is in this project 
because he is a neuroscientist. His specialty is the human brain, in particular, the hippocampus 
and neural processes. You’ll see why he is involved with this project. Finally, Jason Thomas is 
a recent computer science graduate who’s a great Java hacker, and he joined the team as well. So 
you have social science, neuroscience, and computer science in a collaborative team. I think it’s 
fair to say that none of us individually could have pulled this through, and that’s the way it’s 
going to continue. One more thing is that this collaboration among the Center for Social 
Complexity, Evolutionary Computation Lab, and Krasnow Institute is really pretty seamless. We 
don’t have any major institutional obstacles in carrying out this collaboration because the 
principal people in these groups are all intimately involved with the project. We think that it’s 
a fairly stable collaboration for the foreseeable future, and we’re very happy about it. 

 
[Presentation] 

 
North:  Thank you. I like the simple structure of your model in the sense that it’s really 

clear and expressive. And the overall problem was related to real-world issues, but at the same 
time was abstract, and yet you can draw some conclusions. I have questions on a couple of 
levels. First, I’m happy you say “theoretical implications” rather than “conclusions” or 
something like that because clearly these issues that are being dealt with are huge, and there are 
many variables that you’d need to investigate in order to list these as conclusions. I’m glad I 
learned a new word today: sociophile.  

 
The first question basically has to do with intensive versus extensive memory. Another 

way to think about that has to do with network effects. Clearly, we’re talking about a social 
system, so network effects are a critical thing. What have you done to vary or have network 
structures — these types of things? My second question has to do with negative experiences, and 
more generally, the encoding of engrams. You didn’t have a chance to talk much about the 
engram and the details of what the encodings are. I’m particularly interested in whether you dealt 
with things like negative experiences that people have, rather than just group-forming 
experiences. Finally, I’m interested to hear more about any variations that were used for the 
other underlying behaviors because clearly, in this model at least, contact and these types of 
things are an important part of the memory process. I think that means that the foraging 
behaviors themselves might be an important thing to explore. Have you had a chance to vary, or 
will you consider varying, the motion essentially across the surface, which drives at least some 
of the interactions? 

 
Cioffi-Revilla:  With regard to your first question about intensive versus extensive 

memory, I have not given a great deal of thought to that. I’d like to save that question and 
discuss it. I think that Jim Olds might have some thoughts about it. Do you mean that in the 
sense of diffused memory in the group? 

 
North:  Right. I mean memory in the social structure itself versus …agents for these 

types of things. Since this is ongoing research, you can’t be expected to answer every question. I 
was just curious. 

 
Cioffi-Revilla:  I think that all of this memory is probably intensive. 
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North:  That’s what I had perceived from the paper and your talk. Certainly, I was not 
criticizing that as being a bad thing, but when we draw conclusions about memory capacity in 
social systems, we might say that we’re dealing with something else. 

 
Cioffi-Revilla:  That’s another level. 
 
North:  Yes, we’re dealing with intensive memory versus extensive, although, again, it’s 

important since you said implications here, that’s a great escape. 
 
Cioffi-Revilla:  I like that idea because, well, there are individuals; those are not 

expressed here. Then there are groups made up of individuals. That’s exactly what is expressed 
in this model. What you’re saying is that groups of the same culture form a community. 

 
North:  That’s right. 
 
Cioffi-Revilla:  And once they form that community, what happens to that memory? 

That is not expressed here either, and I think — is that the extensive one? 
 
North:  That’s part of it. 
 
Cioffi-Revilla:  It’s a good point, and we should at least say something about that, even if 

we don’t model it. With regard to the second question on negative experiences, in this model, so 
far, there are none. 

 
North:  It’s a great world. I’d like to move there. 
 
Cioffi-Revilla:  It’s simple in many ways. All of the information that the groups 

exchange is perfectly and totally believable. Two ways of exchanging information have been 
suggested in our group discussions. One is to make the passing of information probabilistic and 
not deterministic, as it is here. There’s another issue, too — that all of these groups are at the 
same level of credibility. We could do some experiments to see what happens when you identify 
one or more of the groups as having greater credibility than the others. In fact, some groups are 
known for being of the same culture but not reliable, so then the question of negative experiences 
will come up because sometimes we’ll be misled to look for food in the wrong place. 

 
Was the third question about how contacts occur and how that may affect the motion of 

the groups in the landscape? 
 
North:  Right — or even changing the motion rules. 
 
Cioffi-Revilla:  It’s a very complicated issue, and we’re not totally clear on it because the 

food and moisture gradients induce dynamics on the landscape that are obviously nonlinear 
throughout that landscape. We’ve got to be sure that the motion we observe is truly due to real 
effects of those dynamics, absent any bugs that may exist in the code. We’re almost sure, but we 
still need to do a couple more things to it. 

 
North:  I like your experimental approach, and the description was quite clear as well. 
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Robert Reynolds:  I’m Bob Reynolds of Wayne State University and University of 
Michigan Museum of Anthropology. I’d like to expand on what Mike was saying. Do you have 
basic competition and cooperation? You have the ability to do both. By adjusting the variables, 
you’re effectively going to be adding — stressing — one versus the other. It would be interesting 
to do a sensitivity analysis and see whether these patterns emerge as you emphasize cooperation 
over competition and vice versa. You can do that, for example, by making the resources scarce. 
You’re going to have more competition; make them less cooperative, etc. It would be interesting 
to look at your sensitivity analysis in terms of these general issues of competition and 
cooperation. 

 
Cioffi-Revilla:  Thanks. That’s a good suggestion. As I said, right now they don’t have 

any bad experiences because, for example, they don’t lie. Also, if two groups of a different 
culture come into contact, all that happens is that they don’t pass information. They don’t attack 
each other, and there’s no conflict. 

 
Unidentified Speaker:  Are the resources renewable? 
 
Cioffi-Revilla:  They are. That’s why it’s raining all the time — that regrows the food. 

There’s not a food problem in this world. The problem is that they need to get away from it. 
They can’t feed all the time because of the health problems involved with getting too wet. But 
there’s no conflict. We want to introduce that in a controlled way, so we have full understanding 
of its experimental effects. 

 
Luis Antunes:  I am Luis Antunes from the University of Lisbon. I liked your 

presentation. Your model seems similar to the one I presented in that there are two groups; there 
are pressures to compete; there are pressures to cooperate; there’s food; and, in a way, there’s 
a Sugarscape model. The thing that worries me about both my work and yours is that there seems 
to be a lack of content in the dynamics of the decision theoretic problems inside the agents’ 
heads. I mean that at this stage of my work, if I took out sex and put in anything else, I would get 
the same results. I think it’s very important that in the feedback in the adaptation process, you 
have some kind of content — something that informs us about sex (in my case) and memory (in 
your case). I think that may be lacking in both of our approaches as they are now. 

 
Cioffi-Revilla:  It’s a good suggestion. I missed your presentation, but it is true. In a 

certain sense, these two different cultures in the groups are not very consequential, except for the 
fact that they control the flow of information. Other than that, culture does nothing. But that’s 
done on purpose because we wanted to ensure that it did not also automatically induce, for 
example, sociality, which it very well could. You could put in an initial rule. By the way, if 
groups are of the same culture, you try to get close to similar groups as you head for shelter. But 
that rule is missing; it’s not there. Nonetheless, the social — the cultural — aggregation seems to 
be clustering — to be emerging anyway. 
 
 
Consensus versus Truth Seeking: Modeling Perception versus Action 
 

Michael North:  I would like to introduce Bill Lawless who is going to discuss 
“Consensus versus Truth Seeking: The Quantum Perturbation Model.” Bill has provided 
handouts for the presentation, so I’ll distribute those. 
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William Lawless:  First, I would like to express my thanks to my co-author, Jorge Louça 
from Lisbon, who is at ISCTE, a business university, and Margo Bergman, at Penn State. I also 
want to thank James Ballas, my colleague at the Naval Research Laboratory, for many years of 
funding. 

 
[Presentation] 

 
North:  I’d like to thank the speaker and then offer a couple of fast comments. The first 

is that quantum theory is obviously the best-tested physical theory in human history. As a 
powerful hammer, though, it’s often applied to drive many nails in many places. That’s always a 
concern. I happen to like quantum formalisms, but there’s always a question of why quantum 
theory always comes up here. That’s an important question. Let me get to the question in just one 
second. 

 
Things I like about this are the use of fuzzy or nondiscrete decision making (i.e., decision 

making on some sort of continuous space rather than discrete space). I also liked the scaling 
between individual- and group-level decision making. You have a coherent set of rules that do 
not trivially equate the two, so the individual decision making could behave differently than 
group decision making, but there’s a scaling between those I thought was nice. I would note that 
any nonlinear voting function does, in fact, have the property of group behavior that’s different 
than individual behavior. In fact, we’ve seen models today that use nonlinear voting functions. 
I mention that as background, so there are quite a few computational models and things that, at 
least in my opinion, have group consensus or group outcomes that are different than individual 
outcomes. 

 
I think that, in general, however, my simple question is that many fuzzy formalisms, 

fuzzy logic, nonmonotonic reasoning, and many others allow you to have discrete scaling. Even 
though the quantum formalism is very powerful, it was obviously developed for a very different 
area. I wondered first why the quantum formalism is used more generally because it is often 
applied perhaps outside its normal range of utility. Also, you mentioned a couple of specific 
Hamiltonians, which are the energy functions for which you solved quantum systems. I’m 
someone who understood the nuclear stuff. But I’m wondering why you mentioned those 
specific Hamiltonians beyond just the fact that the shape kind of matches an approach and 
repulsion. In particular, I’ve seen this often with quantum theory. We know how to solve a small 
number of Hamiltonians in some sense, particularly one-dimensional Hamiltonians, and it’s 
interesting that when people first attack a problem with a quantum tool, I almost always see 
those. I know it’s going to be one of five Hamiltonians that I know people can solve. I’m just 
curious why those showed up. 

 
Lawless:  What that suggests is an interdependence between the uncertainty in the plan 

and the uncertainty in the execution. 
 
North:  Oh, no. For the Hamiltonian you were saying that you chose them. 
 
Lawless:  Right. Well, I was trying to take them one at a time, and this interdependence 

is shown in the result. If you drive your uncertainty and if you come up with a very good plan, 
which, for instance, Jack Welch said you should never do, don’t worry about the plan, worry 
about the execution. There’s a trade-off, and that’s shown here. 
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The Hamiltonian is a way to show how much energy is being expended in the interaction. 
It suggests, for example, that the newer the individual coming into the group is, that individual is 
first more likely to be put at the bottom because there’s less energy expended there for him, and 
second is the more expensive individual. It’s probably someone at the very top, and those at the 
top have a greater influence from the beginning. So younger people are usually put in at the 
bottom of the organization, and this Hamiltonian models that very nicely. It’s an idea I got from 
David [Sallach]. 

 
North:  Very good. Thanks. We have time for a few questions. 
 
Chick Macal:  Chick Macal, from Argonne. I was curious about the Hamiltonian 

because I wanted to understand what the implications are. My past experience with Hamiltonians 
has been that they suggest some globally available quantity that is potentially maximizable or 
minimizable. Is that an implication of a conservative system, perhaps? But yet you’re bringing in 
Lyapanov, suggesting it’s a dissipative system. 

 
Lawless:  Yes. 
 
Macal:  So could you just briefly discuss that? 
 
Lawless:  It’s not a conservative system, but a nonconservative one. Energy is necessary 

to come in and keep the organization going. In addition to that, could you just move that aside 
for a second? The group has a certain expenditure of energy. How does it organize itself? It 
seems to organize itself to reach an energy minimum, and that’s the point. 

 
Macal:  Exactly. So in terms of modeling social groups or individuals, there is some 

possibility of not directly summing their individualities into group behavior but yet deriving an 
equivalent thing — a Hamiltonian, in effect — which is as if that was being maximized or 
minimized by the groups or individuals. Is that a correct interpretation? 

 
Lawless:  Right. In addition, though, and what’s surprising is that the group is actually 

going to be at a lower level of energy than if you disaggregated the group. If, for example, you 
removed from the group all of the employees who work for IBM, they would be at a higher 
energy level collectively (i.e., aggregatedly, as an aggregation) than they would if you put them 
back into IBM. And why is that? It’s an important question, but it’s not one that we’ve really 
addressed yet. 

 
Macal:  Well, is that an implication of some assumption you made and put in the model, 

by which you may have gotten that result out? Or is that some new aspect that falls out of the 
model, not necessarily connected with any of the basic assumptions? 

 
Lawless:  I think that’s a wonderful question. One of the difficulties that I have in 

dealing with it is that it suggests that there’s an energy optimum for an organization. I haven’t 
spent a lot of time trying to find what organizations are at an energy optimum because of this 
confounding element. Most humans, as individuals, are or should be at optimums as well. But 
the average American is, for example, I think 30% obese, 60% overweight. Well, it’s a profound 
issue when you take that same sort of information into organizations. It seems that if 
organizations can rapidly zoom past an optimum point, they can start creating a great deal of 
entropy. You can see this in the decisions that organizations make. For example, Enron was a 



551 

world-class organization at the top of the pyramid (number seven, I think). Yet, their 
management made horrific decisions on the money that was coming in on new investments. It 
was almost random, which is very surprising. So I don’t have an answer for you. I think it’s a 
very good question. I’m very interested in it. I don’t know how to attack it because you need 
some sort of a baseline, and I don’t know where that is. 

 
Macal:  I think it’s actually worse than random, based on most of that. 
 
Lawless:  Yes. 
 
North:  We have time for one last question. 
 
Nick Gotts:  Nick Gotts, Macaulay Institute, Scotland. My question is actually on the 

comment, which goes right on from what Chick Macal was saying. What do you mean by saying 
that if you disaggregated IBM, the net energy would be higher? What do you mean by energy in 
that respect? And before you answer that, let me say that this talk was either completely over my 
head or complete nonsense. I don’t know which; I’m not a physicist. But I think if you’re going 
to address an audience that includes nonphysicists, you cannot put that amount in and expect 
people to follow it. I certainly didn’t. 

 
Lawless:  Well, that’s a valid concern. It’s one that I think about all the time, but I’m not 

so much driven by it. This is very complex, and I apologize for that. But I think, as Einstein said, 
we should always be as simple as possible to explain any phenomena, but no simpler. 

 
Unidentified Speaker:  Quantum theory is not simple. 
 
Lawless:  I don’t think that I’ve gotten far enough into this yet to understand just exactly 

how complex it is. It seems even more difficult for me, since I’m not working for an audience. 
I appreciate your comment, and maybe I should be working for an audience, but I don’t have an 
audience in mind. What I’m trying to do is to better understand two phenomena that I’ve worked 
with for a number of years, and that’s how the Department of Energy, which is one of the world-
class organizations and has some of the top scientists in the world, can make horrendous 
mistakes. Take, for example, the nuclear waste cleanup in the 1980s, which I did a lot to bring 
into the public view. I still work with the Department of Energy today, so I wanted to understand 
how organizations can make these kinds of mistakes. I also wanted to understand how you can 
reformulate and revise organizations. 

 
Gotts:  Could you briefly address the specific question I had? What did you mean by 

saying that if you disaggregated IBM, the sum of the energy of the individuals would be greater? 
 
Lawless:  You had two parts to your question, and I addressed the second part first. I’m 

sorry. Paul Ehrlich reminds us that one of the driving motivations is not reproduction, but 
gathering energy. To survive, you need energy, and collectively when we work together, we can 
expend less energy, I think, in gaining those sources of energy. I think that that’s what’s 
happening within an organization. An organization seems to be able to leverage the energy 
expenditures that individuals make to gain new sources of energy. 

 
Lawless:  And I also want to say that I think the Department of Energy has done a 

wonderful job in cleaning up the problems that it created back in the 1980s. 
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SOCIAL MECHANISMS AND SOCIAL DYNAMICS* 
 

P. HEDSTROM,† Nuffield College, University of Oxford, Oxford, UK 
 
 

ABSTRACT 
 

This paper focuses on how a combination of mechanism-based theories of action and 
interaction and of agent-based computational models makes it possible to analyze, in a 
theoretically grounded fashion, how individual desires, beliefs, and actions are the 
product as well as the producer of large-scale social patterns. In addition to this 
metatheoretical purpose, some results are presented that emphasize the nonlinearities that 
characterize many social processes. Small changes in the structure of social interaction 
are shown to give rise to large-scale change at the social level.  
 
Keywords: Mechanisms, agent-based modeling, sociology, intentional explanations, 
actions, social interactions, DBO theory 

 
 

INTRODUCTION 
 

This paper focuses on the relationship between agent-based modeling and the so-called 
social-mechanisms approach to which I have been a contributor (see, e.g., Hedström and 
Swedberg, 1998a). The paper is organized into four principal sections: 
 

1. A presentation of the guiding ideas of the mechanisms approach, 
 

2. Discussion of various mechanisms of action and interaction, 
 

3. Discussion of the importance of agent-based modeling for linking individual-
level mechanisms to social outcomes, and 

 
4. Concluding remarks.  

 
 

GUIDING IDEAS OF THE MECHANISMS APPROACH 
 

One way of characterizing the distinguishing features of the mechanism approach is to 
compare it with other explanatory approaches (see Table 1). The most important alternatives to 
the mechanism approach are the so-called covering-law approach of Hempel and other 
philosophers (Hempel, 1965), and the statistical approach of many quantitatively oriented social 
scientists (e.g., Lazarsfeld, 1995; King et al., 1994; Salmon, 1971). 

                                                 
* This article draws extensively on the author’s book Dissecting the Social: On the Principles of Analytical 

Sociology (Cambridge University Press, 2005). This research has in part been financed with a grant from the 
NEST/Path Finder initiative of the European Community (MMCOMNET). 

†  Corresponding author address: Peter Hedstrom, Nuffield College, Oxford University, New Road, Oxford OX1 
1NF, United Kingdom; e-mail: peter.hedstrom@nuffield.oxford.ac.uk. 
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Table 1  Main types of explanations 

Characteristic Covering-law Explanations Statistical Explanations 
 

Mechanism Explanations 
    
Explanatory 
principle 

To subsume under a causal law To identify statistically 
relevant factors 

To specify a social 
mechanism 

    
Key explanatory 
factors, entities, 
and/or activities  
 

No restrictions, except that the 
factor must exhibit a law-like 
relation to the event to be 
explained 

No restrictions, except 
that the factor must be 
statistically relevant for 
the event to be explained 

Action-relevant entities 
and activities and the way 
in which they are linked to 
one another 

 
 

While the covering-law approach takes the position that an acceptable explanation 
consists of subsuming the event to be explained under a general causal law, the statistical 
approach, explicitly or implicitly, sets an equal sign between explanation and predictive 
accuracy. A variable is said to be explanatory if it is statistically relevant for the event to be 
explained. In contrast to these approaches, the core idea behind the mechanism approach is that 
we deductively explain a social phenomenon by referring to the social mechanism by which such 
phenomena are regularly brought about. A mechanism, as here defined, consists of a 
constellation of entities and activities that are organized in such a way that they regularly bring 
about a particular type of phenomena (see Hedström and Swedberg, 1998b; Machamer et al., 
2000). We explain an observed phenomenon by referring to the social mechanism by which such 
phenomena are regularly brought about. 
 

From the viewpoint of the social sciences, Hempel’s approach is of limited relevance 
because, as far as we know, there are no strict Hempelian social laws, and there are good reasons 
to suspect that such laws do not exist. The statistical approach, as practiced by most quantitative 
sociologists, is wanting for another reason. As argued by Boudon (1979), Coleman (1986), 
Goldthorpe (2000), and others, statistical analyses summarize patterns in data, they do not 
explain them. From the mechanism perspective, correlations and constant conjunctions do not 
explain but instead are observational phenomena that need to be explained by reference to the 
mechanisms that brought them into existence. 
 
 

MECHANISMS OF ACTION AND INTERACTION 
 

In sociology, the basic entities and activities of a mechanism always tend to be actors and 
their actions. Through their actions, actors make society “tick,” and without their actions, social 
processes would come to a halt. Theories of action are therefore of fundamental importance for 
explanatory sociological theories, but how should we go about conceptualizing action and 
interaction? In my view, the most attractive alternative is the so-called “DBO” theory. According 
to this theory, desires (D), beliefs (B), and opportunities (O) are the primary theoretical terms 
upon which the analysis of action and interaction is based. That is to say, the desires, beliefs, and 
opportunities of an actor are seen as the proximate causes of the actor’s action (see Figure 1). 
 

We can understand why actors do what they do if we perceive of their behavior as being 
endowed with meaning; that is, that there is an intention explaining why they do what they do  
 



559 

 

FIGURE 1  Core components of the DBO theory 
 
 

(Elster, 1983a; von Wright, 1971). As seen in Figure 1, these intentions, in turn, can be 
understood in terms of the desires, beliefs, and opportunities of the actor. A desire here is 
defined as a wish or want for something. A belief is defined as a proposition about the world held 
to be true. And opportunities, as the term is used here, constitutes the “menu” of action 
alternatives available to the actor; that is, the actual set of action alternatives that exist 
independently of the actor’s beliefs about them (for discussions of various aspects of the DBO 
theory, see Hahn, 1973; Davidson, 1980; Elster, 1989; Lewis, 1994).  

 
Beliefs and desires thus are mental events that can be said to cause an action in the sense 

of providing reasons for the action. A particular combination of desires and beliefs constitutes a 
“compelling reason” for performing an action. They have a motivational force that allows us to 
understand and, in this respect, explain the action (von Wright, 1989).  
 

To explain why we observe what we observe, we must seek to understand how beliefs, 
desires, and opportunities are formed in interactions with others. Simply assuming that beliefs 
and desires are fixed and unaffected by the actions of others may be plausible in some very 
specific situations, but it would be an untenable assumption in the general case. Therefore, we 
must problematize and try to specify the mechanisms through which the actions of some actors 
may come to influence the beliefs, desires, opportunities, and actions of others. 
 

Social-interaction processes can be conceptualized in numerous ways, but from the 
perspective of the DBO theory, it appears essential to distinguish between three broad types of 
social interactions: (1) desire-mediated; (2) belief-mediated; and (3) opportunity-mediated. In the 
dyadic case, we can describe the interaction between two actors as illustrated in Figure 2.1 
 

To the extent that the action of one actor, here referred to as Actor i, influences the action 
of another, Actor j, this influence must be mediated via the action opportunities or mental states 
of Actor j. In terms of the DBO theory, the action (or behavior) of Actor i can influence the 
desires, the beliefs, or the opportunities of Actor j and thereby the actions of j.2  
 
 

                                                 
1 To simplify the presentation, I have removed the “intention box” from the figure, but it is still assumed that 

intentions intervene between desires, beliefs, and opportunities, on the one hand, and actions, on the other. 

2 It is important to note that in many situations, “Actor i” may not be a single actor, but rather a small group of 
actors with whom j interacts, or a “generalized other” representing typical actions as perceived by Actor j. 

Beliefs of actor i   

Desires of actor i  

Opportunities of actor i 

Intention of 
actor i 

Action of 
actor i 
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Action or behavior of 
actor i 

Beliefs of 
actor j 

Desires of 
actor j 

Opportunities 
of actor j 

Action of 
actor j 

 

FIGURE 2  Dyadic interaction between Actor i and Actor j according 
to the DBO theory 

 
 
 By using the basic concepts of the DBO theory — desires, beliefs, opportunities, actions, 
and relations — more complex, “molecular” mechanisms can be defined. These molecular 
mechanisms differ from one another in terms of how these basic entities and activities are linked 
to one another. Some examples can be seen in Figure 3. The letters D, B, O, and A stand for 
desires, beliefs, opportunities, and actions, and the letters i, j, and k identify different actors. 

 
The first pattern of entities and activities exemplifies wishful thinking. As the term is used 

here, wishful thinking denotes a causal connection from an actor’s desires to his/her beliefs that 
makes the actor believe what (s)he desires to be the case (Davidson, 1980). The second type of 
mechanism, the sour-grapes syndrome, exemplifies the opposite causal direction. That is to say, 
it is a causal connection from an actor’s beliefs to his/her desires, which makes the actor desire 
only what (s)he believes (s)he can get (Elster, 1983b).  
 

The third type of mechanism, dissonance-driven desire formation, is a case where the 
actions of others lead to a change in the focal actor’s desires and thereby to a change in his/her 
actions. A classic example is Festinger’s (1957) notion of cognitive dissonance. For example, if 
I desire p but the people I interact with do not, this may cause strong dissonance, particularly if 
the desire is important to me and I value the relationship with these people. One way to eliminate 
the dissonance would be to persuade them of the value of p. Another, and often easier, way to 
reduce the dissonance would be to ‘persuade’ oneself that p after all was not as desirable as 
initially thought.  
 

The fourth mechanism, rational-imitation, is the case where one actor’s action influences 
the beliefs and subsequent actions of others. For example, the number of guests at a restaurant is 
likely to influence other individuals’ choice of restaurant because the number of guests is a 
signal about the quality of the restaurant likely to influence the beliefs and actions of others 
(Hedström, 1998). 
 

The fifth mechanism, vacancy chains, is a pattern where actions of some create new 
opportunities and changes in the actions of others. A classic example is White’s (1970) analysis 
of the vacancy-driven mobility pattern in U.S. clergy. An important feature of job mobility  
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Entities and 

Activities 
 

Structural Pattern 
 

Type of Mechanism 
Mental states, 
opportunities, 
and actions of a 
single individual 
 

  
Wishful thinking 
(see Davidson, 1980) 

 
– " – 
 

  
Sour-grapes syndrome 
(see Elster, 1983b) 

Mental states, 
opportunities, 
and actions of 
two or more 
individuals 
 

  
Dissonance-driven 
desire formation 
(see Festinger 1957) 

 
– " – 
 
 

  
Rational-imitation 
(see Hedström, 1998) 

 
– " – 
 
 
 

  
Vacancy chain 
(see White, 1970) 
 

 
– " – 
 
 
 

  
Self-fulfilling prophecy 
(see Merton, 1968)  
 

 
– " – 
 
 
 

  
The “Old Regime” 
pattern (see 
Tocqueville, 1998) 

FIGURE 3  Examples of some action- and interaction-related mechanisms 
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within organizations, captured in White’s analysis, is that individuals’ opportunities are 
constrained by the number of vacant jobs. Vacancies are created either when individuals leave 
their organizations or when new positions are created. When an individual fills a vacancy, a new 
vacancy is created in that person’s old job, and this represents a mobility opportunity to others. 
One of these people will get the job, and the vacancy will disappear, but a new vacancy has now 
been created in this person’s old job. Individuals and vacancies thus move in different directions, 
and the mobility process is governed by these chains of opportunity. 
 
 The sixth mechanism, the self-fulfilling prophecy, is a sequential concatenation of several 
rational-imitation mechanisms. Merton (1968) focused on the case in which an initially false 
belief evokes behavior that eventually makes the false belief come true. The example he used is a 
run on a bank. Once a rumor of insolvency gets started, some depositors are likely to withdraw 
their savings, acting on the principle that it is better to be safe than sorry. Their withdrawals 
strengthen the beliefs of others that the bank is in financial difficulties, partly because the 
withdrawals may actually hurt the financial standing of the bank, but more importantly because 
the act of withdrawal in itself signals to others that something might be wrong with the bank. 
This produces even more withdrawals, which further strengthens the belief, and so on. By this 
mechanism, even an initially sound bank may go bankrupt if enough depositors withdraw their 
money in the (initially) false belief that the bank is insolvent.  
 
 The seventh and final mechanism in Figure 3, the “Old Regime” pattern, is a sequential 
concatenation of rational-imitation and dissonance-driven desire-formation mechanisms 
(D’i → Ai → Bj → Aj → Di → Ai where D’i ≠ Di). For opportunistic reasons, one actor decides 
to do something (s)he does not genuinely desire. The action is observed by others, and the 
rational-imitation mechanism makes them follow suit. Eventually this feeds back on the first 
actor. The actions of others produce dissonance and a change in the desires of the first actor, 
which makes him or her genuinely desire what (s)he initially only pretended to desire. A 
mechanism like this was used by Tocqueville (1998:155) to explain the rapid secularization that 
took place in France at the end of the eighteenth century: 
 

Those who retained their belief in the doctrines of the Church became afraid of 
being alone in their allegiance and, dreading isolation more than the stigma of 
heresy, professed to share the sentiment of the majority. So what was in reality the 
opinion of only a part (though a large one) of the nation came to be regarded as 
the will of all and for this reason seemed irresistible even to those who had given 
it this false appearance.  

 
Why, then, is it so important to specify the mechanisms that are supposed to have 

generated observed outcomes? From the perspective of sociological theory, one important reason 
for insisting on a detailed specification of mechanisms is that it tends to produce precise and 
intelligible explanations without glaring black boxes (Boudon, 1998). Another important reason 
is that a focus on mechanisms tends to reduce theoretical fragmentation. For example, we may 
have numerous different theories (of crime, social movements, or whatnot), that are all based on 
the same set of mechanisms of action and interaction. Focusing on the mechanisms as such 
avoids unnecessary proliferation of theoretical concepts and may help bring out structural 
similarities between seemingly disparate processes. Finally, it is the knowledge that the type of 
outcome we seek to explain regularly is brought about by the entities and activities referred to in 
the mechanism that gives us reason to believe that there indeed is a genuine causal relationship 
between a proposed cause and its effect, and not simply a spurious correlation.  
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ANALYZING THE LINK BETWEEN THE 
INDIVIDUAL AND THE SOCIAL 

 
To understand why actors do what they do is not sufficient. We must also address the 

question of why, acting as they do, they bring about the social outcomes they do. Sociology is 
not a discipline concerned with explaining the actions of single individuals. The focus on actions 
is merely an intermediate step in an explanatory strategy that seeks to understand change at a 
social level.  
 

As the term is used here, “social” refers to collective properties that are not definable for 
a single member of the collectivity (see Carlsson, 1968). Important examples of such phenomena 
include: 
 

1. Typical actions, beliefs, desires, etc., among the members of the collectivity; 
 

2. Distributions and aggregate patterns such as spatial distributions and 
inequalities;  

 
3. Topologies of networks that describe relationships among the members of the 

collectivity; and 
 

4. Informal rules or social norms that constrain the actions of the members of the 
collectivity.  

 
Social outcomes like these are emergent phenomena, and with emergent phenomena I am 

not referring to any mystic holistic entities with their own causal powers, but simply to social 
phenomena or social patterns that are brought about by the actions of interacting individuals. 
Social outcomes, like other emergent phenomena, are difficult to anticipate because the outcome 
depends to a high degree on how the individual parts are interrelated (see Holland, 1998). Small 
and seemingly unimportant changes in the way in which actors are interrelated can have 
profound consequences for the social outcomes that are likely to emerge. This is because the 
links between the actors influence the extent to which a belief, desire, or social practice spreads 
through a population (see Watts and Strogatz, 1998, for some striking examples). For this reason, 
social outcomes cannot simply be “read off” from the properties of the individuals that generate 
them. To explain the social phenomena we observe, we need to develop generative models that 
show how large numbers of actors, in interaction with one another over time, bring about 
different types of social outcomes. 
 

Because of its flexibility, agent-based modeling is an important tool for analyzing these 
links between the individual and the social. Unlike traditional mathematical models, agent-based 
models do not force the analyst to base the analysis on knowingly false assumptions. What, then, 
would an agent-based model founded on the DBO theory look like? As discussed above, the 
cause of an action can be seen as a constellation of desires, beliefs, and opportunities in the light 
of which the action appears reasonable. If we simplify the notion of desires and beliefs in such a 
way that they can either be said to be or not to be at hand, the possible patterns of desires, 
beliefs, opportunities, and actions can be described as in Table 2.  
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TABLE 2  DBO-patterns and associated 
courses of action 

 
Pattern Desire Belief Opportunity Action 

     
(1) 1 1 1 1 
(2) 0 1 1 0 
(3) 1 0 1 0 
(4) 0 0 1 0 
(5) 1 1 0 0 
(6) 0 1 0 0 
(7) 1 0 0 0 
(8) 0 0 0 0 

 
 
An entry of 1 here indicates the presence of the relevant desire, belief, opportunity, or 

action, and an entry of 0 indicates its absence. The third pattern (3), for instance, represents a 
situation where an actor desires a certain outcome and has the opportunity to perform the 
relevant action, but does not believe that the action will bring about the desired outcome, and, 
therefore, decides not act. 
 

Of the eight possible DBO-patterns shown in Table 2, only the first (1) will bring about 
an action, because only in this situation does the actor have the opportunity to act in a way that 
(s)he believes will bring about the desired outcome. 
 

To simplify the presentation, I will focus exclusively on the first four patterns in the 
table. It is assumed that all actors have the opportunity to act, and the agent-based simulation can 
be characterized in the following way. It focuses on the desires, beliefs, and actions of 
2,500 actors that are situated on a lattice with 50 rows and 50 columns. At each point in time, the 
relevant properties of an actor can be described in terms of a desire-belief-action triplet, 
<D,B,A>. If the first entry of the triplet is equal to one, the actor is said to have a “positive” 
desire, and if the second entry is equal to one the actor is said to have a “positive” belief.3 If 
these entries are both equal to one, then the third entry will also become equal to one because 
actors act when they believe that the action will bring about the desired outcome.4 
 

We start from a “state of nature” in which the actors’ beliefs and desires exhibit no social 
patterning whatsoever — they are entirely random. A typical initial pattern of desires, beliefs, 
and actions then looks like the one shown in Figure 4.  
 

                                                 
3 A positive belief thus means that the actor believes that the action is a good, efficient, and/or appropriate means 

of attaining the desired result. 

4 As I show elsewhere (Hedström, 2005), this modelling framework also can be used for assessing the social 
importance of the intra-individual mechanisms discussed above. For example, wishful thinking means that a 
<1,0,0> triplet will always be transformed into a <1,1,0> triplet, and since actors act when they believe that an 
action will bring about a desired outcome, this pattern will be further transformed into a <1,1,1> triplet. The 
sour-grapes syndrome, similarly implies that a <1,0,0> pattern will always be transformed into a <0,0,0> 
pattern. 
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FIGURE 4  Initial patterns of beliefs, desires, and 
actions in a population of 2,500 actors (Each cell 
describes the current state of an actor’s DBA-triplet.) 

 
 

Squares identify actors with positive desires. Circles identify actors with positive beliefs. 
Black dots identify actors with positive desires and positive beliefs; they are the ones who act 
because they believe that the action will bring about the desired outcome. The white areas of the 
graph consist of actors who neither believe in the efficacy of the action nor desire the result, and 
therefore do not act. In the figure, 40% of the actors have positive desires, 40% have positive 
beliefs, and about 16% act because they are the ones who have positive beliefs and desires. 

 
A social structure is introduced into the analysis by assuming that each actor directly 

interacts with the four neighbors described in Figure 5. If a majority of these four neighbors have 
a different belief than the focal actor, the focal actor’s belief will change. Otherwise, it will 
remain the same. The desires of the actors evolve according to the same logic. Thus, there will be 
two parallel contagion processes at work — one operating on the beliefs of the actors and the 
other on their desires. Actions are the joint outcome of these two processes.5 
 

Although the point of departure is an entirely random state-of-nature pattern, the 
interaction process quickly leads to a lock-in on a highly clustered and segregated pattern. 
Figure 6 is a typical example of the type of pattern that emerges; in this case, the actors have 
interacted for 40 rounds. 
 

Running a large number of simulations like these confirms that this pattern is a typical 
one in the sense that it contains islands of desires and islands of beliefs that occasionally overlap 
and then lead to actions. Since there are no intrinsic differences between the actors located in  
 

                                                 
5  The lattice used here is a so-called torus, that is, a lattice that is wrapped around itself in such a way that actors 

positioned at the borders of the lattice have neighbors on the other side of the lattice. Hence, all actors have the 
same number of neighbors. It is assumed that all actors update their desires and beliefs at the same time. 
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FIGURE 5  Structure of 
social interaction between 
Ego (E) and Alters (An) 
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FIGURE 6  Typical patterns of beliefs, desires, and 
actions in a population of 2,500 actors who socially 
interact with four neighbors 

 
 
different regions of this social space, this example shows that social-interaction processes, in and 
of themselves, can explain social differentiation; that is to say, the tendency of different groups 
to spontaneously organize themselves into social clusters with different beliefs, desires, and/or 
actions. 
 

Emergent properties to a large extent depend on how the individual parts (the actors) are 
interrelated. If, for example, the structure of social interaction is changed in such a way that one 
of the four neighbors is replaced by a randomly selected actor, the social pattern that emerges 
then typically looks like that illustrated in Figure 7. The effect of the change in the structure of 
interaction is rather striking. In the previous simulation, a large number of actors ended up with  
 

A4 

A1 

E A3 A2 
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FIGURE 7  Typical patterns of beliefs, desires, and 
actions in a population of 2,500 actors who interact 
socially with three neighbors and one randomly 
selected actor 

 
 
positive beliefs and/or desires, and about 1 actor out of 20 acted. In this simulation, however, 
only a few actors end up with positive beliefs or desires, and no one acts.6 These differences in 
social outcomes are exclusively the result of the change in the structure of interaction, since 
everything else is held constant, including the sequence of random numbers. The reason why this 
change in the structure of interaction has such a profound effect should be sought in the fact that 
local belief and desire clusters are much less likely to survive when the actors, through their 
randomly selected significant other, are exposed to influences from outside their own immediate 
sphere. 
 
 To make sure that these differences between the two interaction regimes were genuine, a 
large number of simulations were run with different initial values. The results are summarized in 
Figure 8. The plots in Figure 8 summarize the results of 7,500 simulations and show how the two 
interaction regimes influence actions. These simulations are based on the same setup as before, 
that is to say, 2,500 actors who are placed on a lattice with 50 times 50 cells. Their actions were 
recorded after they had interacted and influenced one another’s beliefs and desires for 20 rounds. 
Normally, a steady state had been reached much earlier; however, typically beliefs and desires 
locked in on a stable pattern after about 10 iterations. The plots relate the proportion that acts at 
the (random) outset to the proportion that acts after the actors have interacted with one another. 
The “line of no effect” indicates when the initial proportion is identical to the proportion that 
eventually acts.  
 
 

                                                 
6  Had we allowed the simulation to run for a few additional rounds, the isolates with positive beliefs and desires in 

the middle of the graph also would have become zeros. 
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FIGURE 8  Effects on typical actions of two different 
structures of social interaction 

 
 

As expected, in both cases the proportion that eventually acts is a positive function of the 
initial proportion, but there are marked differences between the two interaction regimes. While 
the four-neighbor structure results in a smooth and gradual relationship between the initial 
conditions and the final outcome, the three-neighbor structure results in a sharp step-like 
relationship. In this latter case, the analyses show that no one is likely to act if the initial 
proportion is below 20%, and that everyone is likely to act if it is above 35%. This means that 
the two interaction regimes lead to dramatically different outcomes in certain circumstances. If 
the first interaction regime prevails, the interaction process will lead slightly more than half of 
the actors to act if one-third of the actors acted at the outset. But under the other regime, that is, 
when one of the four neighbors is replaced with a randomly selected actor, identical initial 
conditions will cause more than 9 actors out of 10 to act. These results thus show that there are 
genuine differences between these two interaction regimes in terms of how they affect actions. If 
we are to explain differences in the way actors in different groups act, we must pay close 
attention to the structure of interaction. Even if there are marked differences in how individuals 
in different groups act, this may simply be due to a small but systematic difference in the 
structure of interaction.  
 

What I have tried to illustrate with these analyses is how a combination of mechanism-
based theories of action and interaction, and agent-based computational models makes it possible 
to analyze, in a theoretically grounded fashion, how individual desires, beliefs, and actions are 
the product as well as the producer of large-scale social patterns. As a by-product, some 
interesting results emerged showing that relatively small changes in the structure of interaction 
can give rise to large-scale changes at the social level. 
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CONCLUDING REMARKS 
 

I have tried to show how the social mechanisms and agent-based communities fruitfully 
can relate to one another. For sociologists in the social-mechanism tradition, agent-based 
computational modeling is an indispensable tool for analyzing the relationship between the 
individual and the social. For agent-based modelers, at least the sociological part of it, I believe 
that a close integration with the social-mechanism literature also can be beneficial. First of all, 
computational modeling then could come to have more influence on sociology at large. 
Secondly, I believe that such a link can help foster a certain theoretically grounded discipline in 
the way in which action logics are modeled.  
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DISCUSSION: 
 

COMPUTATIONAL SOCIAL THEORY 
 

(Invited Speaker, Saturday, October 9, 2004, 8:30 to 9:30 a.m.) 
 

Chair and Discussant:  Tom Howe, The University of Chicago 
and Argonne National Laboratory 

 
 
Social Mechanisms and Social Dynamics 
 

David Sallach:  I’m very pleased to introduce one of our invited speakers, 
Peter Hedstrom. Peter and I met about five years ago and enjoyed having an initial discussion 
about agent simulation and its potential. Peter is an expert in social mechanisms and has made a 
number of contributions in these areas. From the first, it was obvious that there is a potential for 
great, fertile interchange between social mechanism work and agent simulation work. As we 
move toward multi-level, multi-scale models, this interchange will involve the integration of 
multiple mechanisms. To the extent that competing mechanisms can fill the same kind of niche, 
it becomes one of the forms that agent experimentation can take. We are anxious to further the 
dialogue between these two research areas. Nobody is better placed to help us in that regard than 
Peter Hedstrom. After he speaks, Tom Howe will chair the ensuing discussion and provide some 
initial comments. Tom is with Argonne National Laboratory. He combined an interest in 
contributions to social science with development skills, so we’ll be interested in his perspective 
as well. 

 
Peter Hedstrom:  I’m very pleased to be here. As you understood from David’s 

introduction, when he asked me to come, he asked me explicitly to talk about the relationship 
between this so-called social mechanism approach that I have been one of the contributors to and 
its relation to the agent-based modeling community. This is what I will be talking about today. 

 
[Presentation] 

 
Tom Howe:  This was an important talk to have at this stage in the conference, given 

some of the discussions that have already occurred, both in terms of agent ontologies and 
formalistic languages and also in terms of representing agent-based models in terms of empirical 
data versus simply thought experiments. I want to focus on your discussion of linking agent-
based models with the social mechanism literature and with belief, desires, opportunities, etc. 

 
One of the key things that this provides for us is much more of a common language 

between social scientists and agent modelers. Those of us who have worked with both groups are 
quite aware that getting either one to talk with the other becomes quite difficult because they are 
so unaware of the types of language that the other is using. But by using — by structuring — 
things in this nice, modular, formalistic way, you have the least desires, opportunities, which 
then, in the proper combination, can lead to action and relation between agents. You provide a 
nice way to draw or write out a structure in which the two groups can start to talk to each other. 
And the other piece that is really useful is that by breaking it down into these small, empirical, 
modular pieces, you really push reuse of the concepts. So this type of dialogue links people from 
across disciplines a little bit better, in that a concept that might be used in a demographic model 
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might also very easily be used in a social-movements-type model because the beliefs or the 
intentions are, at their core, the same. They’re just being combined in a different way. This 
provides a nice language for communication, not just between agent modelers and social 
theorists, but between social theorists. I want to leave the discussion of mapping the empirical to 
the agent-based model to the rest of the audience. Are there any questions? 

 
Claudio Cioffi-Revilla:  Claudio Cioffi of George Mason. I very much enjoyed this 

presentation because it infuses the design of agent-based models with substantive, rigorous social 
theory. I think it’s high time that we do this in a more direct and explicit fashion. 

 
One question I have is that the DBO [desires, beliefs, and opportunity] model in 

sociology goes by a different name in political science, where it is known as the opportunity 
willingness principle. Harvey Starr and I have published a number of formal theorems about that 
structure, but with a twist. The table that you put up, with ones and zeros, is actually the truth 
table for the occurrence of action. One way we usually view this is that it is deterministic, as you 
stated. But then, when you designed the simulation, you rendered things in a probabilistic sense, 
with the use of a logistic equation. We view the DBO structure probabilistically in political 
science for the plain reason that for the occurrence of an action, the occurrence of desires, 
beliefs, and opportunity is never preordained, at least not in general. So our treatment of that is 
really probabilistic. The complete logic conjunction that must occur for action to obtain … is 
something that is governed by some distribution. Would you comment on that because the 
theoretical foundations that you started out with seemed to be deterministic, but the rendering of 
the models seemed to be much more probabilistic? 

 
Hedstrom:  Yes. Thanks. I probably have to give the reference as to the origin of those 

things. What I talked about today draws upon a book that hopefully will be published in June or 
July next year. In that book, I discuss probabilistic versus deterministic modeling. My argument 
is basically that the world is of course probabilistic in some ways, for many different reasons, 
because there are many things we can’t know. If nothing else, it’s a way to incorporate our 
ignorance in modeling things. But I prefer deterministic language because of its economy of 
expression, its clarity, and so on. However, you think of it as some kind of central tendencies or 
whatever. So it’s not that I want to defend a deterministic language for analysis in principle; 
rather, it’s a convenient way of expressing ideas. Then, being aware of that, there’s lots of noise 
out there that can come in and do things to our analysis. I would very much like to look at what 
you have written about it. 

 
Elenna Dugundji:  I’m Elenna Dugundji, from the University of Amsterdam. First of all, 

I really enjoyed your presentation. It’s very much in line with the sort of work that I’m doing, so 
I hope that you will enjoy my presentation as much as I enjoyed yours. 

 
I have a question regarding the transition from the first part of your talk to the second. In 

the first part of your talk, you showed how critically important the interaction structure can be, 
and how just a small change in going from four to three neighbors and one random made a big 
difference. So I was wondering in the empirical calibration, what interaction structure you 
assumed among the 59,000 agents. This is a question that I’m also thinking about a lot in my 
own research. 

 
Hedstrom:  That’s a good question. In the book, it’s going to be slightly revised, but 

here, it’s just that I assume that their likely peers are those of the same age in the same 
neighborhood. So they look on whether they were unemployed or not during the previous week, 
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and that’s what influences it. But in some other papers where I don’t use the simulation 
modeling, I will just do the empirical analysis. I have used other ways of measuring this likely 
interaction context. And the data things I’m involved in, I’ve used because we have information 
about not only where they live, but also what schools they went to, who their families are, where 
they work, and so on. Of course, those who are unemployed don’t work. There are many 
different alternative interaction contexts that one could look at and then let the data allow the 
strength of the influence that originates from each of these different contexts. If time allows, I’m 
going to do that in the book; otherwise, it will be something like this, just to illustrate more how 
one could do it and to do the detailed analysis. 

 
Dugundji:  I have a comment. I have a paper that will be appearing next year in 

Transportation Research Record in which I’ve done exactly this same thing. We looked at a 
cross-nested logit model and tested different structures, comparing interaction structure with a 
number of different treatments (a treatment based on a social-demographic group, a treatment 
based on a small-scale neighborhood, a treatment based on a large-scale neighborhood, and some 
treatments combining the different small-scale plus demographic and large-scale plus social 
demographic), and then comparing the influences separately — instead of as one interaction, as 
two interactions — because maybe people weight the interaction with social network different 
than their geographic network. I think this may be interesting. 
 

Roger Burkhart:  In the autonomous agents community, we are coming mostly from the 
artificial intelligence field, where we actually build working agent systems. They formalize the 
state of an agent with a similar triplet of beliefs, desires, and intentions (so-called BDI agents). Is 
it useful to formalize intentions as a propensity to action, whether or not it’s blocked from 
actually being performed? And does your DBO foundation provide a more basic source out of 
which intentions can arise? 

 
Hedstrom:  Thanks. 
 
Michael Macy:  I’m Michael Macy, Cornell University. Thank you very much for a 

wonderfully refreshing and inspiring presentation. I’m cautiously optimistic that sociology will 
move in a bottom-up, critical realist direction, and I think your leadership in that process is going 
to turn out to be really important. I think this is an important paper, and I’m pleased to hear that 
the book will be coming out soon. 

 
I have three points, two quite small, but one maybe more worth more thought. The first is 

just on the DBO — that the D, the B, and the O all interact with each other. In cognitive 
dissonance, opportunities shape desires. John Elster has a book on this subject called Sour 
Grapes. And that is indeed what happens in Sour Grapes. With emotions, desires take over and 
dictate beliefs, or at least ignore beliefs, and ignore opportunities. I think that by adding arrows 
between the D’s, B’s, and O’s, you can go beyond the sort of instrumental application that you’re 
looking at to include a range of possibilities. So this is really not a criticism; it’s actually a 
compliment, because I think you can extend this in a very powerful way with just a few more 
arrows between the D, B, and O. 

 
I’ll collapse the other two points into one. The second point really is about the 

calibration. I am very hopeful that agent models can move in the direction that you’re 
suggesting. I would like to see that happen, but I’m not as optimistic about that being successful. 
My concerns here are not that I wouldn’t want to do it, but I worry that it isn’t so easy to do and 
can be misleading. Let me just give a couple of instances. I think it’s useful for instantiation — 
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that if we want to instantiate, we should calibrate, and we should calibrate with data that are 
observed in natural settings. But if we want to test (and this is when I get worried), then when we 
test I want to go into the lab and do it under controlled conditions, paradoxically, because I’m 
interested in causal mechanisms and I worry about things like correlation. In the lab I can solve 
that problem in ways that I just can’t do in natural settings. Your focus on mechanisms leads me 
to be worried about doing this in the field and to want to go into the lab for the data. 

 
Let me just briefly sketch what I’m worried about. I’m worried about two things. One is 

that wrong models can be proven to be true. The other problem is that true models can be shown 
to be wrong. Let me quickly sketch how it happens. Let’s do this with the Schelling model. 
I wanted to do it with the unemployment, but I can’t think fast enough to do it with a model 
I don’t really understand. Let’s assume that Schelling’s model is correct. So let’s try to calibrate 
it to London. Let’s say we tune it with the correct distribution of preferences from London, the 
London neighborhood structures and networks, the whole nine yards. What’s going to happen is 
that we know that the process that Schelling is revealing to us is path dependent with a random 
element. This means that the particular patterns of clusterings are not going to be the same in any 
two runs of the model. Hence, they’re not going to look like what you’re going to see in London, 
so we would reject the model, even though it’s true. 

 
Now let’s suppose that the Schelling model is wrong. We know that the Schelling model 

is very robust when the parameters are set in a way that it can be made to work. So we could, in 
fact, put Houston up there, London up there, New York up there — we could put lots of cities up 
there and get it to produce the results, even when the model is wrong. And the reason we can do 
that is that even if we calibrate lots of the parameters, there are always going to be some 
parameters we don’t calibrate — fudge factors, if you will. And you can adjust these things and 
play around a bit with the functional form, and you can get a wrong model to produce the result 
you want. So either way it just doesn’t work. 

 
Hedstrom:  As to your first comment [on the DBO], I have actually done that already in 

my book. In the simulations, I show that I always include a wishful thinking, which is if D = 1, it 
leads to B = 1; i.e., if you desire something to believe it, it also would be possible. And there is 
also the sour grapes mechanism, meaning that if B = 0, it leads to D = 0. So I’ve done some 
simulations along those lines. 

 
I don’t think that the type of calibration that I talked about should replace the laboratory 

or be an alternative to laboratory work. I think one has to do both, in some ways. In that very 
ideal setting of the laboratory, you have to see if processes actually work out as your theory 
suggests. That’s important in itself. Another thing to see is if they also work like that when you 
bring them outside the lab. It could be this or that (we have lots of other things going on), or it 
could be that the lab setting itself frames the actions in such a way that they are different when 
they are in the lab than when they are out in society. So even if we have a model for which our 
laboratory experiments in some ways confirm that people in these types of situations behave in a 
certain way, we still need to check whether they behave in the same way when you move outside 
the laboratory. You also have to get some sense of the relative substantive importance of these 
processes because it could be true that this mechanism indeed works as we think, but that in fact 
it’s of trivial importance. We shouldn’t attribute any explanatory power to it at all because it just 
drowns in everything. It could be interesting to know that this works out this way, but we should 
not exaggerate its importance. To do that, I think we also need to do this real-world experiment 
and use data outside the laboratory. 
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I think it’s clear. Unfortunately, I think that establishing the strength of these kinds of 
social interaction effects is exceedingly difficult because you have so many potential selection 
effects. You mentioned yesterday that birds of a feather flock together. So people in groups may 
act in the same way, but it has nothing at all for them to influence one another to do it; it’s just 
that they are together. They have self-selected into groups, and it’s extremely difficult to 
empirically separate out this effect. That doesn’t mean that one shouldn’t try. I think now we are 
starting to have better and better data on this (like when you actually have population-level data, 
with fairly rich information, that you can do something, at least). I think it’s important to 
constrain the parameters because, as we can see in these simulations, if you alter a little bit in 
these agent-based models — oops! You get a totally different result. That’s interesting on a 
theoretical level, but it also means that you have tremendous leeway in explaining anything if 
you don’t have any constraints on the specification of the model or the size of the parameters that 
you put into the model. So there’s dialogue between theoretical specification or models, and 
calibration is something that is important. 

 
Burkhart:  Returning to my question on BDI agents (beliefs, desires, and intentions), 

would it be relatively straightforward to build a formalization that added intentions as an 
intermediate stage prior to actions, but building on the DBO foundation? And do you know if 
there have been any attempts to do so? 

 
Hedstrom:  Certainly that’s the way I talk about it in this book. I don’t have any model, 

so intentions are an unobserved construct in these models. But that’s the way the model is 
framed — so that desires, beliefs, etc., make an intention, and the intention is what explains the 
action. 

 
Noshir Contractor:  I’m Noshir Contractor of the University of Illinois in Champaign. 

I’ll ditto what others have said in terms of compliments on your presentation. The question I 
have has to do with the second part, the empirical calibration, as you describe it. Work by Peter 
Abel and several others argues that when you’re trying to use empirical data to calibrate 
computational models, one of the challenges is whether you used a logit model, which is based 
on cross-sectional data, to get the probabilities. But you’re using the data in a computational 
model, where you’re looking at dynamic processes that these mechanisms are ascribing to. The 
only conditions under which the dynamic coefficients that you would get from programs like 
time-series analysis or something along those lines — the only times when dynamic coefficients 
and cross-sectional regression of logit coefficients are the same is when the data are assumed to 
be in steady state or stationary. What do you see as the implications of using those cross-
sectional coefficients and estimates in running calibrations with longitudinal or dynamic models? 

 
Hedstrom:  I didn’t really explain what I did. It’s not cross-sections. It’s basically what 

in sociology goes under the name of discrete-event, time-history models. I follow the individuals 
week by week, so it’s panel data I’m using. 

 
Mark Fossett:  I’m Mark Fossett of Texas A&M. I really appreciated your talk and am 

looking forward to your book. I’ve come to agent-based modeling in part out of frustration with 
trying to estimate models by using observation or nonexperimental data, even time-series panel 
data such as you’re describing, because establishing the magnitude of causal effects in these 
systems depends on so many complicated assumptions about which I’ve become more and more 
disillusioned. I take a course, then take another course, and the more I understand, the more 
cautious I am about inferring cause. I turned to agent-based models because I know what’s 
happening and can identify cause within the system, but then I have two dilemmas: (1) going 
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from a model that I know is not going to map perfectly onto reality, but I know what’s going on, 
and (2) looking at reality in rich detail and not knowing if I know what’s going on. You must 
have wrestled with this. Could you speak to that? 

 
Hedstrom:  I don’t want to be misunderstood. I don’t want to argue for some kind of 

traditional variable-based statistical analysis as a replacement for agent-based modeling. The 
way I see it is that the ideal way would be to start with stylized agent-based modeling and show 
on the pure net effect of one particular mechanism that you are interested in, to show that it 
indeed can generate the pattern that we want to explain, even if we can’t understand it 
completely. When we have done that, the next step is to see what the relevance of this is for the 
messy world around us, then try to get to things similar to what I did just now. I didn’t just 
estimate the model and make predictions. I estimated the model and then I assumed that this is 
the decision equation, or this is the way the agents make the decisions. Instead of assuming, say, 
in your Schelling analysis, that you move if it exceeds a threshold of 30% — instead of having 
that decision equation — you have the logit equation, and then you run to see what the 
agent-based simulation model does in normal cases. So the results become very different than if 
you were just estimating and predicting because you get lots of the kind of social multiplier 
effects that you would not pick up in a regular statistical analysis. 

 
What I’m going to try to do in the book, in some ways at least, is quantitative research to 

a much larger extent. Instead of believing that they can crank out causal relations directly from 
the data, they have to start with well-thought-out, agent-base-like models, then use the 
quantitative data to estimate parameters to put into the agent-based models, and then “round” a 
bit to simulation models to see what the actors actually bring about in terms of social outcomes 
— to see some kind of point of contact between agent-based and more traditional quantitative 
analysis. 

 
William Lawless:  I think your talk is an important step forward, and I wholeheartedly 

endorse your comment about the need for experimental data to calibrate against real data. But I 
also agree with Michael Macy that you need to go back into the laboratory as well. You get these 
findings, and you’ve got to go into the lab to test to see just how good the model is. It’s at that 
point that I have problems with the BDI or BU [bottom-up] models. Alice Eagly [Northwestern 
University] has found very poor correlations with beliefs, desires, and actions, and she’s a social 
psychologist. [Amos] Tversky, the economist [Stanford University], found very poor correlations 
between the justifications and the actions that had already been taken. And Kelly found virtually 
no relationship between preferences and choices actually made. 

 
One of the assumptions that you didn’t talk about, it seems to me, is that your model is 

based on no uncertainty. Without the introduction of uncertainty into the model, I’m not sure 
how far you can go with it. Would you address that? 

 
Hedstrom:  No, the fact that I didn’t add any noise terms or something like that is not 

that I believe that there are no noises in an individual decision. It was just to explicate the logic 
of something. I fully agree that if I explore these models further in the future, it would be 
important to add noise to them. We saw in one of the presentations yesterday afternoon that 
noise can make a great deal of difference in these kinds of settings. I said that lab work is very 
important, too, but it can do different things. 
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ABSTRACT 
 

We extend the cultural framework previously developed for the Mesa Verde Village 
multi-agent simulation in Swarm to include an economic network. Two main social 
networks are now present: a kinship relation network for generalized reciprocal exchange 
and an economic network for balanced reciprocity. Agents, or households, are able to 
procure several resources, including agriculture; the hunting of deer, rabbits, and hares; 
the collection of wood for fuel; and the acquisition of water. Individuals can exchange 
surplus goods for needed goods through the exchange network. Currently, agents are only 
allowed to exchange agricultural produce. We use cultural algorithms as a framework for 
the emergence of social intelligence at both the individual and cultural level. The 
knowledge represents the development and use of exchange relationships between agents 
in both a generalized reciprocal network and an economic network (balanced reciprocal 
network). The addition of each improves the resilience of the social system. We show 
that both networks need to be present in order to produce model results that have a good 
fit with the archaeological data. We also show that both evolved networks are 
small-world networks but with different parameters. When faced with a drought period, 
the economic network is depressed more than the generalized reciprocal network and the 
effects last longer. 
 
Keywords: Cultural algorithms, emergence, Mesa Verde, social networks, generalized 
reciprocal exchange, balanced reciprocal exchange 

 
 

INTRODUCTION 
 
 Archaeologists excavating the Mesa Verde region in southwestern Colorado stumbled on 
one of the greatest mysteries of prehispanic history. Many uncovered ruins and settlements 
scattered in the region reveal the presence of an ancient civilization  the early prehispanic 
settlers known as the Pueblo Indians, or ancient Anasazi. Scientists scouted the sites and 
collected detailed information by using the latest geographical information system (GIS) 
technology, and geological and archeological surveys. As a result, we have ample information on 
such characteristics as elevation and soil degradation, and on the environment and productivity 
on the basis of tree ring data (Van West, 1994), to name a few. An important observation of the 
sites disclosed an event around A.D. 1300, when the settlers abandoned the region. Their 
disappearance is apparent from the abandoned sites. The Pueblo Indians occupied the region for 
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more than 700 years; they farmed the land, built settlements, and domesticated and hunted 
various animals. Why did these settlers abandon the region? 
 

Many theories have been put forth to answer this question. They include the mini ice age, 
which made the climate cooler and drier (Dean and Van West, 2002); erosion; the great disease 
hypothesis; warfare; aggregation activities; and social interaction. A prominent theory tested by 
Kohler (2000) in a multi-agent simulation model is that environmental factors, especially the 
long drought in the late eleventh century, caused the inhabitants to move to more sustainable 
land away from the Mesa Verde region. The model failed, however, to predict the reduction in 
population associated with known drought conditions in the mid- to late-1100s. Thus, it was 
suggested that other factors might have played a role.  
 

Follow-up work by Reynolds et al. (2003) and Kobti et al. (2003, 2004) suggests that 
social and cultural factors motivated the population to evacuate the region, along with 
environmental variables. The unearthed artifacts and large settlements reveal a sophisticated 
society rich with language, culture, and community aspects. Kohler’s initial model was then 
extended to weave a social network and embed cultural evolution into the modeled population so 
as to reflect a more realistic scenario.  
 

Previously, we allowed the population to exchange resources via generalized reciprocal 
exchange over a kinship network. The emergent network had the properties of a small-world 
network. In this paper, we add balanced reciprocal exchange into our model, along with the 
previous network. Our goal is to assess the relative impact of the two emergent networks with 
regard to their ability to improve system resilience in light of environmental changes. 
 

The current model was developed on Swarm 2.2 (Langton et al., 1995), with 
environmental data ranging from A.D. 900 to A.D. 1300. Protein resources from deer, hares, and 
rabbits, and burnable calories from firewood were added. These additional resources increased 
the complexity of the system and consequently restricted the ability to run the model within a 
reasonable time on current hardware. Pentium III dual-processor PCs and Pentium IV 3.0-GHz 
machines would require several weeks to run the model for all the years. The hardware 
limitations were overcome by porting the model to a high-speed grid computing distributed 
environment. Twenty independent nodes with dual Xeon processors were configured to compute 
the simulated model. The model was modified to execute on the grid by implementing the batch 
mode and to enable parallelization in the model so as to use the Swarm engine’s parallel abilities. 
 

In the first section, we introduce the cultural evolution model and the cultural algorithm 
(CA) framework used to embed social intelligence in the system. Next, we provide an overview 
of the social network and the composition of the kinship and economic networks. The exchange 
over these networks is then described. We define the generalized reciprocal exchange as well as 
the balanced reciprocal exchange that agents can participate in and learn to evolve better 
exchange choices. Historical, situational, and normative knowledge is collected in the belief 
space that allows both individual and cultural learning of the exchange networks. In these 
experiments, we enabled all the resources available to the agents, including maize, deer, rabbits, 
hares, water, and firewood, but we only allowed maize to be exchanged. In the Methodology and 
Results section, we describe the effects of using both exchange networks singly and together. 
The trends generalized from these results are used to show how social intelligence is reflected in 
population and network volumes. 
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CULTURAL EVOLUTION 
 
 
Evolutionary Adaptation 
 
 Holland (1975) developed a formal framework for any generic adaptive system. His 
framework for adaptation concerns a system that is able to alter its structure and/or behavior on 
the basis of experience in some set of performance environments (Reynolds, 1979). Adaptability 
is the capacity to function in an uncertain or unknown environment and to use information to 
evolve and learn (Conrad, 1983). Adaptation can take place at three different levels: the 
population, individual, and component levels (Angeline, 1995; Fogel et al., 1966). Cultural 
algorithms were designed to allow the emergence of social intelligence at all three levels. 
 
 Cultural algorithms consist of a social population and a belief space (Reynolds, 1979), as 
shown in Figure 1. Selected individuals from the population space contribute to the cultural 
knowledge by means of the acceptance function. The knowledge resides in the belief space 
where it is stored and manipulated on the basis of individual experiences and their successes or 
failures. In turn, the knowledge controls the evolution of the population by means of an influence 
function. A CA thereby provides a framework in which to learn and communicate knowledge at 
both the cultural and individual levels (Flannery et al., 1989). 
 
 
Knowledge Types 
 
 There are at least five basic categories of cultural knowledge that are important in the 
belief space of any cultural evolution model: situational, normative, topographic, historical or 
temporal, and domain. These knowledge sources were derived from work in cognitive science 
and semiotics that describes the basic knowledge used by human decision makers (Chung, 1997). 
In our CA, all of these knowledge sources can be represented and learned. For example, in our 
current model we assume that agents can acquire knowledge about the distribution of agricultural 
land as well as wild plant and animal resources (topographic knowledge); the distribution of  
 
 

 
 

FIGURE 1  Cultural algorithm framework  
(Reynolds, 1999) 
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rainfall and water resources (historical or temporal knowledge); agricultural planting and 
harvesting techniques (domain knowledge); hunting technology; and fuel collection and use. 
Currently, planting and harvesting techniques are held static. The amount of annual rainfall is 
also fixed on the basis of tree ring data that are used to estimate the amount of rainfall during 
each model year. 
 
 

SOCIAL NETWORKS 
 
 
Kinship Network 
 
 The emergent networks in the model are composed of agents. Each agent is a nuclear 
family or household composed of a husband, a wife, and their children. Household members live 
together in the same location, share their agricultural production, and are affected by the same 
environmental conditions. Children can grow up, marry, and move out to form their own 
households. In our model, their connections to their parent households and siblings are 
maintained. Similarly, the parents maintain ties to their children. When one of the parents in a 
household dies, the other can form a new household with an available single agent. The initial 
structure of the social network here supports the notions of parents, siblings, and grandparents on 
both sides of the family. The relationships needed to describe the generalized reciprocal network 
(GRN) from the perspective of a household are shown in Table 1. 
 
 The household (agent) rules for marriage and kinship dynamics were described in earlier 
work (Kobti et al., 2003). The social network is therefore defined as the set of all kinship links. 
 
 The simulated model is based on massive amounts of collected settlement and 
productivity data, with agents initially acting as individual households. The first extension of the 
model introduced gender, marriage rules, and other localized enhancements to allow individuals 
to coexist and reproduce. At the next level, the first base network was introduced and known as 
the kinship network. This is a baseline network that links each individual household to its 
parents, siblings, children, and other relatives. Over this network, generalized reciprocal 
exchange was implemented so as to enable the agents to mutually cooperate and exchange 
resources across the network in order to survive. 
 
 

TABLE 1  Connected nodes identified by the kinship social network 

 
ParentHHTagA 

 
A link to the parent from the mother’s side 
 

ParentHHTagB A link to the parent from the father’s side 
 

ChildHHTag One link to each child who moves away from this 
household and forms its own household 
 

RelativeHHTag One link to each extended family member 

 
 



583 

 Motivated by individual experience and population norms, an individual, by means of a 
CA was able to learn and make more intelligent choices in cooperating over the kinship network. 
For example, an agent can learn to make a better choice when it comes time to decide who to ask 
for food when in need. Overtime an individual can learn to select more cooperative kin, and 
indirectly, a population identifies known exemplars and establishes its acceptable norms.  
 
 As a result, established individuals became good donors; those in less productive 
locations needed to depend on the social network for survival. An underlying factor triggered by 
the dependency on such a social system enabled households to relocate closer to the productive 
kin and consequently relocated the population to the more productive farm lands. Over time, the 
clustering of individuals closer together around productive lands was reflected through the hubs 
in the small-world social network (White and Houseman, 2002). The simulated locations of these 
hubs were then compared with those community centers known archaeologically, and a good fit 
was observed. This initial attempt at cultural evolution motivated the notion that culture indeed 
had a role in population relocations. 
 
 
Economic Network 
 
 The next phase of development proceeded to implement a second important baseline 
network — the economic network. Archaeological findings reveal that pottery, tools, and wood, 
among other artifacts, can be exchanged among individuals. This suggests the potential for 
economic-based exchange as a mechanism for distributing resources among the agents. To do 
this, each household essentially maintained a list of trading partners formed mainly from nearby 
agents who are independent from the kinship network. Individuals adopted a strategy to decide 
when to exchange and with whom to exchange. In this model, unlike the reciprocal exchange 
model, individuals needed to keep balances of the amounts owed and traded. The ability of 
agents to repay their debts reflected their reliability, generalized here as reputation. A 
well-reputed household is a good producer and without debt, typical of settlers in productive 
lands or with stronger social ties. Less reliable households resided in less productive lands and 
had weak social ties. A CA is adopted again in the economic network to guide the decisions that 
an agent makes in selecting reputable trading partners.  
 
 

USING THE DUAL NETWORKS TO SUPPORT THE  
EXCHANGE OF RESOURCES 

 
 In this section, we describe how the two networks are integrated together and evolve with 
the agent population. As shown in Figure 2, agents use both base networks. The performance of 
agents in these networks can serve as the basis for the formation of community networks at a 
higher level. We begin with a discussion of generalized reciprocal exchange, followed by a 
discussion of balanced reciprocal exchange. 
 
 
Generalized Reciprocal Exchange 
 
 The GRN was introduced in previous work (Kobti et al., 2003, 2004) by using a kinship 
network. The GRN links agents on the basis of their kinship relations and serves to guide the  
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FIGURE 2  Overall social network structure, 
including the two base models and the 
evolving communal network 

 
 
flow of resources among relatives on the basis of the states of a giver and a receiver. One 
individual can request goods from a related individual without the donor expecting explicit 
payback.  
 
 
Balanced Reciprocal Exchange 
 
 The balanced reciprocal network (BRN) is an economic network that supports the 
exchange of goods between neighboring agents. In a balanced reciprocal transaction, the giver 
expects an immediate payback of an equivalent amount or a deferred payback plus interest. The 
localization of the exchange between agents in the model is to enforce the physical constraints of 
travel distance limitations when an agent engages in exchange. This constraint is consistent with 
what was implemented in the GRN. Each agent maintains a set of trading partners who are not 
necessarily associated with the kinship network. A trading partner can be any agent within a 
given radius from the agent.  
 
 The overall agent strategy for exchange using both the GRN and the BRN is discussed 
below. The key idea is that exchange in the current model occurs when an individual is in a state 
of need in terms of resources. After updating its networks, an agent first tries to satisfy its 
resource needs by calling in debts from neighbors by using the BRN. If unsuccessful, the agent 
then requests aid from relatives through the GRN. If there is still a deficiency in terms of 
resources, the agent goes back to the economic network to acquire them. Figure 3 illustrates the 
agent connectivity in the BRN. 
 
 
Resources 
 
 According to archaeological records, the Pueblo Indians were able to harvest maize and 
hunt deer, rabbits, and hares. In addition, they collected firewood for cooking and heating. 
Water, of course, was another necessity. In the current model, all these resources are enabled and 
computed. The household is capable of accessing all of these resources. In this paper, the 
exchange is limited to maize on both balanced and generalized networks. 
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FIGURE 3  Agent connectivity in 
the BRN; Agent 0 maintains its 
links with its exchange partners 
Agents 1 to N 

 
 
Integrating Both Networks to Facilitate Exchange 
 
 In this section, we provide a brief description in pseudocode as to the two networks 
integrated together in the current mode. The following actions are performed on each agent by 
the simulation: 
 
 1. Update GRN 
 
 2. Update BRN 
 
  a. Remove dead partners (and nonactive/out of region/expired) 
 
  b. Search each neighboring cell within a trade radius and get its settlers list and add 

new ones to the trade list up to a MAX_TRADE_LIST 
 
 3. Request payback of debt from BRN partners 
 
 4. If HUNGRY/CRITICAL 
 
  a. Request food from GRN (no payback) 
 
 5. If HUNGRY/CRITICAL 
 
  a. Request food from BRN (with payback promise) 
 
 6. If CRITICAL 
 
  a. Agent is DEAD and removed 
 
 7. If PHILANTHROPIC/FULL 
 
  a. (Donate surplus into GRN) 
 
  b. (Pay back debts owed into BRN) 

 

Agent 1 

Agent 2 

Agent N 

Agent 0 
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METHODOLOGY AND RESULTS 
 
 To understand the effect of the balanced reciprocal exchange on the overall population 
and network resilience, we set up a series of experiments to establish controls and comparison 
baselines. Table 2 provides the basic levels of cooperation supported by the different sets of 
experiments. The first step was to execute the model without any exchange. This allowed us to 
measure the baseline effects of the environment on the population. In the absence of any social 
cooperation, Figures 4, 5, and 6 illustrate the results of COOP 0 described in Table 2. 
 
 Even though the kinship network was not used for exchange, the basic structure of the 
evolved network was computed. Figure 4 gives the minimum, maximum, and average number of 
links per agent. The evolved network was again a small-world network with an average of 
around 4 links per node. The hub nodes, with more but weaker links, were bounded from above 
by a maximum of 10 to 12 links. Over time, the network volume, which is the product of the 
degree of the agents in the model, decreased from a maximum of near 2,000 to a value 
increasingly close to zero, as shown in Figure 5. The corresponding agent population, as shown 
in Figure 6, also declined to less than 200 agents by the end of the simulation period. This is 
below what was predicted on the basis of archaeological evidence, which suggests that some 
type of exchange needs to be present in order to produce more realistic behavior. 
 
 In the next series of experiments, we introduced generalized reciprocal exchange over the 
kinship network, identified as COOP 3 in Table 2. Figures 7, 8, and 9 illustrate the results of 
these experiments. By adding in the ability to redistribute resources along kinship lines to the 
model, the small-world networks produced had an increased average degree, 5, and an increased 
maximum bound on the size of the hub nodes, around 15. Thus, generalized reciprocal exchange 
allows the individuals to enhance the kinship network, producing a slightly more complex 
structure than previously. In Figure 8, we notice that the network volume increased to around 
7,000, as opposed to around 500 before. The agent population has correspondingly increased to  
 
 
TABLE 2  Description of the different cooperation experiments referenced here 

 
Cooperation 

Method 

 
 

Description 
 
0 

 
No cooperation. No exchange of food between households. 
 

1 When an agent requires food, it is allowed to select and request food from within its 
kinship network in order to survive.  
 

2 When an agent has excess food, above a determined threshold amount, it is allowed to 
select an individual(s) from its kinship network and donate some of its excess. 
 

3 Both methods 1 and 2 are enabled simultaneously. 
 

4 Full cooperation across the kinship and economic network (generalized and reciprocal 
exchange simultaneously) 
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Social Network Accumulated by Agents Per Year
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FIGURE 4  Minimum, maximum, and average node sizes over time, without the 
presence of cooperation over the kin network (GRN) without any exchange 

 
 

 

FIGURE 5  Kinship network volume over time, without the presence of cooperation 
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FIGURE 6  Agent population (number of households) over time, without the presence 
of cooperation 
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FIGURE 7  Minimum, maximum, and average node sizes over time, with the 
presence of generalized reciprocal exchange over the kin network (GRN) 
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FIGURE 8  Kinship network volume over time, with the presence of generalized 
reciprocal exchange over the kinship network 

 
 

 

FIGURE 9  Agent population (number of households) over time, with the presence of 
generalized reciprocal exchange over the kinship network 
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around 1,600 agents. This is about 8 times that for the system without any exchange between kin. 
Still, this is less than the archaeological predictions for the number of agents. 
 
 Finally, balanced reciprocal exchange was introduced into the system along with the 
existing generalized reciprocal exchange. This is described as cooperation level 4 in Table 2. The 
combined effect of both networks is illustrated in Figures 10 through 13. We can see that the 
average number of links is still around 5, but appears to be increasing slightly near the end of the 
simulation period. In contrast, the maximum number of links for the hub nodes has increased to 
42, almost 3 times that of the GRN alone. This suggests that the hub nodes for the BRN are 
linked to more agents, perhaps because the reliability of trading partners in the economic 
network is less than that for relatives in the kin networks. It also suggests that the network 
extends and complements the more limited range of the GRN. Figure 11 gives a statistical 
description of the GRN when used in conjunction with the economic network. The results 
suggest that the average number of links is the same as previously, although the maximum 
degree for hub nodes is slightly larger than before. 
 
 In Figure 12, the network volume of the GRN and the BRN is given. There, the volume 
of the GRN exceeds that of the BRN, although the volume of the economic network increases as 
time goes on. This suggests that there are social needs that are not met by the GRN on its own, 
and that over time, the groups learn to produce an economic network that gets better at fulfilling 
those needs. As a result, the population increases to close to 3,000 agents, a much better 
approximation to the archaeologically predicted number, around 2,800. This suggests that both 
types of exchange need to be included in order to model real-world patterns produced by the 
prehistoric system. 
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FIGURE 10  Minimum, maximum, and average node sizes of the BRN over time, 
with the presence of both generalized and balanced reciprocal exchange over 
the kin network (GRN+BRN) 
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Social Network Accumulated by Agents Per Year (Kinship/GRN)
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FIGURE 11  Minimum, maximum, and average node sizes of the GRN over time, 
with the presence of both generalized and balanced reciprocal exchange over 
the kin network (GRN+BRN) 

 
 

 

FIGURE 12  Kinship and economic network volumes over time, with the presence of 
both generalized and balanced reciprocal exchange 
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FIGURE 13  Agent population (number of households) over time, with the presence 
of both generalized and balanced reciprocal exchange 

 
 
 Another issue is that around A.D. 1140, the Little Ice Age reduced available moisture in 
the valley. This drought impacted the social volume of both networks as shown in Figure 12. 
Notice that both networks exhibit a dip, but that the dip associated with the kin network is 
smaller and less prolonged than that of the economic network. The economic network takes more 
time to recover from the environmental perturbation. It is clear that while the BRN is necessary 
to improve the distribution of resources among the agents, this network is more sensitive to those 
situations of environmental stress when it is most needed in order to help out the GRN. 
 
 

CONCLUSIONS AND FUTURE WORK 
 
 Emergent properties observed in simulated populations of the Mesa Verde Village region 
reveal a pattern of social intelligence that individual households use to collectively adapt in a CA 
framework. In particular, the system is able to evolve and to use both a kinship network for 
generalized reciprocal exchange and an economic network to support balanced reciprocal 
exchange. The system is not able to develop sufficient social complexity without the inclusion of 
both resource redistribution networks. Their structures suggest a complementary role for the two 
networks in which the economic network is adapted by the agents to extend the basic distribution 
of resources. The economic network’s presence is necessary to generate a social complexity that 
is comparable to that predicted for the real world. However, it also appears that this network is 
the most sensitive to environmental downturns in terms of the magnitude of its drop and the time 
it takes for recovery. 
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 In future work, we will extend the range of available productivity data by starting from 
A.D. 600 rather than A.D. 900. In addition, we will enable agent strategies to exchange all the 
resources available at once so that we can compare the GRN and BRN networks for each of the 
resources in order to identify any system fragility with respect to any given resource. This would 
include all the hunting and firewood collections. Furthermore, communal activities, such as 
raiding, can be investigated in the model in terms of their impact on the economic network. 
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ABSTRACT 
 

The reported research treats interactions between households and generated feedback 
dynamics in the adoption of various transportation mode alternatives. We consider a 
model where an agent’s choice is directly influenced by the percentages of the agent’s 
neighbors and socioeconomic peers making each choice, and which accounts for common 
unobserved attributes of the choice alternatives in the error structure. We explicitly 
address nonglobal interactions within different social and spatial network structures, 
combining advanced econometric estimation with computational techniques from multi-
agent-based simulation, and present an empirical application of the model by using 
pseudopanel microdata collected by the Municipality of Amsterdam Agency for Traffic, 
Transport, and Infrastructure. We explore the effects of additional heterogeneity 
introduced into the model through different mechanisms, such as individual-specific, 
sociodemographic characteristics of the agents, as well as individual-specific attributes 
of the choice alternatives and the availability of alternatives. We conclude by 
highlighting the limitations of our present study and giving our recommendations for 
future work. 
 
Keywords: Multi-agent-based simulation, discrete choice, social network, spatial 
interaction, transportation demand 

 
 

INTRODUCTION 
 

A wide spectrum of policy measures has been put forward over the past decade to try to 
address the infamous rush-hour road congestion in the “Randstad,” the western region of the 
Netherlands marked by the ring of cities — Amsterdam, Utrecht, The Hague, and Rotterdam. 
These measures range from flexible work hours to congestion pricing, light rail, facilitation of 
park-and-ride, and road construction. The research reported here is a small part of a larger work 
aimed at understanding, measuring, and modeling the combined residential choice and 
transportation mode choice behavior of households residing in the north wing of the Randstad, 
that is, the Amsterdam-Utrecht greater region. The focus of the larger work is on the promotion 
of and facilitation of multi-modal transportation as a land-use transportation planning policy 
instrument for reducing road congestion (Timmermans et al., 2002; Joh, 2004; Krygsman, 2004; 
Maat et al., 2004). The contribution of this particular subproject is the treatment of social and 
spatial interactions between households and generated feedback dynamics in the adoption of 
various transportation mode alternatives.  
 

                                                 
∗ Corresponding author address: Elenna R. Dugundji, AMIDSt – Amsterdam Institute for Metropolitan and 

International Development Studies, University of Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam, 
Netherlands; e-mail: e.r.dugundji@uva.nl. 
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Since the pioneering of Ben-Akiva (1973), Domencich and McFadden (1975), and others 
in the domain of travel demand, discrete choice analysis has become an industry standard in 
land-use and transportation planning models. Some subsequent elegant and elaborate operational 
examples of the development of this methodology can be attributed to Wegener (1996), Waddell 
(2002), Martinez and Aguila (2004), and Hensher and Ton (2001), to cite just a few. Meanwhile, 
the field has flourished in the past 30 years, ultimately extending the basic random utility model 
to incorporate cognitive and behavioral processes, flexible error structures, and different types of 
data in so-called hybrid choice models (Ben-Akiva et al., 1999, 2002). However, as discrete 
choice theory is fundamentally grounded in individual choice, an outstanding challenge remains 
in the treatment of the interdependence of various decision makers’ choices, be that via global or 
local interactions. The formulation of the nature of the interaction in turn raises the issues of 
networks and network evolution. When considering the domain of land use and transportation, 
not only social networks but also spatial networks may be relevant (Dugundji et al., 2001). 
 

Some examples of research questions we might like to answer relating to interhousehold 
networks include spatial coordination/feasibility and social awareness/acceptance in the take-up 
of various transportation mode choices. If a certain critical mass of households is willing to 
choose public transit in a particular region or at a particular park-and-ride location, it can become 
economically viable to provide a high level of public transit service to that region or from that 
park-and-ride location. Being able to guarantee a high level of service might then in turn attract 
additional households. On the other hand, lack of a sufficient transit ridership base can be a 
reason for poor levels of service, which in turn might discourage transit use by segments of the 
population that have other reasonable transportation mode alternatives at their disposal, which in 
turn could lead to further cutbacks in level of service and so on. Thus, such interhousehold 
feedback can have very important implications for predicting (systemwide) results over time. If 
such feedback exists, it can propel or hinder the adoption of a mode over time. In diverse 
literature, this dynamically reinforcing behavior is referred to as a social multiplier, a cascade, a 
bandwagon effect, imitation, contagion, and herd behavior (Manski, 1995). Brock and Durlauf 
(2001b) give an excellent and extensive literature review. 
 

In the spirit of Aoki (1995), Brock and Durlauf (2001a, 2002), and Blume and Durlauf 
(2002), we consider a model where an agent’s choice to adopt a discrete behavior or buy a 
discrete product is influenced by the percentages of the agent’s reference entities making each 
choice. An important extension with respect to earlier work is that we now develop results for a 
case where choice is multi-dimensional or, more generally, where there are common unobserved 
attributes of the choice alternatives. We revisit a classic approach to statistical prediction in such 
a situation given an observed sample of decision-making agents in a population, namely the 
nested logit model. In addition, a key feature of our work is that we explicitly consider nonglobal 
interactions, with several different social and spatial network structures that we can visualize and 
analyze by using geographic information system (GIS) tools and techniques. 
 

We present an empirical application of the model to transportation mode choice by using 
pseudopanel microdata collected by the Municipality of Amsterdam Agency for Traffic, 
Transport, and Infrastructure (dIVV) in the greater Amsterdam region during the period  
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1992–1997. Here we combine advanced econometric estimation (Dugundji and Walker, 2005)1 
with computational techniques from the field of multi-agent-based simulation. This paper 
extends earlier work by Dugundji and Gulyas (2003a,b) by exploring the various effects of social 
geography and additional heterogeneity introduced in the model through different mechanisms, 
such as individual-specific, sociodemographic characteristics of the agents as well as individual-
specific attributes of the choice alternatives and the availability of alternatives. It is important to 
note that this additional heterogeneity is beyond the heterogeneity induced by definition through 
the nonglobal interactions on the socio-spatial network. Finally, we conclude by highlighting the 
limitations of our present study in any extension for policy considerations on the adoption of 
innovation in transportation mode choice and giving our recommendations for future work. 
 
 

MODEL 
 

Since the early theoretical work of Aoki, Brock, Durlauf, and Blume on binary discrete 
choice models, a few extensions have addressed both the complexity of the discrete choice 
model kernel as well as the complexity of the feedback effect and the utility specification. For 
example, Brock and Durlauf (2002) extended their results on the behavior of binary logit models 
to multinomial logit models. Dugundji (2003, 2004) makes Brock and Durlauf’s multinomial 
results precise for trinary multinomial choice and extends the results for the case of nested logit 
with global interactions. Also, while the behavior over time derived in early work assumed that 
each decision maker is influenced by all other decision makers (so-called global interactions), 
Dugundji and Gulyas (2003a,b) derived more general behavior for the case where each decision 
maker is influenced by only a subset of decision makers (so-called nonglobal interactions).  
 

                                                 
1 One econometric issue that arises in empirical estimation of such a feedback effect in discrete choice models by 

using standard multinomial logit or nested logit models, however, is that the error terms are assumed to be 
identically and independently distributed across decision makers (Ben-Akiva and Lerman, 1985). It is not 
obvious that this is in fact a valid assumption when we are specifically considering interdependence between 
decision makers’ choices. We might reason that if there is a systematic dependence of each decision maker’s 
choice on an explanatory variable that captures the aggregate choices of other decision makers who are in some 
way related to that decision maker, as considered in the literature referenced above, there might be an analogous 
dependence in the error structure. Otherwise said, the same unobserved effects might be likely to influence the 
choice made by a given decision maker as well as the choices made by those in the decision-maker’s reference 
group. In terms of transportation mode choice, for example, accessibility measures for residents in the 
neighborhood could play such a role to the extent that these are unable to be directly captured through 
explanatory variables in the utility specification. In this case, the use of transportation mode shares of neighbors 
living in the same zone as an explanatory variable would be correlated with the unobserved error of the given 
decision maker, which is a classic case of endogeneity. The results and coefficients of such a model are likely to 
be biased. To try to separate out effects, it is critically important to begin with a mode as well specified as 
possible, making use of relevant available explanatory variables. Consequences of omitting significant 
explanatory variables in the utility specification and improperly accounting for availability of alternatives in 
nested logit discrete choice models with feedback effects are considered in Dugundji (2004). Dugundji and 
Walker (2005) continue this exploration of issues in the empirical estimation of discrete choice models with 
feedback effects by specifically testing for correlation among agents in the error structure in the particular 
empirical case study of mode choice to work, through the use of mixed generalized extreme value family 
models. 
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Importantly, a key to the theoretical results, however, is the assumption that the only 
explanatory variable in the model is the feedback effect. While such a specification may be 
plausible for a fad, such as the hottest new children’s toy, it is much less intuitive for 
transportation mode choice where other explanatory variables would be assumed to be 
significant, including both attributes of the alternatives such as travel time, as well as 
characteristics of the decision-making agents, such as gender, age, and income. Dugundji and 
Gulyas (2005) thus present initial results using simulated data for a binary logit model with 
nonglobal interactions and other explanatory variables included in the utility with a series of 
abstract random networks. In this paper, we present results for the behavior over time of a nested 
logit model with nonglobal interactions, using empirical data and empirical treatments of which 
decision makers influence each other defined on the basis of socioeconomic group and spatial 
proximity of residential location. 
 
 
Multinomial Logit 
 

Discrete choice theory allows prediction based on computed individual choice 
probabilities for heterogeneous agents’ evaluation of alternatives. Individual choice probabilities 
are aggregated for policy forecasting. In accordance with notation and convention in Ben-Akiva 
and Lerman (1985), the so-called multinomial logit model well known in econometrics is 
specified as follows. Assume a sample of N decision-making entities indexed (1, ..., n, ..., N), 
each faced with a choice among Jn alternatives indexed (1, ..., j, ..., Jn) in subset Cn of some 
universal choice set C (see Figure 1). 
 

Let Uin = Vin + ε in be the utility that a given decision-making entity n is presumed to 
associate with a particular alternative i in its choice set Cn, where Vin is the deterministic (to the 
modeler) or so-called “systematic” utility and ε in is an error term. Then, under the assumption of 
independent and identically Gumbel-distributed disturbances ε in, the probability that the 
individual decision-making entity n chooses alternative i within the choice set Cn is given by 
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where µ is a strictly positive-scale parameter that is typically normalized to 1 with the 
multinomial logit model. 
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FIGURE 1  Multinomial choice structure for a given 
decision making entity n 

 
 
Nested Logit 
 

The natural logarithm of the denominator in Equation 1 plays an important role in 
discrete choice theory when we advance from the basic multinomial logit model to the so-called 
nested logit model. Suppose that the choice set Cn faced by decision-making entity n is in fact 
partitioned into M mutually exclusive and collectively exhaustive nests Cmn indexed  
(1, ..., m, ..., Mn): 
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Each decision-making entity n is faced with a single choice among the mutually 

exclusive elemental alternatives i in the composite choice set Cn. Such a “nested” choice 
structure is depicted schematically in Figure 2. 
 

Let Uin = Vin + ε in be the utility that a given decision-making entity n is presumed to 
associate with a particular elemental alternative i in its choice set Cn, where Vin is the 
deterministic (to the modeler) or so-called “systematic” utility and ε in is an error term. Now 
similarly, let Umn = Vmn + ε  mn be the composite utility that a given decision-making entity n is 
presumed to associate with a particular choice subset Cmn. As derived in Ben-Akiva and Lerman 
(1985), under the assumption of Gumbel-distributed disturbances ε, the joint probability that the 
decision-making entity n chooses alternative i within the nest Cmn among all possible alternatives 
in its choice set Cn is given by 
 
 ( | ) ( | ) ( | )n mn mn nP i C P i C P C C= ⋅ , (3) 
 
where the probability of choosing alternative i within nest Cmn, conditional on having chosen that 
nest is 
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FIGURE 2  Nested choice structure for a given decision making entity n 
 
 
and the probability of choosing nest Cmn among the set of M nests is 
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Each nest Cmn within the choice set Cn is associated with a “composite systematic utility” 
given by 
 

 
1

mn mn mn
m

V V I
µ

= +% , (6) 

 
where we have the inclusive value Imn, otherwise known in diverse literature as the “logsum” or 
the “accessibility”2 
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The second term in the expression (Equation 6) gives summary information from the lower nests. 
 
 
Interaction Mechanism 
 

To make an effort to classify different types of demand-side interaction mechanisms, a 
distinction is hypothesized between social versus spatial interactions and between identifiable 
versus aggregate interactions (Dugundji and Gulyas, 2003a,b). We speak of interaction between 
“identifiable” decision makers when the links in the network are well-known and explicitly 
defined on an individual decision-maker-by-decision-maker basis. We speak of interaction 
between “aggregate” decision makers when interdependence is assumed to take place only at an 
aggregate level with links being defined, for example, more generally on the basis of decision-

                                                 
2  The term “accessibility” has its origins in the early applications of nested logit models to travel demand analysis. 
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maker characteristics. We speak of “spatial” network interactions when the interdependence 
represents a confluence of decision makers in geographic terms. For example, decision makers 
may be linked on the basis of spatial proximity of residential location, work location, or some 
other geographic point of reference, such as school, childcare, shopping, healthcare, 
leisure/recreation, or other relevant location. We speak of “social” network interactions when 
decision makers are linked on the basis of social circles. The decision makers need not be 
proximally or tangentially situated in geographic terms, and the interaction is not necessarily 
centered at a particular geographic point of reference; interaction may take place at a distance, so 
to speak. Table 1 provides examples of such interactions along these dimensions in the context of 
transportation mode choice. 
 

The research reported here explores interactions between a decision maker and the 
aggregate actions of other decision makers proximally situated in a spatial network, and 
interactions between a decision maker and the aggregate actions of other decision makers 
associated in a socioeconomic network (mechanisms II and IV in Table 1). Technically, 
however, interactions between identifiable decision makers (mechanisms I and III in Table 1) 
may also be modeled by using the approach described here, given the availability of suitable 
data; thus, methods reported here may prove to be useful in those areas as well, up to a point. 
 

Typically, survey data for interaction between identifiable decision makers would include 
explicit information on the relevant networks for each decision maker for the decision of interest. 
The members of the networks might then in turn be surveyed. In travel demand data collection, 
sometimes households from the population are sampled, and then all members of that household 
above a certain age are surveyed. As of yet, however, the authors are unaware of travel demand 
datasets that would take, for example, a snowball sampling approach, thereby collecting explicit 
information on interhousehold networks of decision makers. As suggested in Table 1, some 
examples of research questions we might like to answer related to interhousehold networks 
include spatial coordination/feasibility and social awareness/acceptance in the take-up of various 
transportation mode choices. In the absence of survey data on interaction between identifiable  
 
 

TABLE 1  Interaction mechanism framework — illustrative examples  

 
Interactions between... 

 
Identifiable decision makers 

 
Aggregate decision makersa 

   
Spatial networkb I.  Coordinating carpooling with 

neighbors 
II. Feasibility of high level of public 

transit service 
Social networkc III. Awareness about mode choice 

alternatives 
IV. Social acceptance of cycling/transit 

 
a Global interactions between a decision maker and the aggregate actions of other decision makers in the 

entire sample population (general societal bandwagon effects) may be addressed as the special limiting 
case of a fully connected network. 

b Intrahousehold interactions can be seen as a particular special case of spatial interactions 

c Not necessarily proximally or tangentially situated in a spatial network; interaction may take place at a 
distance. 
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decision makers at the interhousehold level, we turn instead to consider aggregate decision 
makers and use a priori beliefs about the social and/or spatial dimension of interactions to 
formulate the connectivity of the network. 
 

In the case study discussed below, we do not have available data on which identifiable 
agents influence other identifiable agents’ choices. We do, however, have rich socioeconomic 
data for each respondent as well as the geographic location of each respondent’s residence. 
These data allow us to define aggregate interactions by grouping agents into geographic 
neighborhoods or into socioeconomic groups indexed (1, ..., g, ..., G) where the influence is 
assumed to be more likely. In the simplest case, these groups are assumed to be mutually 
exclusive and collectively exhaustive. That is, each agent n belongs to one and only one group g. 
The agent is influenced by the average choice behavior of his or her group; and the influence by 
other groups is assumed to be negligible. Figure 3 illustrates the transportation mode shares for 
decision makers in the sample grouped by residential district.  
 
 At a global level, the picture is a fragmented or disconnected network of clustered 
groups. If we are interested in equilibrium behavior, the consequences of such an assumption are 
important: influence is not transmitted across groups, and the global picture is a weighted 
average behavior of the separate clusters. Thus, we consider the case with overlapping groups, 
with agents, for example, connected by social group as well as by residential district. This leads 
to a giant cluster for the empirical example under consideration, with the important implication 
that influence can spread throughout the entire population. Such a network is abstractly 
visualized in Figure 4 by using the freely available software packet Payek developed by Batagelj  
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FIGURE 3  Commuter mode count for decision makers grouped by residential district 
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FIGURE 4  Visualization of network defined by 
residential district plus socioeconomic group 

 
 
and Mrvar.3 Red dots represent fully connected residential districts as in Figure 3; the darkness 
and width of lines give an indication of the number of links between districts induced by 
socioeconomic group. 
 
 

EMPIRICAL APPLICATION 
 

The data used in this paper were derived from activity-based travel questionnaires 
administered by the dIVV during the period 1992–1997 in Amsterdam and a neighboring suburb 
to the south of the city, Amstelveen. The dataset made available October 2003 by the dIVV is a 
subset of the full modal split database containing only the direct home-work trips and direct 
work-home trips, where the purpose of the trip at the nonhome location is classified as either 
“work” or “business.”4 Geographic location is given in terms of the centroid of a traffic analysis 
zone (TAZ). There are 381 TAZ centroids in Amsterdam and 48 TAZ centroids in Amstelveen,  
 

                                                 
3 See http://vlado.fmf.uni-lj.si/pub/networks/pajek. 

4 Presumably, there may be a bias in commuter mode choice incurred by only having direct home-work and direct 
work-home trips in this particular subset of the database. For example, we might hypothesize that there is a 
potential flexibility afforded by the car in carrying out complex trip chains. If so, the proportion of car users 
might be underrepresented in the dataset as compared with the population share of all commuters, as the car 
users may be disproportionately excluded in the set of commuters making stops on the way to and from work. 
For this case study, we proceeded under the assumption that any extensions to population shares are only made 
for shares of direct work-home or direct home-work trips, and not for population shares of all commute trips. 
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with a total of 933 TAZs in the whole of the Netherlands.5 The subset of data received includes 
records of trips where respondents indicated the following mode choices: external system public 
transit or internal system public transit, car driver or car passenger, and bicycle or 
moped/motorcycle. The data were organized by trip and grouped by respondent. 
 

Development of a tour-based model is beyond the scope of this case study. Furthermore, 
gaps in the available data because of having only direct home-work and direct work-home trips 
and thus incomplete and/or ambiguous tour information pose additional challenges. Thus, a 
trip-based trinary mode choice model is considered here. However, because one of the central 
research questions to be answered concerns the explanatory power of the average choice 
behavior in a residential neighborhood on a given respondent’s commute mode choice, having 
multiple trips over the course of the day for one individual in the sample could bias results. That 
is, the research question could be confounded with and confound decision making, correlation, 
and constraints of mode choice of trips at the tour level and respondent level, with the research 
question. It was therefore decided to include only one trip per person in the sample. In practice, 
the one trip per person was selected on the basis of being the first trip in the day for which there 
were data for a given respondent. While not a perfect solution (particularly if a respondent 
happened to travel by different modes on an outward versus return journey), compared with the 
corrections necessary when including multiple trips per person and treatment of ambiguous 
information because of having only direct trips, the chosen approach was deemed the most 
appropriate for this case study. The final sample used in the case study contains 2,913 agents. 
 
 
Fully Connected Network: Docking Repast against an Analytical Benchmark 
 

Our first step was to estimate a simple nested logit model with a fully connected network 
where the only explanatory variable in the model is the network interaction variable (Table 2).  
 
 The descriptions of the agents are perfectly homogeneous at this point, since we do not 
include any sociodemographic information yet about the agents; we do not include attributes of 
the home-to-work or work-to-home trips yet for each of the agents; we do not take availability of 
transportation mode alternatives yet into consideration; the network is assumed here to be fully 
connected; and the model includes self-loops, that is, each agent counts its own choice in 
 
 

TABLE 2  Estimation results for a simple nested logit model with fully connected networka 

 
 

Variable  

 
Coefficient 
Estimate 

 
Standard 

Error 

 
 

t-Statistic 
    
Share of respondents in the sample choosing each mode  2.76 0.16 1.78 (against 0) 
Scale parameter for transit-car nest 1.03 0.05 0.67 (against 1) 
 
a Summary statistics: null log-likelihood: –3,200; final log-likelihood: –3,035; likelihood ratio test: 331. 

                                                 
5 The samples are stratified by residential location. With the travel mode choice model at hand, we have an 

exogenously stratified sample and the usual estimation procedure for a simple random sample applies. 
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evaluating the choices made by reference agents. This is a case for which the steady-state 
solutions of the sociodynamic system can be solved analytically as derived in Dugundji (2003, 
2004).  
 
 There are five solutions of this simple nested logit system for the particular given 
parameter values as estimated in Table 2. Three of these solutions are stable, and two are 
unstable. Because of the symmetry of the system where transit and car are nested together, at any 
mode share value for which there is a solution for transit, there will be a dual solution with an 
analogous mode share value for car, and vice versa. The most stable solution occurs with a mode 
share for bicycle of 0.700 and mode shares for transit and car each of 0.150 (see Table 3). In 
practice, we do not expect to see the saddle node solutions. Also, given that the initial starting 
conditions for the sample are almost 50% car travelers and less than 25% transit users, we might 
expect in practice that stable solution 2 listed in Table 3 with mode share 0.698 for car and mode 
share 0.143 for transit will more likely to be reached than its dual solution 3 with the mode 
shares reversed.  
 
 Next, we used the Repast agent-based modeling platform6 to create a computational 
version of this model. Example time series results are shown in Figure 5.  
 

In Figure 5, the yellow time series represents agents choosing cars, the pink time series 
represents agents choosing bicycles, and the blue time series represents agents choosing public 
transit. Each run is allowed to iterate for 600,000 time steps. This is on average 200 revisions of 
choices with asynchronous decision making for the sample size of roughly 3,000 agents. We 
obtain precisely the analytically predicted first two equilibrium solutions in Table 3. 
 
 

TABLE 3  Analytical benchmark equilibrium 
solutions for the simple nested logit model 

 
Mode Share 

 
Stable 

Solution 
No. 

 
 
 

Stability 
 

Bicycle 
 

Transit 
 

Car 
     

1 Most stable 0.700 0.150 0.150 
2 Stable 0.158 0.143 0.698 
3 Stable 0.158 0.698 0.143 
4 Saddle node 0.267 0.237 0.496 
5 Saddle node 0.267 0.496 0.237 

 
 

                                                 
6  See Repast Web site (http://repast.sourceforge.net). 
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Random seed 1 Random seed 2 Random seed 3 

   
Random seed 4 Random seed 5 Random seed 6 

   
Random seed 7 Random seed 8 Random seed 16 

FIGURE 5  Example time series for the simple nested logit model with different random seeds 
 
 
Heterogeneous Agents 
 

Next, we consider a more empirically interesting case with heterogeneous agents. The 
model is a trinary transportation mode choice model, with alternatives public transit (pt), 
bicycle/motorcycle (bi), and car driver/passenger (ca). Raw variables available for use in the 
model are defined as follows: 
 
 availpt  1 if public transit alternative is available, 0 otherwise 
 carown  1 if decision maker owns a car, 0 otherwise 
 gender 1 if female, 0 if male 
 age Respondent’s age category: 12–17 years; 18–29 years; 30–44 years; 

45–59 years; 60 years and older 
 income Respondent’s income category based on Dutch governmental 

classification: 0–5,000 NLG; 5,000 AOW; AOW social minimum; 
social minimum zkf; zkf+  

 education Respondent’s education category: elementary education (LO); 
lower vocational education (LBO); high school education (MO); 
post-high-school education (HO); other 
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 ivtpt  In-vehicle-time in minutes with public transit 
 ovtpt  Out-of-vehicle-time in minutes with public transit (access and 

egress, waiting, transferring, etc.) 
 ttbike  Travel time in minutes with bicycle 
 ttcar  Travel time in minutes with car 
 parktca Time in minutes to park car 
 
 Various piecewise linear specifications of all travel-time-related variables (ivtpt, ovtpt. 
ttbi, ttca, parkt) as well as age (defined by the midpoint of the age category) were tested against 
linear, quadratic, and logarithmic forms of these variables. Considering various a priori 
hypotheses of behavior in the region and after statistical comparison of the alternative nonlinear 
specifications of variables against the linear versions thereof using log-likelihood ratio tests and 
non-nested tests (Ben-Akiva and Lerman, 1985), the following definitions are ultimately used in 
the baseline model:  
 

lnage Natural logarithm of age in years  
 age4559  Max [0, min (age – 45, 15)] 
 ivtsqpt  In-vehicle time in minutes with public transit, squared 
 lnttcar  Natural logarithm of travel time in minutes with car 
 parktsqcar Time in minutes to park car, squared 
 aowmin  1 if income category AOW-social minimum, 0 otherwise 
 
In addition, bicycle availability is defined as follows: 
 
 availbi75 1 if travel time by bicycle is less than 75 minutes, 0 otherwise  
 
 
Sociogeographic Network Interdependence 
 

Now we turn to the specification of the network interdependence. We begin with a broad 
classification by residential district (Figure 3). Nine districts are represented in the sample, 
ranging in size from 223 to 461 sampled respondents. The mean size is 323 respondents, with 
standard deviation 74, skewness 0.32, and kurtosis 0.19. Next, using the three variables age, 
income, and education, 13 socioeconomic groups are defined (see Table 4). The groups range in 
size from 99 sampled respondents to 385 sample respondents. The mean size is 224 respondents 
with standard deviation 111, skewness 0.33, and kurtosis –1.8.  
 

Three new variables are then created:  
 
 dsdptnsl  Share of respondent’s fellow district residents and socioeconomic 

peers in the sample choosing public transit 
 dsdbinsl  Share of respondent’s fellow district residents and socioeconomic 

peers in the sample choosing bicycle 
 dsdcansl  Share of respondent’s fellow district residents and socioeconomic 

peers in the sample choosing car 
 

The designation “nsl” refers to “no self-loops.” That is, the respondent’s own choice is 
not included in the average behavior in the district perceived by a given respondent. The  
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TABLE 4  Mode share for direct commute trips and sample count by 
socioeconomic group 

 
Mode Share 

 
 
 
 

Socioeconomic Groupa 

 
Public 
Transit 

 
Bicycle, Moped, 
or Motorcycle 

 
Car Driver or 
Car Passenger 

 
 
 
 

Sample Count 
     
12–29, LO/LBO 0.31 0.24 0.45 112 
12–29, MO/other 0.32 0.27 0.41 385 
12–29, HO 0.34 0.30 0.36 329 
30–44, LO/LBO 0.24 0.20 0.55 117 
30–44, MO/other, 0–zkf 0.29 0.26 0.45 353 
30–44, HO, 0–zkf 0.21 0.41 0.37 361 
30–44, MO/other, zkf+ 0.17 0.11 0.72 115 
30–44, HO, zkf+ 0.14 0.22 0.63 338 
45–up, LO/LBO 0.16 0.23 0.61 175 
45–up, MO/other, 0–zkf 0.21 0.27 0.52 175 
45–up, HO, 0–zkf 0.20 0.35 0.46 101 
45–up, MO/other, zkf+ 0.15 0.15 0.70 99 
45–up, HO, zkf+ 0.17 0.24 0.59 193 
Sample count 690 779 1,444 2,913 
 
a Defined on the basis of age category in years, education category, and income level. 

Education is coded: elementary education and lower vocational education (LO/LBO); 
high school education and other (MO/other); and post-high-school education (HO). 
Income category is based on the Dutch governmental classification: zkf+ indicates the 
high-end incomes, 0–zkf is all else. Where income level is not explicitly specified, 
respondents from all incomes falling in the given age/education group are included. 

 
 
specification of these variables is generic with coefficient DSDNSL. There are two main 
motivations for choosing a generic specification, namely, simplicity and identification. The 
specification could be relaxed with the estimation of three distinct coefficients, but then we 
would per se need to estimate the coefficient as a random parameter. 
 
 
 

Specification of Utility Functions 
 

The systematic utilities for the model are specified as follows for public transit (PT), 
bicycle/motorcycle (BI), and car driver/passenger (CA): 
 
 V_PT = ASC_PT + GEND_PT*gender + OVT_PT*ovtpt + 

AGE4559_PT*age4559 + LNAGE_PT*lnage + IVTSQ_PT*ivtsqpt 
 
 V_BI = ASC_BI + GEND_BI*gender + TT_BI*ttbike + 

AOWMIN_BI*aowmin  
 
 V_CA = ASC_CA + CAROWN*carown + GEND_CA*gender + 

LNTT_CAR*lnttcar + PARKTSQ_CA*parktsqcar  
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First, a baseline multinomial logit model is estimated. Next, estimation of three 
successive nested logit models — first with public transit nested with bicycle, then with public 
transit nested with car, and finally with bicycle nested with car — shows the first nesting 
structure to be most significant in terms of the loglikelihood ratio test and in terms of the t test on 
the nest coefficient. The third nesting structure was not indicated. The nested logit model thus 
adds one additional parameter to the multinomial specification, namely, the scale parameter µ for 
the transit-bicycle nest. Table 5 provides estimation results for the multinomial logit and final 
nested logit model. 
 
 
Multi-agent-based Simulation for the Multinomial and Nested Logit Models 
 
 Finally, using the Repast agent-based modeling platform, we created a computational 
version of our multinomial and nested logit models with heterogeneous agents and 
sociogeographic network interaction. Example time series results for different random seeds are 
shown in Figure 6 for the multinomial logit case and in Figure 7 for the nested logit case. As in 
Figure 5, the yellow time series represents agents choosing car, the pink time series represents 
agents choosing bicycle, and the blue time series represents agents choosing public transit.  
 
 
TABLE 5  Estimation results with sociogeographic network interdependencea 

  
Multinomial Logit 

 
Nested Logit 

 
 

Variable Name 

 
Coefficient 
Estimate 

 
 

t Statistic 

 
Coefficient 
Estimate 

 
 

t Statisticb 

     
Share of each respondent’s fellow district residents 

and socioeconomic peers in the sample choosing 
each mode  

1.91 4.54 1.93 5.59 

Alternative specific constant defined for transit 0.15 0.18 0.20 0.50 
Alternative specific constant defined for car 0.32 0.65 –1.11 –2.14 
Car ownership defined for car 2.54 24.68 2.53 24.84 
Gender defined for transit 0.56 4.64 0.24 3.12 
Gender defined for car 0.45 3.70 0.28 2.46 
Low income defined for bicycle –0.48 –2.92 –0.17 –1.87 
Natural logarithm of age defined for transit –0.72 –3.10 –0.30 –2.12 
Age 45–59 piecewise continuously for transit 4.09e-02 2.13 1.94e-02 1.80 
In-vehicle time, squared defined for transit –3.95e-04 –4.42 –2.90e-04 –3.68 
Out-of-vehicle time, defined for transit –2.52e-02 –2.87 –1.91e-02 –3.26 
Travel time for bicycle –8.10e-02 –14.96 –3.75e-02 –4.38 
Natural logarithm of travel time for car –1.40 –7.11 –0.50 –1.97 
Parking time, squared for car –1.17e-02 –7.51 –1.36e-02 –8.35 
Scale parameter for transit-bicycle nest — — 2.51 2.48 
 
a Summary statistics: initial log-likelihood: –2,977; final log-likelihood multinomial logit model: –2,063; 

likelihood ratio test multinomial logit model: 1,829; final log-likelihood nested logit model: –2,055; likelihood 
ratio test nested logit model: 1,844. (Note that the initial log-likelihood here differs from the null log-
likelihood in Table 2; in order to dock our multi-agent-based simulation results against the analytical 
benchmark, the availability of alternatives previously had been not taken into consideration.) 

b All t statistics are against 0, except for the scale parameter, which is against 1. 
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Random seed 1 Random seed 2 Random seed 3 

   
Random seed 4 Random seed 5 Random seed 6 

   
Random seed 7 Random seed 8 Random seed 9 

FIGURE 6  Example time series for the multinomial logit model with heterogeneous agents 
 
 
Similarly, each run is allowed to iterate for 600,000 time steps, on average 200 revisions of 
choices with asynchronous decision making for the sample size of roughly 3,000 agents. 
Comparing the time series for the multinomial with that for the nested logit case, we obtained 
dramatically different results for the steady-state solutions of the system. This result is 
particularly significant when we realize that all estimated coefficients for the multinomial logit 
versus the nested logit model are within two standard errors of each other, except for the scale 
parameter estimated for the nested logit model and the travel time for bicycle. Thus, the effect of 
considering unobserved heterogeneity through the introduction of the scale parameter and the 
effect of common unobserved attributes of the choice alternatives in the error structure is 
something that clearly cannot be ignored in an empirical application of a discrete choice model 
with network-dynamic interactive feedback. 
 
 

CONCLUSIONS 
 
 We have extended previous work on discrete choice with social interactions in important 
ways. First, we presented a framework for conceptualizing the interdependence of decision  
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Random seed 1 Random seed 2 Random seed 3 

   
Random seed 4 Random seed 5 Random seed 6 

   
Random seed 7 Random seed 8 Random seed 16 

FIGURE 7  Example time series for the nested logit model with heterogeneous agents 
 
 
makers’ choices, making a distinction between social versus spatial network interdependencies 
and between identifiable versus aggregate agent interdependencies. In our empirical application, 
we considered a model where an agent’s choice is directly influenced by the percentages of the 
agent’s neighbors and socioeconomic peers making each choice; given the availability of 
appropriate data, our approach in principle is directly extendable to the identifiable agent case. 
We introduced additional heterogeneity in the model through different mechanisms, such as 
individual-specific sociodemographic characteristics of the agents as well as individual-specific 
attributes of the choice alternatives and the availability of alternatives. Finally, we introduced 
unobserved heterogeneity by accounting for common unobserved attributes of the choice 
alternatives in the error structure. We observed that these extensions generate dramatically 
different dynamics and thus cannot be ignored in any empirical application. 
 

To separate out the effects, more research is needed to explore systematically the effects 
of different model configuration treatments, for example, the effect of sociogeographic network 
interaction, the effect of excluding self-loops, the effect of alternative specific constants, the 
effect of availability of alternatives, the effect of various explanatory sociodemographic agent 
characteristics, and the effect of various agent-specific attributes of alternatives.  
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Also very important for any policy application, particularly for transportation mode 
choice, would be introducing into the model not only positive feedback, but also negative 
feedback, to account for congestion effects in addition to agglomeration effects. 
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ABSTRACT 
 

This paper reports on investigations of the size distribution of rural land holdings in 
Scotland and on the output of two simulation programs: (1) a simple numerically based 
simulation of the partition and repartition of a fixed-size resource between a fixed set of 
entities and (2) an agent-based model of rural land use and land ownership change, 
FEARLUS. The work reported in this paper began with the expectation that the sizes of 
land holdings in Scotland might show a power-law distribution. In fact, the distribution 
appears to be intermediate between an exponential distribution and a power-law 
distribution, approaching a power-law distribution toward the upper tail. No simple 
mechanism has been found that would be expected to reliably produce power-law 
distributions of land holding sizes. The simple nonspatial simulation program readily 
produces distributions close to a power-law distribution, while some parameter settings of 
FEARLUS produce distributions that resemble the empirical findings. Results over a 
range of parameter settings indicate that the distribution is shifted toward an exponential 
distribution by the ability of the owners of large holdings to reduce risk by diversifying 
land use, as well as by the tendency of farmers to buy only land close to their existing 
holdings. 
 
Keywords: Socio-spatial simulation, power laws, agent-based model 

 
 

INTRODUCTION 
 

Any set of items or events to which sizes can be attributed can be considered in terms of 
the distribution of those sizes. In many cases, this distribution approximates to the Gaussian, 
with the greatest number of entities being intermediate in size and having roughly symmetrical 
tails. Indeed, the fact that the alternative name for this distribution is “normal” indicates that this 
has traditionally been considered the default. However, when we consider the size distributions 
of physical entities such as islands in an archipelago, of more abstract entities such as firms 
(Axtell, 2001), or of events such as earthquakes (Bak, 1997) or wars (Richardson, 1960), we find 
a fundamentally different kind of phenomenon: most of the set’s members are small, with 
numbers decreasing more or less monotonically as larger sizes are considered. This paper 
focuses on another domain in which this phenomenon of asymmetric size distribution occurs: the 
division of land holdings among different owners. In particular, this paper focuses on the size 
distribution of rural land holdings in Scotland. 
 

The Framework for Evaluation and Assessment of Regional Land Use Scenarios 
(FEARLUS; Polhill et al., 2001; Gotts et al., 2003) is an agent-based modeling system, 
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developed primarily to study the processes underlying land use change. One aspect of the system 
is a simple mechanism for transferring land from unsuccessful Land Managers1 to their more 
successful neighbors or to new agents entering the simulation. The purpose of including this 
mechanism in FEARLUS models is to (1) allow the study of the competitive properties of 
different approaches to selecting land uses under different circumstances and (2) provide a 
feedback mechanism that increases over time the proportion of land to which the more successful 
approaches were applied. The actual size distributions of holdings produced is an outcome that 
was not initially of particular interest. However, when we began to exchange ideas about the size 
distributions of areas or parcels of land that arise in land-use-related contexts, it became clear 
that FEARLUS might be a useful investigative tool. Moreover, such use could potentially 
provide feedback for the design of more sophisticated versions of the FEARLUS system that 
would have more realistic mechanisms for the exchange of land. As Chattoe (1996) notes, the 
existence of such “emergent data,” which are not part of the simulation design but can be 
compared with real-world data, is an important methodological advantage of agent-based 
simulation, since the data can provide an independent way of checking whether a model is 
capable of reproducing aspects of the world that have not been, so to speak, “put in by hand.” 
 

As we continued our investigations, it appeared useful to develop a simpler, purely 
numerical and nonspatial simulation modeling system (R-SG) to elucidate the processes that 
could produce different kinds of size distributions. This paper, together with Gotts and Parker 
(2004), reports on our first investigations of size distributions of land holdings by using 
FEARLUS and R-SG. 
 
 

LEPTOKURTIC SIZE DISTRIBUTIONS IN 
SOCIAL AND SOCIO-SPATIAL CONTEXTS 

 
 Among asymmetric size distributions, perhaps the most commonly found are exponential 
distributions, in which the number of a set of entities or events of different sizes declines with 
size in such a way that the probability of a randomly selected member of the set X, being at least 
a given size X0, can be calculated from a formula: 
 
 P(X ≥ X0) = exp[(a − X0)/b], (1) 
 
where a and b are constants. Asymmetric distributions for which the number of entities decreases 
more slowly with size are frequently called leptokurtic (fat-tailed). Two classes of leptokurtic 
asymmetric distributions that are important here are the lognormal distribution (for which, as the 
name suggests, the logarithms of the entities’ sizes are normally distributed) and the power-law 
distribution. The formula for the power-law distribution is: 
 
 P(X ≥ X0) = a − X0b, (2) 
 
where b > 0. If b < 2, a power-law distribution has no defined variance, while if b < 1, the mean 
also fails to be defined; the larger the sample gathered, the greater the expected sample mean. Of 
course, for any finite set of entities, the distribution of sizes must eventually fall below the 
power-law distribution, since there will be some largest member of the set; thus, a power-law 

                                                 
1 Terms that refer to FEARLUS model entities are in initial upper-case letters; they are also italicized when they 

first appear. 
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distribution (like any other continuous distribution) can only be an approximation to the 
messiness of the real world. 
 

Nonetheless, a power-law distribution can be closely approximated over several orders of 
magnitude. Such distributions have been reported from a wide range of social and socio-spatial 
contexts in research going back more than a century. Among relatively recent literature, Carroll 
(1982) reviews extensive work on city size distributions, while Axtell (2001) provides evidence 
that firm sizes in the United States are power-law distributed. Strong empirical evidence has 
been found for the existence of fractal distributions of density-radius relationships and patch 
sizes (a patch is a contiguous area given over to the same land use) across many European and 
North American cities (White and Engelen, 1993; Batty and Longley, 1994; Rand et al., 2003). 
Because fractals are self-similar across spatial scales, fractal distributions are a special case of 
power-law distributions. (White and Engelen [1993] has an excellent discussion.) Authors have 
generally found empirical power-law coefficient estimates (fractal dimension) between 1 and 2. 
The results related to patch size are most relevant for the research presented here, since the 
area-scaling relationships depend on decreasing parcel density as distance from the transport 
center increases. Fractal distributions of patch sizes, however, may reflect industrial as well as 
spatial structure. 
 

The results of several cellular and agent-based land use models have been tested for the 
existence of power-law distributions of parcel sizes. These models focus primarily on urban and 
ex-urban development. Batty and Xie (1994, 1996) use both a diffusion-limited aggregation 
model and cellular automaton techniques to generate fractal urban growth patterns. White and 
Engelen (1993) use cellular automaton techniques to generate similar patterns. Rand et al. (2003) 
construct a model of ex-urban residential location, where agents’ location decisions are 
influenced by a desire for natural amenities (dispersion incentive) and a desire for proximity to 
service centers (agglomeration incentive). In comparisons of simulation results to real-world 
patterns, all authors found strong evidence for a power-law distribution of parcel sizes. It is 
notable that these patterns persisted as the models developed and became more complex and 
potentially realistic with respect to the number of land uses they represent, their interactions, and 
the complexity of landowner decision making. The generality of results implies that fractal 
patterns may result from many combinations of spatial dispersion and agglomeration forces. 
 

The theoretical justification for the existence of power laws in rural land use comes from 
two sources. The first is the literature on industrial structure. Axtell (2001) reviews evidence for 
power laws in this realm and demonstrates how these distributions can emerge as the result of 
decentralized interactions. Moss (2002) similarly argues that power-law distributions will be 
generated in time series by models with agents that are influenced by, but do not (slavishly) 
imitate, other agents known to them. The second justification, which suggests a different form of 
explanation, comes from models concerned with scale-independent growth. Gabaix (1999) 
demonstrates that a very simple growth process can generate a lognormal distribution and claims 
that slight modifications to this process can turn the lognormal into a power-law distribution. 
Specifically, Gabaix observes that if the members of a set of entities grows and shrinks in such a 
way that the expected proportional growth, and the variance of that proportional growth, are 
independent of entity size, then whatever the initial distribution of sizes is, an approach to a 
lognormal distribution of sizes will result (assuming that the variance is nonzero; if it is zero, the 
initial size distribution will be preserved). Growth processes like this are said to obey “Gibrat’s 
law.” The lognormal distribution produced will not be stable; rather, the range of sizes will tend 
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to increase without limit, so that given a large enough population of entities, the distribution will 
approach uniformity over any given range of values. 

 
Gabaix proceeds to argue that if some mechanism is introduced that prevents members of 

the set of entities from shrinking indefinitely, the result will be a power-law distribution. Perhaps 
the simplest such mechanism is to impose a positive lower limit on permitted sizes, restoring any 
entity that shrinks below this size to this limit. Gabaix states that if this mechanism is applied, 
the value of b in Equation 2 approaches 1 as the size of this limit approaches 0. 
 

However, Gabaix’s reasoning has been severely criticized by Blank and Solomon (2003). 
These authors, citing Malcai et al. (1999), claim that Gabaix overlooked a key assumption: the 
accuracy of an approximation that they claim is required in Gabaix’s calculation depends on the 
number of entities in the set being large compared with the ratio between the mean and minimum 
sizes in their distribution. (Specifically, it is necessary that ln(N) >> 1/c, where N is the number 
of entities, and c is the ratio between the minimum and mean sizes.) Differences in terminology 
and in the precise mechanisms employed in the models, as discussed by Gabaix on one hand and 
by Malcai et al. on the other, make it difficult to assess this claim. Blank and Solomon (2003) 
appear to be mistaken in claiming that the model described by Gabaix (1999) makes c liable to 
decrease without limit over time. (They interpret Gabaix as holding the lower size limit for cities 
constant as the sum of the sizes of all cities increases, which would lead c to shrink indefinitely. 
In fact, Gabaix states that he is working with a limit that is a proportion of the mean size.) 
However, Gabaix (1999) does not appear to consider the effect of varying the relationship 
between c and N. 
 

Malcai et al. (1999) analyze a model in which one randomly selected member of the set 
of entities at a time is resized by a factor λ drawn from some distribution Π(λ) (they assert that 
the details of this distribution turn out not to be important), subject to a lower limit c on the 
resulting size relative to the mean entity size before the resizing. They argue, and confirm 
numerically, that when 1/ln(N) << c < 1, the resulting size distribution tends toward a 
power-law distribution with a slope of –1/(1 − c) as N → ∞ and will approximate a power-law 
distribution with a slope of –ln(N)/ln(N/c) for any finite N, when c << 1/N < 1. More generally, 
the steepness of the slope (given by its absolute magnitude) increases with the number of entities 
and with c. We report below on the outcomes of simulations that used a slightly different 
process; they are generally compatible with these results, but they also indicate the importance of 
another feature of the process  the rate at which entity sizes change. 
 

In sum, the empirical findings and theoretical background described in this section are 
sufficient to reasonably hypothesize that land holding size distributions might follow power-law 
distributions, but they do not suggest a specific hypothesis about slope. It was with this 
preliminary hypothesis in mind that we examined the size distribution of land holdings in 
Scotland. 
 
 

SIZE DISTRIBUTION OF SCOTTISH LAND HOLDINGS 
 

The main source of data on size distributions of land holdings in Scotland used in the 
work reported here is Wightman (2003). (See also Wightman [1996, 2004].) Figure 1 shows the 
most recent available size distributions of Scottish land holdings of 1,000 acres (approximately  
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FIGURE 1  Scottish land holding size distribution ([Left] Power-law 
distribution would produce a straight line. [Right] Exponential 
distribution would produce a straight line.) 

 
 
400 hectares) and over. These plots were produced by ranking the 1,411 holdings concerned and 
pairing each ranking with the corresponding size in acres to produce a data point. This method is 
called the “rank-size” approach to plotting or measuring size distributions. In the left side of the 
figure, a log-log plot is used; a straight line would indicate a perfect power-law distribution, with 
its slope giving the value of b in Equation 2. Similarly, a straight line in the right figure, where 
the logarithm of the rank is plotted against the untransformed size values, would indicate an 
exponential distribution. 
 

Results from regression analysis are as follows. For the best-fitting power-law 
distribution found by the analysis, R2 is 0.9465, the t-ratio for the slope estimate is –157.8, and 
the slope estimate itself is –0.89002. Both R2 and the t-ratio for the slope estimate are less 
favorable for the best exponential found: 0.7474 and –64.58, respectively. This suggests that the 
real-world distribution is closer to a power-law distribution than to an exponential distribution. 
(The appearance of the two plots is enough to indicate that it is intermediate between the two.) 
However, a Kolmogorov-Smirnov test (NIST/SEMATECH, 2004) shows that the distribution is 
not a pure power-law distribution with the slope and intercept given by the straight line on the 
left figure. (The value of the D-statistic ≈ 0.1616, giving a p-value < 10-15. The p-value here is 
the probability that a sample of this size drawn from a power-law distribution with that slope and 
intercept would give a result at least as far from the ideal as the actual data.) 
 

We can give a more detailed description of the distribution of land holding sizes in 
Scotland by considering the characteristics of proper parts of the upper tail of 1,411 holdings 
plotted in Figure 1. First, we can consider shorter upper tails. As shown in Gotts and Parker 
(2004), the value of R2 obtained from log-log regression analysis (which would be 1 for a perfect 
power-law distribution) generally declines as the tail length increases, but it initially rises to two 
peaks (Figure 2). (These peaks are at values of ≈ 0.9884 when the largest 31 holdings are 
considered and ≈ 0.9804 when the largest 160 holdings are taken. The peaks occur in the same  
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FIGURE 2  R2 values for a “moving window” of 160 holdings (left) 
log-log regression (right) log-untransformed sizes regression 

 
 
places if the adjusted R2 is used.2) Corresponding values for R2 when the logs of the ranks are 
regressed against the untransformed sizes are lower for every length of tail, decline more 
smoothly, and have a single peak at ≈ 0.9225 when the largest 81 holdings are considered. We 
can thus suggest that the curve moves away from a power-law distribution and toward an 
exponential distribution and then back toward it as we consider longer tails, but it always 
remains closer to the former. 
 

We can take this descriptive approach one stage further by considering a “moving 
window” of 160 holdings, beginning with the largest 160, then considering those of ranks 
2 through 161, then 3 through 162, and so forth. Figure 2 shows the R2 values produced for 
log-log regression (left) and for log-untransformed value regression (right). It can be seen that 
for the log-log regression, the values are at first considerably higher, but they fall to similar 
values by the time ranks 500 through 659 are considered. Again, this suggests that the 
distribution is more power-law-distribution-like toward the upper tail than it is farther away from 
that tail. 
 
 
R-SG: NONSPATIAL MODEL OF ALMOST SCALE-FREE COMPETITIVE GROWTH 

 
Real-world size distributions of land holdings are the product of complex historical and 

ecological processes, so it should not be surprising that they do not follow mathematically simple 
patterns. Nonetheless, as a step toward understanding them, it is important to discover what 
relatively simple mathematical and computational models can do. This section and the next one 
examine the results of models developed within two modeling systems: one is a simple 
numerical system, and the other is a pre-existing, spatially explicit, agent-based system. 
 

R-SG is so named because it is written in the programming language R (The R 
Foundation for Statistical Computing, 2003) and implements a process of Shrinkage and Growth 
                                                 
2 The adjusted R2 = −(k − 1)/(n − k) * (1 − R2), where n is the number of observations and k is the number of 

independent variables. 
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of a set of abstract entities. This set is fixed throughout a simulation. In the experiments carried 
out so far, all members of the set are initially the same size. The purpose of building and using 
R-SG was to illuminate the issues raised in Gabaix (1999), Malcai et al. (1999), and Blank and 
Solomon (2003), concerning whether simple stochastic growth processes applied to fixed sets of 
entities can give rise to power-law size distributions, and, if so, what values the slope parameter 
can take under what circumstances. We compared and contrasted this relatively simple, 
nonspatial simulation model with the agent-based model described in the next section. 

 
In an R-SG run, the initial set of entities is put through a three-step process, repeated as 

many times as desired: 
 

1. Each set member is independently grown or shrunk by a factor of 2p, where p 
is drawn from a normal distribution with mean 0. 

 
2. A fixed increment f is added to the size of each entity. 
 
3. The entire set is rescaled so that the sum of entity sizes remains constant. 

 
Note that in Step 1, as in the process described by Gabaix (1999), but in contrast to the process 
described by Malcai et al. (1999), all members of the set are processed simultaneously. Step 2 
has the function of “repelling” sizes from zero in a way that appears to be more statistically 
convenient than setting a common minimum size for all entities: in early trials, the latter 
produced a large number of entities of the same size after most cycles, raising problems in 
applying graphical and statistical techniques. 
 

In the runs discussed in detail here, three R-SG parameters were varied: 
 

1. Their initial size s (1,024 or 2), 
 
2. The fixed increment f (1 or 0.1), and  
 
3. The standard deviation σ of the distribution of p (1 or 2). 

 
The number of cycles used was 8,192, but examination of the output showed that the system 
passed through a phase of directional change lasting less than 10 cycles (as the initially equal 
sizes dispersed), after which further change appeared to have no secular trend. Subsequent 
analysis was therefore limited almost entirely to the first 1,024 cycles. Each of the two values of 
these three parameters was combined with each value of the others, giving eight runs; however, 
only the ratio between s and f and not their absolute values should affect results, if it is assumed 
that floating point errors do not make any substantive difference (see Polhill et al., 2005). 
 

The resulting size distributions appear to be closer to power-law behavior than 
exponential behavior for the vast majority of cycles, according to visual observation and judging 
by the results of regression analysis and subsequent Kolmogorov-Smirnov tests. 
 
 In addition to a measure of the slope drawn from a log-log regression, three measures of 
distance from a power-law distribution were used in comparing the eight runs; they were 
recorded after each cycle. Two of these were produced directly by the log-log regression: the R2 
statistic, and the t-ratio for the slope estimate. The p-values, produced by applying the 
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Kolmogorov-Smirnov test to the actual distribution, and a perfect power-law distribution, 
constructed by using the slope and intercept produced by the regression analysis, were also 
measured. The values of each measure for the first 1,024 cycles of each run were then ranked in 
terms of (absolute) magnitude. (The lack of any apparent directional change after the first few 
cycles prompted this procedure.) Ranks 1, 256, 512, 768, and 1,024 for the slope estimates, 
t-ratios of those estimates, and Kolmogorov-Smirnov p-values are given in Tables 1 through 3. 
Each column in a table deals with one of the five ranks; each row gives results for one parameter 
combination, but the row labels identify the values of σ and s/f. Values are given to six 
significant figures. The cells also show the position that the value in that cell holds within the 
column (italic numbers 1 through 8). Results for the R2 statistic have been omitted, since they 
produced orderings within all columns identical to those for the t-ratios. 
 

The order of values for slope (Table 1) is the same for each column, except that for 
rank 1. In the other columns, both a smaller s/f ratio and less variation in growth or shrinkage 
between entities (σ = 1 rather than σ = 2) produced a steeper slope, with the former having the 
greater effect. The s/f ratio will be closely correlated with the ratio between the mean and 
minimum size, so a decrease would indeed be expected to produce a steeper slope (i.e., a faster 
fall-off of number of entities with increasing size). Increasing σ will tend to disperse sizes 
further, increasing the mean/minimum ratio and so producing a shallower slope. For rank 1 only, 
increasing the value of σ appears to give a steeper slope (it may increase the change between 
cycles and hence produce a wider spread of values), but the s/f ratio has the same effect as it does 
in the other columns. 
 

In Tables 2 and 3, higher values indicate a distribution closer to a power-law distribution. 
The value of σ is by far a more important parameter than the value of s/f in these tables. In both, 
the first three columns (ranks 1, 256, and 512) have the four highest values in the lower half of 
the column (where σ = 2), so the value that has produced more dispersion of sizes and more 
rapid change from cycle to cycle has also produced a nearer approach to a power-law 
distribution. In the last column (rank 1,024), however, the higher values are in the upper half of 
each column; a higher value of σ thus increases the greatest deviations from a power-law 
distribution, presumably because of the greater cycle-to-cycle variability that widens the spread 
of values over the entire simulation. The rank 768 columns resemble the first three in Table 2, 
while in Table 3, this column appears transitional: both the highest and the lowest values of 
Kolmogorov-Smirnov p-values occur when σ = 2. The effect of variations in the s/f ratio is 
somewhat more complicated. The clearest pattern occurs for ranks 256 and 512, where a greater 
s/f ratio results in a closer approach to a power-law distribution in both Tables 2 and 3 when  
σ = 1, but the opposite is true when σ = 2. This pattern remains to be explained, but because of 
the apparent importance of the value of σ, a number of simulations were run by using both 
higher and lower values than those in the tables (4, 0.5, 0.25, and 0.0625). Increasing σ 
consistently decreased the slope, while both the higher and lower new values of σ appeared to 
take the distribution farther from a power-law distribution. Thus the effects of changes in σ on 
nearness to a power-law distribution also appear to be more complicated than their effects on 
slope. Finally, in this section, Figure 3 is a plot of the size distribution that results after  
8,192 cycles of the run with σ = 2 and s/f = 2. Visually, this indicates a very close approximation 
to a power-law distribution, in agreement with the figures produced by the regression analysis 
and Kolmogorov-Smirnov test. 
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TABLE 1  R-SG initial experiments: values of slope estimate (obtained by regression 
of log holding size rank on log holding size) 

 
Value for  
σ and s/f 

 
Rank 1 

 
Rank 256 

 
Rank 512 

 
Rank 768 

 
Rank 1,024 

      
σ = 1, s/f = 2 2 -2.09794 1 -1.72147 1 -1.69195 1 -1.66360 1 -1.55482 
σ = 1, s/f = 20  4 -1.46120  3 -0.895743  3 -0.855912  3 -0.834851  3 -0.786376  
σ = 1, s/f = 1,024 5 -1.30373 5 -0.588202 5 -0.529235 5 -0.495024 5 -0.431431 
σ = 1, s/f = 10,240 6 -1.28002 7 -0.510262 7 -0.445979 7 -0.414442 7 -0.352196 
σ = 2, s/f = 2 1 -2.13153 2 -1.14165 2 -1.09618 2 -1.05633 2 -0.968117 
σ = 2, s/f = 20  3 -1.89855 4 -0.798696 4 -0.732043 4 -0.687595 4 -0.600086 
σ = 2, s/f = 1,024 7 -1.22332 6 -0.575801 6 -0.499385 6 -0.460567 6 -0.375413 
σ = 2, s/f = 10,240 8 -0.944702 8 -0.481219 8 -0.423064 8 -0.378591 8 -0.302925 

 
 

TABLE 2  R-SG initial experiments: values of t-ratio for slope estimate (obtained by 
regression of log holding size rank on log holding size) 

 
Value for  
σ and s/f 

 
Rank 1 

 
Rank 256 

 
Rank 512 

 
Rank 768 

 
Rank 1,024 

      
σ = 1, s/f = 2 8 -305.475 8 -214.074 8 -193.448 6 -175.852 1 -113.542 
σ = 1, s/f = 20  7 -420.519 7 -235.437  7 -205.882  5 -181.272  2 -78.6294  
σ = 1, s/f = 1,024 5 -909.333 6 -287.276 6 -218.758 7 -174.598 4 -56.2555 
σ = 1, s/f = 10,240 6 -753.409 5 -319.692 5 -226.911 8 -170.360 3 -64.6916 
σ = 2, s/f = 2 1 -1239.22 1 -603.047 1 -460.326 1 -342.269 5 -45.3581 
σ = 2, s/f = 20  3 -1117.14 2 -530.117 2 -375.305 2 -265.840 7 -30.3374 
σ = 2, s/f = 1,024 4 -1061.55 3 -436.637 3 -301.583 3 -208.988 8 -22.5185 
σ = 2, s/f = 10,240 2 -1193.04 4 -405.799 4 -273.885 4 -190.816 6 -35.2038 

 
 
TABLE 3  R-SG initial experiments: Kolmogorov-Smirnov p-values (obtained by comparing 
actual distributions with perfect power-law distributions constructed by using the slope and 
intercept estimates produced by regression of log holding size rank on log holding size in 
simulation runs; the numbers in brackets after the zeros in the last column indicate the rank of 
the lowest nonzero value) 

 
Value for  
σ and s/f Rank 1 Rank 256 Rank 512 Rank 768 Rank 1,024 

      
σ = 1, s/f = 2 8 0.00450945 8 2.48681e-06 8 6.02319e-07 6 1.35980e-07 1 7.67781e-10 
σ = 1, s/f = 20  7 0.142582  7 1.47649e-05 7 1.97300e-06 4 2.88714e-07 2 1.74865e-10 
σ = 1, s/f = 1,024 6 0.868725 6 2.46820e-04 6 9.57023e-06 3 3.69632e-07 4 0 [1021] 
σ = 1, s/f = 10,240 5 0.972127 5 0.00123282 5 2.78823e-05 4 2.88714e-07 3 4.05231e-13 
σ = 2, s/f = 2 3 0.999997 1 0.551489 1 0.0366311 1 7.73624e-05 5 0 [995] 
σ = 2, s/f = 20  1 1.00000 2 0.384530 2 0.00951858 2 3.92762e-06 6 0 [954] 
σ = 2, s/f = 1,024 3 0.999997 3 0.059457 3 1.14782e-04 7 3.72839e-08 8 0 [915] 
σ = 2, s/f = 10,240 1 1.00000 4 0.0322953 4 5.17362e-05 8 1.27847e-08 7 0 [928] 
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FIGURE 3  Log-log plot of size distribution of R-SG 
run with σ = 2 and s/f = 2, after 8,192 cycles 

 
 

FEARLUS: AGENT-BASED SPATIALLY EXPLICIT SIMULATION 
OF RURAL LAND USE AND OWNERSHIP 

 
A number of agent-based models of rural land use have recently been developed. These 

models explore a variety of questions. Several explore structural change in agriculture (Balmann, 
1997; Berger, 2001; Balmann et al., 2003). Other contributions investigate boundedly rational 
decision making by rural landowners in developed countries (Gotts et al., 2003; Hoffmann et al., 
2003). To the authors’ knowledge, however, the work reported on here and in Gotts and Parker 
(2004) is the first to specifically investigate size distributions of holdings in rural land. 
 

The FEARLUS agent-based modeling system (Gotts et al., 2003) is used to model rural 
land use and ownership. Each Land Manager chooses Land Uses for the Land Parcels in its 
Estate every Year, using a Land Use Selection Algorithm. This may take into account recent 
Returns gained by the Land Manager and its Neighbors (who counts as a Neighbor can be 
varied). Returns in the Environments used in the work reported here depend only on the Land 
Use and External Conditions, which represent climatic and economic conditions and are 
homogeneous across space but vary over time. Land Managers in financial deficit at the end of a 
Year sell enough Land Parcels to clear their deficits, leaving the simulation if this leaves them 
landless. Such Parcels can be bought by a Neighbor (the definition of “Neighbor” is a model 
parameter) or by a new Land Manager entering the simulation. (Currently, there is a fixed price, 
and a lottery decides which Manager gets the Parcel.) A Break Even Threshold determines how 
hard it is to make a profit: interesting size distributions result only if this threshold is neither too 
high (when most agents go bankrupt and are replaced each Year) nor too low (when the 
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distribution freezes immediately). The Land Parcel Price, which determines how much the seller 
receives and the buyer gives, can also be varied. 
 

The Environment used here is a 40 × 40 toroidal grid of Land Parcels and runs for 
8,000 Years. The output from the FEARLUS simulations differs from the R-SG output in that it 
generally shows a “historical” directionality, presumably because FEARLUS allows the number 
of Estates to change. In the simulations reported here, the number of Estates begins at the 
maximum of 1,600, but if, at any point, it declines, it may increase again. The Land Parcel 
distribution sometimes becomes stable and sometimes continues to change; but in the latter case, 
it usually appears to be going through size distributions roughly similar to those that have 
already been encountered by the end of the run. A second general point is that two runs with the 
same parameters can produce markedly different size distributions; the results reported here 
generally use the first run made with each parameter set. The comparisons reported must be 
regarded as provisional until more extensive work is undertaken and statistically significant 
results are produced. 
 

No parameter settings yet found consistently give size distributions that are as close to 
power-law distributions as some found for R-SG, but many give distributions that resemble the 
real-world distribution (i.e., in being intermediate between power-law and exponential in form). 
The parameters that most influence the size distribution of Estates are the Break Even Threshold 
and the parameters that determine the Managers’ Land Use Selection Algorithms. The simplest 
used were Random Selection (RS) and Fickle Selection (FS): both choose Land Uses randomly 
each Year, but RS does this independently for each Parcel, while FS applies the same Land Use 
to the entire Estate. The latter produces ownership patterns closer to power law distributions.  
 

Most of this section reports on results from simulations involving somewhat more 
realistic Land Use Selection Algorithms, in which the current Land Use is retained if the Return 
reaches the Manager’s Aspiration Threshold, while either RS or FS is used on any remaining 
Parcels. These Algorithms are called HR (Habit-Random) and HF (Habit-Fickle). The former has 
turned out to be fairly robust in performance if the Aspiration Threshold is set neither too high 
nor too low. (At or near the Break-Even Threshold is usually best [Gotts et al., 2003]. In the runs 
reported here, it was always set at that point.) 
 

In this section’s figures, the line above each subfigure identifies the set of parameters 
used. Each subfigure shows the temporal evolution of some statistical measure over an 
8,000-Year run. Figure 4 plots results from the first run using an “H8P8125F2” parameter set. 
(This is the second set of parameters investigated in which the Land Managers used HF, and the 
Break-Even Threshold was 8.8125 and the Aspiration Threshold was 8). This set has produced 
distributions as close to power-law distributions as any tried so far. It will be used as a reference 
point through the remainder of the section. The Land Managers here followed an HF Algorithm, 
and because all Land Managers are “Neighbors” of each other, a Manager with the necessary 
cash can buy a Land Parcel anywhere in the Environment. The Land Parcel Price is 16. (The 
units are arbitrary: 16 is also the maximum Return in the runs discussed here.) 
 

The top left subfigure shows the number of different Estate (holding) sizes (Estate size is 
always an integer number of Parcels), which begins at 1 and, in this case, rises quickly before 
settling between 20 and 25. The top right subfigure shows the slope estimate produced by a 
log-log regression of the complementary cumulative density function (CCDF) of the distribution  
 



626 

 

FIGURE 4  Diachronic plots of output from run 1 with parameter set 
H8P8125F2 
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against Estate size. (The CCDF is the fraction of entities at or above a given size.) The CCDF is 
used instead of the rank-size approach because the integral values of size produce multiple ties 
when the latter is employed.) The remaining four subfigures contrast the outcome of this 
regression (on the right) with a regression of the log CCDF on the untransformed Estate sizes 
(on the left). The middle row shows t-ratios of the slope estimates, and the bottom row shows 
adjusted R2 values. As can be seen, with these parameters, the size distribution appears to be 
closer to a power-law distribution than an exponential distribution throughout, but there seems to 
be some movement away from a power-law distribution toward the end of the run. 

 
The remaining three figures make it possible to contrast this run with the first runs 

undertaken with three different parameter sets, each differing from H8P8125F2 in just one 
respect. In Figure 5, the contrast is with H8P8125R2, which uses Random rather than Fickle 
Selection on Parcels where the Aspiration Threshold is not met. As can be seen in the top left 
subfigure, the number of different sizes of Estates is considerably lower. There is, in fact, 
considerably less consolidation of Estates. The resulting slope estimate from log-log regression  
 
 

 

FIGURE 5  Diachronic plots from run 1 with parameter set H8P8125R2 
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of CCDF on Estate Size is steeper, and the way in which the number of Estates decreases with 
Estate size is much closer to an exponential distribution than to a power-law distribution, as can 
be seen in the lower two subfigures, which show adjusted R2 values. (The gaps in these plots 
occur when the number of different Estate sizes falls too low for the regression analysis to be 
undertaken.) A possible explanation for the difference between H8P8125F2 and H8P8125R2 is 
that Land Managers using HR spread their risks more once they have multi-Parcel Estates (the 
Land Uses they employ are, on average, less uniform in any one Year), which will decrease the 
rate of change in the Estate size in both directions. Hence, there are likely to be fewer large 
Estates. 
 

In Figure 6, the parameter set concerned differs from H8P8125F2 in the way 
Neighborhood is defined. In the parameter set H8P8125F1, two Land Managers are Neighbors if, 
and only if, their Estates share a common boundary point. This change also shifts the resulting 
size distribution away from a power-law distribution and toward an exponential distribution. In 
this case, the shift may be due to a reduction in the speed with which Estates can expand. Since 
they can add new Parcels only at their boundaries, a large Estate cannot expand at as great a 
proportional rate as a small one, if neither is limited by the availability of cash. 

 
 

 

FIGURE 6  Diachronic plots from run 1 with parameter set H8P8125F1 
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Finally, Figure 7 shows output from the first run with the parameter set H8P8125F7, 
which differs from H8P8125F2 in having a lower Land Parcel Price of 1 rather than 16. Here, 
what has actually happened is that for much of the time, a single Estate controls more than 
1,200 of the 1,600 Parcels; therefore, the number of different Estate sizes is small. Note that the 
slope is now quite shallow. As occurs when R-SG is used, it appears that speeding up the rate of 
change across the board (by making it easier to buy and by requiring more Parcels to be sold to 
settle a debt of the same size) resulted in a shallower slope. 

 
 

DISCUSSION 
 
 Power-law size distributions are reported from a wide range of types of data in the natural 
and social sciences. However, the simple theoretical model that is claimed by Gabaix (1999) to 
produce power-law distributions with a slope of –1 in a set of growing and shrinking entities 
does not do so in general. It is not in itself surprising that the measured distribution for Scottish  
 
 

 

FIGURE 7  Diachronic plots of run 1 with parameter set H8P8125F7 
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land holding sizes does not follow a straightforward power-law distribution. However, we can 
ask why land holdings appear not to resemble other sets of socioeconomic entities such as cities, 
firms, and market shares, and why R-SG parameter settings that generate distributions close to 
power laws are easier to find than their FEARLUS counterparts. 
 

Some specific reasons for the latter difference have already been hinted at in relation to 
particular FEARLUS parameter sets. The set H8P8125F2, which gave the closest approach to 
power-law size distributions, has two features that are unlikely to be found in real-world contexts 
and are not present in most FEARLUS models. First, Land Managers with multi-Parcel Estates 
choose the same Land Use for all Land Parcels on which they change Land Use in a given Year. 
Second, a Land Manager is equally as likely to buy a new Parcel remote from its current 
holdings as a neighboring one. Removing either of these two features appears to shift the 
distribution away from a power-law distribution and toward an exponential distribution, 
plausibly by reducing the speed at which large Estates grow (and, in the first case, shrink) in 
proportional terms. Slowing the speed of change can be expected to produce a steeper fall in the 
number of large entities, as seen in the R-SG results using different values of σ: if the slowing 
occurs in only part of the range of sizes, the result will be a local steepening. Blank and Solomon 
(2003) state that “power laws, as opposed to other functional forms, have no fixed scale and their 
emergence implies that the system behaves self-similarly over many orders of magnitude.” 
Where we find deviations from power-law distributions in spatially distributed systems, we may 
therefore conclude that in some way, different mechanisms are operating at different scales. In 
this connection, it is interesting that the sizes of the largest 160 estates in Scotland apparently do 
fall very close to a power-law distribution and fall much farther from an exponential distribution. 
This suggests that the processes primarily determining the size distribution have been different 
for different size ranges. 
 

Even H8P8125F2 does not produce perfect power-law distributions in FEARLUS. One 
possibility of current interest is that the main reason for this is that successful Land Managers 
can buy more land only when other farmers are financially obliged to sell. If this constraint on 
growth was important in the real world, long-settled areas might show size distributions very 
different from those of regions where there has been recent expansion into uncultivated land or 
regions where land has been taken by force from a weaker ethnic or social group by a dominant 
group. Furthermore, even in long-settled areas, different institutional systems might produce 
marked differences. This constraint on growth could be seen as an example of a broader 
tendency for socioeconomic systems involving interacting adaptive agents to evolve both 
individual and collective responses that buffer change (Ormerod and Mounfield, 2001). In the 
near future, we intend to compare the size distribution of Estates in FEARLUS with the 
distribution of total Wealth, including the “cash” that Land Managers can accumulate if unable 
to buy more Parcels. The latter distribution may be considerably closer to a power-law 
distribution, since it is not subject to the same constraints on its growth. We hope to report this 
work in Gotts and Parker (in preparation). 
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ABSTRACT 
 

Creation of open source software (OSS) can be considered a collective action by 
individuals with the mutual self-interest of creating and maintaining a public good. We 
explain the OSS development process in terms of public goods theory, including the 
notions of connectivity and communality for interactive communication systems. We add 
a feature  the characteristics of the environment as it interacts with the OSS 
development community. OSS is more than a simple, classical, physical good; it is a 
complex, socially constructed, informational good that has heterogeneous resource 
requirements and provides heterogeneous benefits to its users. Critical mass occurs not at 
a singular point in time but is an ongoing, adaptive process, and the notion of success for 
a project depends both on the group’s cognitive purpose of the software and each 
member’s cognitive belief in the project’s success. We describe in detail the connection 
between the OSS development community and public goods theory, and we explore the 
hypothesis of OSS as a public good by using agent-based modeling and simulation. 
 
Keywords: Open source software, public goods theory, agent-based simulation, 
computational social theory 

 
 

INTRODUCTION 
 
 Creation of open source software (OSS) can be considered a collective action by 
individuals with the mutual self-interest of creating and maintaining a public good. Public goods 
theory (Samuelson, 1954) attempts to explain the factors that encourage people to contribute to a 
public good. Four such factors include (1) identified features of the public good, 
(2) characteristics of the individuals, (3) characteristics of the group, and (4) the action process 
of contribution (Marwell and Oliver, 1993; Monge  and Contractor, 2003). We add a factor  
the characteristics of the environment. For an OSS project, the software itself can be considered 
the public good, but it would be more accurate to extend the good to also include the project’s 
Web pages, discussion forums (e-mail lists, newsgroups), and management tools (bug/feature 
tracking, source control) because they provide communality (Fulk et al., 1996). These features 
are mechanisms for people to collectively share information and knowledge related to the public 
good. OSS projects generally have full communication connectivity because of the discussion 
forums. Each individual can easily communicate with every other individual by posting a 
message, but this does not mean there is full social connectivity, because individuals may not 
read the forums or may ignore messages on those forums. An important notion in public goods 
theory is that of critical mass (Marwell et al., 1988), which refers to a point in time when enough 
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individuals have committed resources to make the public good a realization. For OSS, such a 
critical mass is one but not the only criterion for a project to be successful. 
 
 In this paper, we describe in detail the connection between public goods theory and the 
OSS development community. We discuss the various factors of public goods in relation to OSS 
projects and examine how OSS diverges from the classical theory both in its interaction with the 
environment and how critical mass and project success are defined. We describe an agent-based 
model and simulation, especially the challenges involved with correlating social theory with 
empirical data into a valid simulation. Finally, we offer some conclusions and directions for 
future work. 
 
 

OPEN SOURCE SOFTWARE AS A PUBLIC GOOD 
 
 
Characteristics of an Open Source Software Project 
 
 Open source software projects have all of the features of a public good. First, a digital 
product, it can be easily and inexpensively copied for each individual, which allows for a shared 
supply; that is, multiple individuals can be using the public good at the same time, and use by 
one individual does not limit use by another. Second, OSS projects prevent exclusion because 
each user has his or her own copy with the right to modify and to distribute. The OSS licenses 
disallow a single user to take away usage rights from other users. Third, OSS projects have the 
“free-rider” phenomena in that many individuals download and use the software without 
contributing to the software project. Finally, OSS is developed through collective action by 
numerous individuals. These four features are the core characteristics associated with classical 
physical public goods, as described by Marwell and Oliver (1993). However, Fulk et al. (1996) 
put forward that communality and connectivity are additional characteristics of public goods for 
interactive communication systems; OSS projects have these additional features.  
 

Connectivity refers to the ability of any member to communicate with any other member. 
This capability is supplied for OSS projects by such features as e-mail lists and discussion 
forums, so there is a very low cost to communicate directly to any and all members. 
Communality is the notion of a shared body of information or knowledge held by the members, 
so for OSS projects, this shared knowledge pertains to the project’s Web pages, frequently asked 
questions (FAQs) documents, user and reference documentation, wiki’s, discussion archives, and 
other such features. The availability of these additional features means that the computer 
software code alone is not the public good. Instead, all of these communal artifacts that surround 
the software are encompassed by the definition. The broadening of what is included in the public 
good definition for OSS projects has the implication that the good is more than a simple, 
classical physical good; it is in fact a complex, informational good. By complex good, we mean 
that the good provides a heterogeneous set of benefits to its users in contrast to the often 
homogeneous benefit supplied by classical public goods. The concept of OSS as a complex good 
is put forward by Bessen (2001) as a hypothesis for why OSS provides functionality that is not 
provided by proprietary software companies. As a complex good, OSS provides multiple features 
whereby individuals have interest in different subsets of those features; we expand upon 
individual interests and benefits in the next section. 
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 The life cycle of software differs from that of physical goods. Early in the software life 
cycle, few features are available to users, and little or no benefit can be obtained from the 
software. As the software develops, other features are added that broaden the potential users of 
the software. Also, the communality aspects increase as contributors, who are not software 
programmers, enhance the public good by writing Web pages and FAQ documents, reporting 
bugs, and suggesting new features. This middle period of the life cycle sees an increase in 
software complexity as features become interdependent; this change causes a corresponding 
increase in heterogeneous resource requirements for the project. Besides programmers, the 
project needs testers to find and report bugs and writers to draft FAQs and other documentation. 
When resources are scarce, competition appears to determine what features to implement. It is 
during this period that the critical mass arises or not, determining if the project receives sufficient 
resources to grow into a successful and self-sustaining project. Later periods in the life cycle are 
marked by maturity and maintenance tasks; the resource requirements of the software diminishes 
as few new features are added and most software development deals with fixing bugs or porting 
the software to different environments. 
 
 
Characteristics of an Individual 
 
 One of the key characteristics of OSS projects is the heterogeneity of the individuals 
involved. Heterogeneous interests play both cooperative and competitive roles. Individuals 
cooperate to attract and to accumulate resources for a particular OSS project, but within a 
project, individuals compete for which features to implement, the architecture and design of the 
software, the specific license to use, and the technology. Each individual holds beliefs about 
these issues and communicates them publicly to enforce or to direct these beliefs onto other 
members of the group. The resource capability, be it time or skill, is also heterogeneous for 
individuals. Some people have the skills to write software code, while others have skills in Web 
design, graphics, or the ability to install and use the software. Besides having these skills, 
individuals must also have the time available to contribute to the project, and that time must 
match the temporal resource requirements as the project evolves. Resources are generally 
considered fungible (Marwell and Oliver, 1993), which means that they can be reduced to a 
single metric (like money). This assumption is not valid for OSS projects, however, because 
resource interdependencies play an integral part in the evolution of the project. Finally, the 
benefits that individuals gain from using the software, as well as the costs they incur from 
contributing to a project, vary from individual to individual. All of these factors play roles as 
positive or negative feedbacks that attract or repel individuals. 
 
 Current research by Xu et al. (in press) has categorized individuals into project leaders, 
core developers, co-developers, active users, and passive users according to their role and type of 
contribution to the project. Passive users are the free riders who use the software but do not 
contribute to the public good in any way, whether it be software contributions or just posting 
messages to the discussion forums. Active users participate in discussions, report bugs, and 
request features, but they do not contribute code. Co-developers, core developers, and project 
leaders contribute source code, but only the core developers and project leaders can commit code 
into the source repository. Therefore, co-developers must communicate their code to someone in 
one of the two other categories. Project leaders have the additional authority to perform 
administrative duties, such as adding or removing core developers, but they can also delegate 
some administrative duties to the core developers. 
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Characteristics of the Group 
 
 The group is defined as the set of people associated with an OSS project. The group’s 
communication is characterized by full connectivity and one-to-many messages through the 
project’s mailing lists and discussion forums. One-to-one private communication exists, often for 
functional purposes like sending patches to maintainers, but the public forums are considered the 
primary communication medium. Group norms come into play regarding acceptable usage of 
these forums for both the form and content of messages. These norms are heterogeneous across 
projects. Some projects may consider posting patches to the forum as acceptable, while others do 
not, or responsiveness to newbie Help requests may provoke a detailed answer or a blunt 
response to read the documentation. These norms also extend to the source code for formatting 
standards and naming conventions. Each project enforces its norms through an often 
undocumented and informal action process of correcting an individual whenever they have 
violated a norm. 
 
 Of particular interest are group norms that appear to be shared across many projects; one 
such norm is the maintenance of ownership responsibility for code a developer has written. 
When new code is committed into the project’s source code, the author of that code is expected 
to respond to bug reports and features requests related to that new code. Developers who do not 
follow through with their responsibilities may be looked upon with disfavor, and project 
maintainers may be less inclined to accept code submissions from that developer in the future. 
This norm is enforced by many open source licenses, which legally require that authors and their 
modifications be clearly documented with the source code. Such a norm also appears to act as an 
implementation of division of labor for the project; instead of a manager dividing and assigning 
tasks, individual developers acquire responsibility in a decentralized and self-selecting manner. 
 
 Just as an individual can have cognitive beliefs about an OSS project, the group has a 
cognitive understanding of the purpose of the project. Such a cognitive structure is inherently 
dynamic, changing over time as users join and leave the project and inject new ideas into group 
discussions. Constraints imposed by this group cognitive structure feeds back to individuals’ 
self-interests as they compete among themselves for features to implement in the project. This 
competition can also be viewed as attempts to shift the group’s cognitive goals so that they align 
more closely to individuals’ interests. 
 
 
Action Processes of Open Source Software Development 
 
 In keeping with our definition of OSS as a complex good, the action processes of 
contribution undertaken by individuals display considerable heterogeneity. By action process, we 
refer to any action undertaken by an individual that translates into collective action for the public 
good; such actions alter the public good by adding, removing, or reallocating resources. An 
individual can contribute to an OSS project in many ways, and each way requires differing 
resource commitments of skill and time by the individual. Actions can be categorized as either 
individual or project actions; however, a project as a socially constructed informational good 
cannot actually perform an action, so an individual is required to perform the actions on behalf of 
the project. The type of project action performed by an individual often signifies the role or 
authority that individual has within the project. Conversely, only individuals with the right 
authority can perform project actions. Project actions include creating a project, adding or 
removing core developers, committing source code, and releasing file distributions. Individual 
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actions include writing source code, writing documentation, posting messages, reporting bugs, 
and requesting features. Many more individual and project actions exist, but not all can be listed 
here, and all are considered collective actions for the public good. 
 
 An individual’s position within the group is not fixed; in time, a person can acquire more 
responsibility and authority for the group or can become more distant with less interaction and 
contribution to the project. The evolution of an individual’s role in an OSS project is a key action 
process. A current hypothesis is that a project that can increase the responsibilities of members 
(which implies increased resource commitment) and can retain those members is more fit and 
has a better chance of success. Likewise, the disengagement of individuals with a high level of 
responsibility from the project signals a significant loss of resources and diminished survival 
prospects for the project. 
 
 
Characteristics of the Environment 
 
 Although not generally considered as part of the theory of public goods, the environment 
is one of the central concepts in agent-based modeling, and it plays an important role in the OSS 
community. By environment, we refer to everything external to our unit of interest  the OSS 
project. Included are such things as proprietary software companies; political and economic 
climate (both nationally and globally); legal issues, especially with regard to intellectual property 
rights and the difference of those rights between nations; and technological advances and 
standardization efforts of technologies. Of interest are commercial organizations that are 
injecting resources into the community either by hiring programmers to work on OSS projects or 
investing money in organizations that develop OSS. Included is the trend of proprietary software 
companies to support their software on OSS systems, as well as to bring OSS internally as 
components of their proprietary software or as part of their information technology 
infrastructure. These activities have given endorsement and validity to OSS, which has enabled 
customers to seriously consider open source alternatives to proprietary software. Most of this 
activity has occurred after the relevant OSS projects have become successful; while they can 
help stabilize those projects, such environmental effects are not the cause of the projects’ initial 
success. 
 
 Technology plays an important role in determining how desirable an OSS project is to 
potential developers and users. Such technologies include the programming language, supported 
operating systems, integration with other tools and libraries, support for standard data formats 
and protocols, and even the “look and feel” for graphical programs. For OSS projects, 
technology is part of the environment, and projects may have to adapt to different technologies if 
they want to attract and retain a larger user base. The environment is not static for OSS projects; 
it is dynamically changing through introduction of new programming languages, new 
architectural paradigms, new software engineering practices, new standards and protocols, and 
new modes of communication. Such a changing environment leads to the development of new 
software features and makes some existing features more or less desirable than others. 
 
 
Critical Mass and Project Success 
 
 Critical mass is the point when a public good has received enough interest and resources 
to be self-sustaining. For a classical public good, critical mass indicates a success point when the 
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public good is realized. For software, the notion of critical mass as a specific event is not so clear 
because the definition of success is not homogeneous for all software projects. Each project has 
its own definition of success that is a subjective rating by users of the software; it cannot be 
computed with a simple numerical measure. The potential user base of an agent-based simulation 
toolkit is significantly smaller that that for a Web browser or a word processor, so direct 
comparison between projects is not possible. In addition to projects having a heterogeneous 
definition of success, each member within a project has a different cognitive belief in the 
project’s success. This situation stems from the fact that OSS is a complex, socially constructed 
informational good that evolves through interactions between its members and the environment. 
Critical mass is not a singular point in time; rather, it is an ongoing, adaptive process. Projects 
that have attained a critical mass can lose it later in time, not just from people leaving the project, 
but also from people joining the project, shifting the group’s cognitive purpose or goal of the 
software and increasing the resource requirements to make the project successful. 
 
 Data mining research (Gao et al., 2004) has indicated that five temporal factors are 
significant for clustering projects into categories of success: (1) number of developers, 
(2) number of file releases, (3) number of help requests, (4) number of tasks opened, and 
(5) number of tasks closed. All of these factors are expressed as rates of change over time. 
K-means clustering by these factors partitions the projects into failed, normal, and good projects 
with decreasing confidence, and the remaining unclustered projects are categorized as excellent 
projects. The significance of these results is that while standard metrics can accurately categorize 
failed projects, excellent projects are outliers in the dataset. So while these factors offer a good 
description of what excellent projects are not, they offer little description of what excellent 
projects are. Our focus on agent-based simulation is then to produce outlier scenarios. Analysis 
of the time evolution and dynamics of those outlier projects should provide hypotheses as to why 
the projects succeed, and we expect that empirical surveys can test those hypotheses. 
 
 

AGENT-BASED MODEL AND SIMULATION 
 
 We explore the hypothesis of OSS as a public good by using agent-based modeling and 
simulation. Individuals and projects are modeled as agents interacting in a virtual environment, 
specifically a social network. The environment is also an agent in our model, and the social 
network is dynamic because both individuals and projects appear and disappear from the 
network, and network links appear and disappear as people join and leave projects. We focus on 
the time series and evolutionary aspects of the community as individuals join and leave projects 
as their interests and resource commitments change, and projects are created, abandoned, and 
allowed to mature through a software life cycle.  
 
 We currently are designing and implementing an agent-based simulation for our public 
goods theory of the OSS development community. Serious challenges are associated with such a 
simulation for input modeling, parameter estimation, and validation. The primary set of 
empirical data available to us is a database dump of the SourceForge community, and while this 
dataset is large, it is missing key attributes of individuals that can usually be obtained for smaller 
communities through surveys. Likewise, the database dump is a snapshot in time of the 
community, so not all necessary temporal information is available to enable us to understand the 
evolution of the projects and the individuals. We do, however, have very good data analysis 
about the project and developer networks indicating the existence of scale-free and small-world 
network properties. 
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 Input modeling refers to the process of developing an analytical distribution for empirical 
data that can be used to synthesize input data for a simulation. Parameter estimation is 
determining appropriate values to use for the parameters of those analytic distributions like mean 
and standard deviation. For our model, we need input distributions for attributes of individuals, 
projects, and the environment. The primary individual attributes are interest, skill, and time. No 
information on those attributes is directly available in the empirical data, but we can infer skill 
and time distributions on the basis of the quantity and type of activities performed by individuals, 
and interest of individuals can be inferred from project attributes. Information on the 
environment is more difficult because the Sourceforge data have no real measurement of outside 
influences; however, we can estimate the flow of people in and out of the OSS community. More 
research is needed on the effect of singular events, such as Oracle supporting Linux, or advocacy 
events, such as the announcement of a project on Slashdot. Besides the attributes of the agents, 
the rates for action processes must be estimated. The rate of new projects being created, the 
membership rate of people joining projects, and the activities within a project (such as posting 
messages, reporting bugs, committing source code, and releasing files) are all relevant action 
processes. As mentioned, data mining results have shown some factors to be more significant 
than others, so we will initially focus on actions related to those significant factors in our 
implementation. 
 
 Validation is the process of comparing the simulation’s behavior to the behavior of the 
real system. Here lies the greatest challenge because it is not possible to acquire complete 
information about the real system in order to perform extensive statistical testing. The approach 
we take toward validation uses global network properties and data mining. If the social network 
created by the simulation has the same network properties (e.g., statistically comparable 
clustering coefficient and scale-free parameter) as the empirical social network, then we claim 
that our social network structure is similar to the real social network. Of course, many processes 
can produce a scale-free network, so we cannot claim we have found the correct process, only 
that we have found a social theoretic process that produces the correct structural properties. Data 
mining offers a novel validation technique because we can perform the same data mining and 
clustering algorithms on the simulation data, and the algorithm tells us what are considered the 
most significant factors. Therefore, if the algorithms produce the same factors and the same 
clusters for the simulation data as for the empirical data, then we claim that the trends and 
patterns within the simulation correlate to the same trends and patterns in the real system. Data 
mining provides us with a validation technique, not just on the raw data but also on the meta-
data. We must be cautious about this claim because data mining of incomplete information in the 
empirical data may produce incomplete factors. Therefore, our simulation may just be 
duplicating significant factors in the empirical data instead of representing the truly relevant 
factors in the real system. 
 
 

CONCLUSIONS 
 
 Public goods theory offers a rich social theory framework for studying the OSS 
development community. We described OSS in terms of the four theoretical features of classical 
public goods: (1) characteristics of the good, (2) characteristics of the individuals, 
(3) characteristics of the groups, and (4) action processes of contribution. We also described OSS 
in terms of communality and connectivity as additional features for public goods that are 
interactive communicative systems. Likewise, we extended public goods theory for OSS by 
incorporating the characteristics of the environment as a new feature and by redefining critical 
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mass as an ongoing, adaptive process. Transformation of the conceptual model into an agent-
based simulation poses numerous challenges for input modeling, parameter estimation, and 
validation. We described some of these challenges and suggested that data mining algorithms 
offer a novel form of validation that operates on the meta-data instead of the raw data. As we 
progress, we look to complete our agent-based simulation and to provide additional insight about 
the open source development community. 
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DISCUSSION: 
 

GEOGRAPHY AND CULTURE 
 

(Saturday, October 9, 2004, 10:15 a.m. to 12:15 p.m.) 
 

Chair and Discussant:  Pam Sydelko, Argonne National Laboratory 
 
 
Emergence of Social Complexity in Mesa Verde by Using Cultural Learning 
in the Presence of Balanced and Reciprocal Exchange Networks 
 

Pam Sydelko:  My background is in ecological modeling. Ecologists are brethren with 
sociologists because we are in a field that isn’t a physical science. We often interact with people 
from the physical sciences who have equations for things that describe something in the real 
world. Ecology is like sociology. We can’t observe things. We often have to come up with 
models. So stepping out into applications in that area, I have a lot of scars. That’s what I do; I’m 
an application scientist. 

 
When I take a simple model (like some theory out of the literature) and take that first 

tentative step in making a model that might actually answer a question, I’m left without a hand to 
hold. That’s because basic scientists have the opinion that once you’ve done that, they’ll have 
nothing to do with you. I would say that culturally, some of what we can get over with when we 
are trying to come up with something like that very nice graph of Chick’s [Macal] is the concept 
of iterative development —you go back, do experimental modeling, then step out and try it, then 
go back, and then have that be a team effort and more of a handholding effort. If you’re going to 
try to apply this, that’s one of the things I’ve noticed. 

 
The other thing that I would like to say is that coming from the other end — where 

decision makers want their models to say black or white or yes or no, it’s really frustrating for us 
applied scientists because we know we can never tell them black or white or yes or no, even 
though they want that so badly. So there’s a role for visualization here. We need to be able to get 
decision makers to accept a landscape or a surface of outcomes. We need to look at more 
alternative futures or alternative outcomes analysis, where we can say that we don’t know 
exactly, but it seems it looks a little bit like this. There tend to be more outcomes that look more 
like this than this. Something along that line gives them at least some ways of making decisions 
better, without telling to tell them exactly what decision they should make. 

 
Our first talk is a very lead-in to geography and simulation applications. I guess that Bob 

probably had this happen when he first started stepping out of the literature and doing some 
applications in this area; in fact, two things probably happened. One was that a lot of people 
suggested that you forgot this, you forgot this, and you forgot that. But you have to start simple 
in some ways to get your feet wet. I’m interested that you had a path for extensibility, and now 
you’re adding some of these things you knew we had, that we were ignoring at first and are now 
trying to put in. I think it’s a great example of an application trajectory that can occur if you’re 
lucky enough to have the time and funding to actually step more into the details over time. 
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Let me now introduce Bob Reynolds, from Wayne State, with a talk on “Emergence of 
Social Complexity in Mesa Verde Using Cultural Learning in the Presence of Balanced and 
Reciprocal Exchange Networks.” 

 
Robert Reynolds:  Wow. I have a notepad to write down all the extensions that I need to 

add to this. My co-author, Ziad Kobti, is sitting here. This work is part of his Ph.D. thesis, which 
he is completing this term at Wayne State. In fact, in approximately two weeks, I will be giving a 
talk on the results to land managers in the city of Cortez. They are, in fact, in charge of dealing 
with issues there. Here’s one of the architectural remains of the ancient Anistazi, and there’s a 
story here. In fact, there’s a mystery. This area contains one of the great mysteries of the 
prehistoric world. There is a civilization, the ancient Anistazi, who occupied this area from 
around 600 A.D. to 1300 A.D. and built very elaborate architectural structures. All of a sudden, 
around 1300 A.D., they disappeared. They left. Many of the Native American tribes in the area 
claim ancestry with these ancient ones. It has raised a number of questions that archeologists, 
anthropologists, and sociologists have been asking and thinking about for decades. One of the 
goals of our approach is to figure out or suggest some possible solutions to the mystery or 
unravel the riddles of what they left behind. 

 
The overall approach for the talk is to motivate this mystery in the geographic and 

ecological context in more detail. Then we’ll talk about the framework in which we’re going to 
be developing the agents, and the intelligent agents, and their population. Next we’ll look at the 
kinds of social intelligence that will be evolving in these agents within that framework. Finally 
we’ll look at some of the results, and we’ll try to deal with the issue of model validation. In fact, 
we’re working with ecologists, archeologists, and anthropologists who have a lot of data and 
who are not reluctant to validate the model. So it’s definitely a constant process. 

 
[Presentation] 

 
Sydelko:  We have time for one question. 
 
Craig Stephan:  I’m Craig Stephan of Ford Motor Company. I’m interested in the fact 

that your population continues to increase. If you had simply let the model run without bringing 
in drought or climate change or whatever, would you ultimately reach a peak and a population 
crash? 

 
Reynolds:  We’re not looking at any of the density-dependent factors that would take 

place because the population is growing, and there are obviously some areas in which people are 
more likely to collect. That’s going to create issues of, for example, strife and stress, and none of 
that is included, but once we start to deal with community issues, then we will. It’s a “to do.” 

 
This is a suggestion for further reading. This is another application where we look use 

multi-agent-based systems to do design. We’re looking at agents that interact to develop large-
scale software systems. So we have a collaboration, but it’s in terms of design knowledge and 
not the ancient application. This is a brand new book that just came out. Buy it. Done. 
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Sociodynamic Discrete Choice on Networks in Space:  Impacts of Agent 
Heterogeneity on Emergent Outcomes 
 

Sydelko:  Our next speaker is Elenna Dugundji, and the application is transportation. 
Most of the models we’re looking at in this session are probably what Chick calls the insights 
type of model. It’s looking at the theory behind transportation mode choices and how that plays 
out in a specific place in the Netherlands. 

 
Elenna Dugundji:  The topic of this presentation is socio-dynamic discrete choice on 

networks. This is a collaborative work with colleague Lazlo Gulyas in Budapest, Hungary, at the 
Computer and Automation Research Institute of the Hungarian Academy in Sciences. He is 
responsible for the code, which is written in Repast. I will go through motivation, then touch 
very briefly on the literature because there’s quite a bit. I’ll show you one table. I’ll show the 
model, some analytical results so far, and the empirical application, and finally open the session 
to questions. 

 
[Presentation] 

 
Dugundji:  My colleague Lazlo Gulyas would like to thank his thesis supervisors, and 

I would like to thank mine. This work funded by the Dutch National Science Organization. Also 
we’d like to thank the people who helped us with the data from the municipality of Amsterdam. 

 
Reynolds:  I’m Bob Reynolds from Wayne State University and the University of 

Michigan Museum of Anthropology. On the simulation, you had over 300,000 time steps. What 
are your units of time? Three hundred thousand is long. What unit does this mean in terms of 
agent decision making? 

 
Dugundji:  Very good question. 
 
Weimo Zhu:  I’m from the University of Illinois. Amsterdam is a city unlike many 

others in that cycling is very popular. You have an excellent support in the city, and it’s a very 
unique part of your culture, and so that environment support is such an important factor. I was 
also wondering if the weather plays a role. I know certain times of year are very cold. Do the 
people still carry out the same behavior? 

 
Dugundji:  There are several questions. With regard to the questions about Amsterdam, 

the modal split is actually fairly constant throughout the year. There is indeed a tendency for 
more bicycles to be used in the summer and fewer used in the winter, but it’s not as different as 
you might expect, so this model is not looking at seasonal effects. I actually could have done 
this. The data are at a level so that I know at which month they have done this because this is a 
rolling pseudo-panel over a five-year period. This could have been something to have taken into 
account. We haven’t done this at this level. What’s the next question? 

 
Zhu:  Can you speak a little about the accuracy of the model?  
 
Dugundji:  With regard to the empirical estimation, I have not shown you these results. 

We’ve done a very extensive estimation of these 15 different model treatments for dozens of 
different model specifications. A paper that will appear in the Transportation Research Record 
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in 2005 explains and goes through the details of the empirical estimation of these effects. And I 
can show you the rows squared for each model and the fit and how they compare to each other. 

 
Zhu:  Do you have specific results, and can you mention something about the simulation 

validation? 
 

Dugundji:  I don’t remember them off the top of my head, because it’s hundreds of 
models that we’ve compared, putting all these things together. But I can refer you to the paper. 
Regarding the multi-agent simulation, it’s a much more complicated question because we don’t 
have statistical validation techniques that I’m aware of yet that can validate the implications of 
the dynamic effect on the model. So that is an open question. 

 
Kostas Alexandridis:  I’m Kostas Alexandridis, from Purdue. I didn’t understand one 

point because the nature of the utility function is that no negatives. … So how can you account 
for some kind of learning or intelligence of the agent? How do they account for the fact that 
some choices draw some kind of negative reinforcement? 

 
Dugundji:  We do not have negative feedback in this model yet. It is one of the 

extensions that would be interesting to add. But we’re just building it up, step by step, to make 
sure we understand what the positive feedback looks like before we throw in the negative 
feedback. We have not added negative feedback. It would be a very important thing to add. 
That’s why it was on that “to do” list that I showed at the end of the slide. Obviously, with regard 
to transportation issues, such as traffic jams and congestion, you would certainly want to have 
negative feedback. It’s just the positive effect right now. 

 
I should add that the negative is actually a much more complicated question than the 

positive, which is why we began with the positive feedback. For any physicists in the audience, 
you would immediately know that this is the case. Adding the negative feedback is sort of a spun 
glass situation, which is much more complicated than just the regular straight magnetism. 
 
 
Size Distributions of Land Holdings in an Agent-based Model of Rural Land Use 
 

Sydelko:  Our next speaker is Nick Gotts from Macaulay Institute in Scotland. The title 
of his talk is “Size Distributions of Land Holdings in an Agent-based Model of Rural Land Use.” 

 
Nick Gotts:  This is work that I’m doing with Dawn Parker at George Mason University. 

It was prompted very largely by Claudio Cioffi from George Mason, who invited Dawn and me 
to write a chapter in a book on power laws in the social sciences, which he’s editing. 

 
[Presentation] 

 
Brian Pijanowski:  I’m Brian Pijanowski from Purdue University. Great work. We’ve 

also developed a land-use change model. We’re working in Swarm. I’ve got a couple of 
questions for you, but in the interest of time, I’ll just ask one. Some of our work suggests that 
parcel sizes are a function of the distribution of biophysical resources and other types of 
amenities across the landscape. For example, if you’re near a road, your parcel sizes are smaller, 
or you could be near a river or a lake. To what extent can you introduce that into your power law 
assessment? 
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Gotts:  That’s a very important point. It’s not one that we’ve looked at systematically 
yet. We can vary the biophysical properties of the land. Up to now, we haven’t been able to tie 
that up very effectively with the economics because, for one thing, we’ve had this sort of fixed 
break-even threshold, where every bit of land costs the same amount. This, of course, isn’t 
anything near being true. So that’s certainly something that’s on our list of things to do. 

 
I think it may be so in Scotland, for example. An obvious thing to do is to try separating 

the highland and lowland regions, where you get quite different types of land use. I believe there 
are mathematical results showing that if you combine two different power laws, you’ll get 
another power law. If you have two separate regions divided according to different power laws, 
and you then amalgamate the two sets of data, you will find yourself with another power law. 
That’s certainly something that ought to be looked at. 

 
Greg Madey:  I’m Greg Madey from the University of Notre Dame. There was 

something I didn’t understand in two different slides. One slide was where you plotted the data 
on the straight line — the log/log; it was at the tail where it stopped looking linear, but you also 
said that the top 160 were linear. 

 
Gotts:  Yes. In fact, the bit of the tail you saw that looks nonlinear only represents 

something between 10 and 20. Because it’s a log/log scale, that represents about the top 10 or 20. 
So it’s rather misleading. You can’t go purely on visual appearance, unfortunately. You’re right 
to point that out. There is also a little dip at the very largest, which is perhaps a finite size effect. 
You can’t have estates larger than the whole of Scotland, obviously, yet, it’s also worth looking 
at. However, there were deviations at both ends, and, at the moment, it seems to be the lower one 
that’s in some ways more significant. 

 
Madey:  So then the failure to fit the straight line was only the top 10 or 20? 
 
Gotts:  At that end it is, but there’s also a failure to fit the straight line at the lower end. 
 
Madey:  Then is it possible it would be log-normal? You compared it against — I forgot 

which way it dipped. Did it dip on the other side? That might suggest log-normal. 
 
Gotts:  There are a couple of complications there. One is that as you go down the scale of 

estates, the data are less good. Andy Wightman is confident that he’s got pretty much all the data 
for estates that are 1,000 acres, but under that acreage, data start to get less and less complete. So 
you may get artifacts there. The other thing is that it’s not obvious where to stop if you look 
beyond the large estates. I own a few square meters of Scotland that my house stands. Do we go 
down that far? I’m not sure. I suspect that sooner or later, you would come to an area where you 
got into a different regime of behavior. I did. I have tried matching it to a log-normal. It doesn’t 
look log-normal, but since I’m only looking at the upper tail, that’s not conclusive. 

 
Craig Stephan:  I’m Craig Stephan of Ford Motor Company. I wondered if you’ve tried 

comparing the relations that you get with physical systems. One thing that comes to mind is, for 
instance, grain size distribution in metals. A grain can only grow by gobbling up its neighbors, 
and I’m just wondering whether they would follow similar size laws. 

 
Gotts:  That’s a good question. I don’t know. I’ve done some work with Claudio on 

comparing models of competition for territory across domains. That’s one we haven’t looked at. 
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We have looked at international relations and plant ecology. With international relations, you 
tend to get log-normal. Is that right? In some simulations you get a power law, but if you look at 
the size of actual countries, it comes out something like a log-normal. 

 
Claudio Cioffi-Revilla:  Country size is log-normal. 

 
Gotts:  Yes. So I think it will vary according to the mechanism that is responsible for the 

gobbling up. In Scotland, certainly since the clearances, there hasn’t been a lot of forcing people 
off the land by the threat of violence. In the last 150 years, that hasn’t happened, but it may be 
that that still had an effect on the distribution. I don’t know. I suspect that we’re getting 
something a little further from a power law because there is this constraint on actually taking 
land from your neighbors. 
 
 
Public Goods Theory of the Open Source Development Community Using  
Agent-based Simulation 
 

Sydelko:  Our next speaker is Scott Christley. His talk today is titled “Public Goods 
Theory of the Open-source Development Community Using Agent-based Simulation.” 

 
Scott Christley:  Thank you. I am a first-year graduate student at the University of Notre 

Dame. Understanding and looking at the open-source development community have been part of 
an ongoing project at Notre Dame. My colleagues Jin Xu and Yongqin Gao have been working 
on this for the past couple of years. My adviser is Dr. Greg Madey. 

 
I have to apologize. Some of the presentations [given today] have had lots of simulation 

results and nice graphs. I’m right at the beginning of the process, so I have a lot of conceptual 
models and words. But hopefully, my presentation will stimulate some thought and give you 
some perspective on this phenomenon that we’re trying to understand. 

 
[Presentation] 

 
Sydelko:  I find this work to be quite interesting. I started my career as being part of a 

group that was doing open-source GIS work. I’m going to suggest one thing. I know we talked 
about somebody always saying, “Okay, that’s great, but here, you need to put this in it, too.” One 
thing I noticed in this particular software — in this open source — was that there an ability to 
lower the constraint to belonging to the group by having the stepped-in alpha-beta contributions. 
So you could contribute in an alpha way, which says, basically, that I’m not responsible, don’t 
call me. Throw it out there, and people can work with it. Then, at some point in time, that can 
migrate more into a beta way by having the group give it some validity by saying that this is 
good; it meets with the goals of where we want to go. It moves into beta. Then, finally, it comes 
into official release. But at least it lowers the barrier in the first place, so people feel a little less 
responsibility if they want to start playing. I just throw that out as a suggestion because it seemed 
to work really well in this particular software development. 

 
Christley:  Yes. There are two points to that. There’s actually getting users to use the 

software and then there’re people who want to contribute. One thing that’s known from some 
surveys that have been done by the Boston group is that increasing your own skill in 
programming and computer technologies is one of the big motivations for why people get 
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involved. They want to increase their skills, so they get involved in something, and they write 
some little programs, and as they get more response, they get more familiar and more involved in 
it. So, yes, it’s hard to say that there’s one path. I think there are a lot of different paths, and 
that’s a very difficult thing. Is there ever going to be a way to generalize that, or is that going to 
be highly path-independent for a lot of projects? 

 
Cioffi-Revilla:  I’m Claudio Cioffi from George Mason. I’m really fascinated by this 

project. I think this community needs a project like this. I applaud you, and I can’t wait to read 
more about it in print or preprint. I have a question for you. You’re probably the person most 
familiar with what the dynamics of this movement look like. Are we still on the exponential side 
of growth, or is there an inflexion point, or are we past that? Can you say anything that would 
characterize the growth regime as of now? 

 
Christley:  Yes. I don’t know if we have data on it, but my sense is that it’s growing. 

I don’t know if it’s exponential or not, but I don’t think it’s reached a peak or plateau yet. The 
reason for that, if you look philosophically, is that some of the developers have a utopian notion 
that all software in the world should be open source. As far as they’re concerned, it isn’t until 
every piece of software is …. They see big growth there. If you ask any of them, they can list a 
handful of things, such as we need to do this, we need to do this, we need to do that. So what’s 
going to matter more is the influx of people. Right now, from statistics like SourceForge, there 
are — I forget the actual numbers — hundreds and hundreds of thousands of registered users. 
And that’s just one site. Many other sites are popping up. So I think it’s still in a growth phase. 

 
Pijanowski:  I’m Brian Pijanowski from Purdue with a quick question and then 

a comment. How do you introduce what I would call the ‘I hate Microsoft behavior’ into this? 
You don’t have to answer. The comment is whether you will be looking at determining whether 
or not the tools are cross-platform — the types of functionality. In other words, it’s different to 
have a Microsoft Word-type program versus agent-based modeling, and the life cycles of those 
are different as well. The specialty of that application…. 

 
Christley:  I’m sorry; I rushed through both of those in my slide. Yes, when I talk about 

the environment, I think this ‘I hate Microsoft’ behavior is actually very important. It almost acts 
as a driving or forcing function on the community because it coalesces them. We have this 
enemy to go against. I hate to use the analogy, but it’s the Cold War communists. We have this 
common enemy that we all have to fight against. 

 
The response to your comment is that yes, in our data set, there are a bunch of different 

things — like what operating system it works on, what programming language it is, what general 
category of software it is. When you talk about the success of a project, you can’t go with simple 
measures, such as the number of downloads. The reason is that something like Repast, which we 
consider successful right now, does not have the same size audience as do an open office or word 
processor or many other tools. So that makes it difficult as well, because that definition is 
different for each project. 

 
Gotts:  I’m Nick Gotts from Macaulay Institute. I think this is a great project, and, as 

several people have already said, it really needs doing. One thing that interests me is the different 
motivations people have for using open-source software, and one in particular. I’ve become 
increasingly convinced that you can’t do science unless you do it in an open source because part 
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of what is producing your results is not public. Therefore, to me, it’s not real science. I wonder 
how far that view has spread, particularly among our community. 

 
Christley:  Well, there is research on open content. At the previous NAACSOS meeting, 

David Heinz talked about open content, which are things more like Wikis. In a way, when you 
look at the research community and conference proceedings, etc., you want to make them as 
available as possible. To go along with that, I would say that yes, when we’re talking about 
wanting to share models and replicate things, it’s excellent to have open source and transparency. 
Even if we don’t want to look at the Java code, the fact that we actually can gives us a little bit 
more transparency. At least you can have your computer science graduate student look at it for 
you and interpret the code. 
 
 Sydelko:  Sometimes when people are looking for a specific tool on the Internet, they 
may find something that’s open source. There is a tendency by some users to say it’s free, so it’s 
not worth as much, whereas if they look at something that costs $4,000, they think this must be 
better. I think a little bit of that goes on, too. 
 

Kathy Lee Simunich:  I’m Kathy Simunich from Argonne. What were some of the 
hoped-for results of your modeling of the OSS community? Do you hope to discover the 
emergence or the dominance of, for example, an Apache-type project or the Big 100 projects? 
You said you had 800 or 80,000 SourceForge projects, which surprises me. Some of them have 
to just be little blips. Is that what you hope to see? 

 
Christley:  Yes. The previous data analysis has shown quite a few power laws in the 

data. If you look at the distribution of, say, the number of developers on each project, there’s a 
huge amount. Of those 80,000 projects, almost 60,000 have only have a handful of developers on 
them. The other part of the curve is that there are a very few projects that have a lot of 
developers. 

 
So the real hope is that when we run this social theory, which is motivating the individual 

actions and behaviors, in a large simulation, it will show the global properties that we’re seeing 
in the real phenomena. That’s what I indicated as a weak validation because we’ve talked 
a number of times about how different models can still have the same result, especially if we’re 
looking at global things. The second point is that we want to find some techniques for looking at 
local structural changes and dynamic networks. What kind of techniques can we come up with to 
do that? 

 
Sydelko:  Will you come back next year and let us know where you’re at on that? 
 
Christley:  Yes. Thank you. 
 
Sydelko:  I’d like to finish by thanking all our very brave application modelers. 
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EPIDEMIOLOGY OR MARKETING? 
THE PARADIGM-BUSTING USE OF COMPLEXITY AND ETHNOGRAPHY 

 
M.H. AGAR,* Friends Social Research Center, Baltimore, MD 

S. GUERIN, R. HOLMES, and D. KUNKLE, Redfish Group, Santa Fe, NM 
 
 

ABSTRACT 
 

On the basis of ethnographic work with youth in Baltimore County, an agent-based 
model was developed to test the finding that the stories that circulated about a drug 
(heroin) explained the rise and fall in the curves showing data on heroin epidemic 
incidences. This paper features the use of design of experiment approaches to evaluate 
the parameters in that model. Results of the analysis suggest that drug epidemics can be 
better understood as the diffusion of a commodity rather than an infectious disease, which 
is the view of the medically dominated substance abuse field. Policy implications of this 
change in view are sketched in the conclusion. 
 
Keywords: Design of Experiment, substance abuse, ethnography, agent-based model 

 
 

INTRODUCTION 
 

As we listened to interviewees telling us about illicit drug epidemics in which they had 
participated, we noticed that they often offered a “folk explanation” of how and why a particular 
illicit drug took off. The folk explanations, although partial, typically resembled stories about the 
diffusion of a consumer product more than the diffusion of an infectious disease. People 
described how early experimenters told stories about experiences they had with a new drug and 
how, if the stories were positive, they would circulate through social networks and encourage 
further experimentation as time went on. With truly dangerous drugs, however, the effects of 
continual use would eventually become apparent, so negative stories would increase and 
experimentation would diminish. 
 

Simple as it sounds, this shift from “epidemiology” to “consumer diffusion” is a major 
and fundamental change in how illicit drug use is viewed, and it is a change with implications for 
drug policy and intervention. It is a change in paradigm, in the classic Kuhnian sense of the term. 
 

In this paper, we describe an illicit drug case to support this paradigm shift — what we 
tongue-in-cheek call “paradigm-busting.” We also use the case to exemplify a more general 
argument. That argument lays out a research strategy for paradigm-busting — for setting out to 
change the framework for viewing a human health problem. The first step is to explore the 
phenomenological experience of those close to the problem. In the second step, one uses recent 
computer modeling techniques from complexity theory, specifically agent-based modeling 
techniques, to explore the alternative framework for viewing the health problem that 
ethnography (which investigates those nearest to the problem) always generates. In the third step, 
one returns to the world of the health problem with fresh eyes, looking at things through a 

                                                 
* Corresponding author address: Michael Agar, c/o Redfish Group, 624 Agua Fria St., Santa Fe, NM 87501; 

e-mail: magar@anth.umd.edu.  
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different paradigm. If the exercise is found to have no real-world consequences for action and if 
it does not clarify actual cases in new ways, it was pointless. 

 
 

ETHNOGRAPHY 
 

Ethnographic research is often thought to be simply a matter of data collection carried out 
to learn about and document some social world. Most people, including many of its practitioners, 
ignore its paradigm-busting function. The “what-if” question that can “bust” a paradigm comes 
from conceptual systems and social practices learned in the field rather than from the inspiration 
of genius. It occurs when a “local” way of thinking and acting suggests a what-if alternative to an 
established paradigm for describing and explaining a particular group. By investigating local 
ways of making sense of things, ethnography can show that an official outsider expert 
framework is paradigms apart from local concepts. In fact, ethnographic results usually offer 
candidate what-if paradigm-busting questions. 
 
 

AGENT-BASED MODELS 
 

What in the world does this subject have to do with agent-based models (ABMs)? Such 
models are derived from complex systems research, a field that studies nonlinear dynamic 
systems (i.e., systems with multiple interactions moving through time), which can produce 
surprising results. In the human realm, ABMs allow us to model emergent results of social 
dynamics, if we can strip these dynamics down to a few features whose interaction we believe to 
be critical on the basis of our ethnographic work. 
 

What links paradigms, ethnography, and ABMs is the paradigm-busting question 
mentioned earlier: “What if?” Axelrod (1997), for instance, describes ABMs as a cognitive 
laboratory, a way to try out ideas, and the computational version of the “thought experiment.” In 
their pioneering book on artificial societies, Epstein and Axtell (1996) note that their approach is 
neither “deductive” nor “inductive” but rather “generative.” Both of these foundational views 
support use of the what-if question. 
 

Given a particular phenomenon, the question arises, What if we modeled it in a different 
way? In fact, that is exactly the exercise we present in this paper. In the case presented, a 
consumer product model generates illicit drug epidemics as well or better than does a biomedical 
model, so the following question gains more credibility: What if drug epidemics are more like 
marketing than disease? It also gains some rather interesting applications; more on that subject is 
provided in the conclusion. 
 
 

THE DRUG FIELD 
 

Let us shift to the “drug field,” that collection of researchers, clinicians, law enforcement 
officials, and policy makers and users who focus on the use of illicit drugs. Within that field, two 
competing paradigms have coexisted since the early 20th century: the law enforcement paradigm 
and the medical model paradigm. The competition between the two goes back to Supreme Court 
interpretations of the Harrison Narcotics Act of 1914. Subsequent court disputes centered on 
whether a physician could legally “treat” an opiate addict. The conflict between “legal” and 
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“medical” remains a centerpiece of drug policy today. In this paper, though, we focus only on the 
medical paradigm, which is the one that prevention and treatment rely on (along with research 
that explains drug use as a result of social and psychological deficiencies). 
 

The medical paradigm subsumes drug use under the category of disease, as terms like 
“prevention” and “treatment” already imply. Physicians provide the relevant expertise, and 
biomedical research provides the appropriate way to develop knowledge. Root causes are, in the 
end, a matter of universal human biology. Diffusion of a drug among its users is a matter for 
epidemiology, with the infected parties transmitting the disease to susceptible parties. The 
relevant empirical unit is the “case,” which is the infected individual who has been classified 
according to “diagnostic criteria” and whose “cure” is the goal of the field. 
 

Even though the term medical expanded during the previous century to include 
nonbiological personal and social factors, the staffing patterns and funding priorities at centers of 
the drug field, such as the National Institute on Drug Abuse, show that the medical paradigm 
remains dominant in all the ways implied above. A glance at the drug field in most other 
countries would show a similar hegemony in the medical arena. 
 

The problem is that many aspects of drug use do not fit a medical paradigm in any 
straightforward way. What kind of disease do some people want to catch, while others don’t? 
What kind of disease has portals of entry and exit and vectors that are group-specific and 
symbolic rather than biological? What kind of disease consists of positive effects? What kind of 
disease is encouraged if the social and political positions of those who manufacture and 
distribute the psychoactive drug are mainstream? Think of Valium, Prozac, Ritalin, and 
Oxycontin. 
 

What if…? What if illicit drugs were more like consumer products than a disease? 
 
 

ETHNOGRAPHIC BACKGROUND 
 

We now describe our specific paradigm-busting case. The first step for research in human 
worlds, as outlined at the beginning of this paper, is ethnographic work, with the purpose being 
to generate what-if questions on the basis of local concepts and practices. It is actually 
embarrassing how easy it is to do this. The official frameworks of experts are typically distorted 
by distance and expert interests. It is amazing that any policy works at all. In fact, when policies 
do work, it is probably more often testimony to the adaptive ingenuity of the represented 
population rather than to any accuracy in the representation. 
 

The ethnographic part of the paradigm-busting process is given short shrift in this paper 
because much of our ethnographic and historic research on illicit drug epidemic cases is 
published elsewhere (for example, see Agar and Reisinger, 2000, 2001). For now, we state that 
both our research on illicit drug epidemics and numerous other studies suggest that the stories 
circulating through social networks drive the increases and decreases in illicit drug use. 
Specifically, in one study of white suburban youth involved in heroin experimentation in the 
Baltimore suburbs in the late 1990s, youth described the “buzz” around heroin; these stories 
changed over time as early experiments by risk takers evolved into widespread experimentation 
and then turned more complicated as negative stories about physical dependence worked against 
those early positive accounts. 
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This sounds more like a product evaluation by consumers than a disease being 
transmitted from infected to susceptible parties. While the biological basis of a drug experience 
is relevant, the critical issue for the youth was the phenomenology of the experience: good, bad, 
or both. Those experiences — whether one’s own, or witnessed, or simply heard about — were, 
in turn, conveyed to others. The dynamic that explained an epidemic of use, in other words, was 
driven by interactions among good and bad stories, with good stories appearing initially and bad 
stories increasing in number over time. 
 

It looked like the dynamic circulation of narratives among agents would generate an 
epidemic incidence curve (the classic S curve) all by itself. In fact, most illicit drug epidemics 
show a flattening incidence curve well before any policy reaction takes place. Perhaps drug use 
increases and decreases “naturally” as a result of interagent dynamics rather than externally 
imposed sanctions. What if the experts failed to make much difference? What if they took credit 
for a decrease in drug use that was already over and done with?  
 

On the basis of these what-if ethnographic conclusions, we moved to step two, that is, 
working with ABMs. A model based on circulating narratives does indeed generate incidence 
curves like those observed in epidemiological graphs based on data sources, such as number of 
arrests and treatment admissions. It is this part of the paradigm-busting research process that we 
feature in this paper. We show the importance of three model parameters (learned from youths  
as important) that force the old medical paradigm to break. Using Design of Experiment 
approaches, we show that the Design of Experiment analysis does, in fact, support the need to 
rethink the medical paradigms used as the basis for understanding, explaining, and intervening in 
illicit drug use epidemics.  
 
 

AGENT-BASED MODEL 
 

First, we describe the agent-based model, called DrugTalk, which has gone through 
several incarnations. Common to all iterations is a simple idea born of what which youths taught 
us in our Baltimore research. The model gives each agent a risk and an attitude. “Risk” is the 
willingness to try something new and unknown. “Attitude” is the degree of aversion to illicit 
drug use. Risk is fixed, but attitude can change, depending on what an agent experiences and 
hears from other agents. Whether or not an agent uses a drug depends on whether or not risk is 
greater than attitude. 
 

At first heroin is made available at one location on a torus, on which agents move at 
random. If an agent uses the drug, it evaluates the experience, communicates with its primary 
social network, and offers them the drug. All agents, at all times, check the attitude value of the 
agents that surround them as they move about. 
 

In an earlier article, Agar (2005) described the details of the program, and we now 
borrow and include that description here. Each agent must have a risk and an attitude value at the 
beginning, since the comparison between the two determines whether an agent will try a drug. 
All agents are assigned the same attitude value initially. This represents a general orientation to 
use on the part of a particular population, a “norm,” if you will. The attitudes of individual agents 
will change during a simulation run, sometimes dramatically. 
 



655 

Risk, on the other hand, differs for each agent. In contrast to attitude, an agent’s risk does 
not change during the simulation. The assumption is that risk is a fairly stable and pervasive 
characteristic of an agent. There are risk takers and risk avoiders, and those proclivities hold up 
across different situations. Diffusion of Innovation (Rogers, 1995) reports on numerous studies 
across many different domains. A robust result of those studies is that people’s willingness to 
take a chance on an innovation is normally distributed. With this body of work as background, 
risk values are assigned to agents by using a random-normal distribution. 
 

Barabasi (2002) argues that social networks show an inverse power law distribution; that 
is, a few agents have numerous social links, and many agents have just a few links. After simple 
trial and error, an exponent of 1.5 produced a reasonable-looking distribution for a 500-agent 
world. There are no restrictions as to which agents might be assigned to a network. The same 
agent might be selected at random more than once, several times, or perhaps never. And it does 
not matter what the selected agent’s network looks like. The resulting network, if graphed with 
number of agents on the Y axis and size of network on the X axis, looks like an inverse power 
law distribution. But the overall network, expressed as a digraph, looks very different from time 
to time. 
 

Each agent moves at random. First, it “checks-the-buzz.” If it has become an addict, it 
does not bother to check, because it no longer matters what other people are saying about heroin. 
Check-the-buzz corresponds to what youth often told us: you pick up on stories about drugs 
wherever you go, from people other than those in your personal network. At a party, a club, an 
event, school, a part-time job: drug stories are often “tellable” in these settings, since they can be 
dramatic and surprising  something out of the ordinary. 
 

How does the buzz get checked? Each agent keeps a record of how many positive and 
negative experiences it has had with the drug. To check the buzz, an agent adds up the total 
number of positive and negative experiences among the agents on its own patch or within a 
radius of two patches. The agent who is doing the checking then adjusts its attitude by these 
numbers, subtracting the positive total from its attitude to make drug use more likely and adding 
the negative total to make it less likely. 
 

At this point, we introduce a bias based on Tversky et al.’s (1982) prospect theory. The 
hundreds of studies that have now been performed conclude that people want to minimize loss 
more than they want to maximize gain. Therefore, an agent puts more emphasis on the negative 
total than on the positive total. So the negative total is multiplied by two to represent this effect. 
 

The overall effect of checking-the-buzz is low when compared with the procedures to 
come. This is as it should be, since hearing things from strangers you just happen to run across 
has less effect than a story from a trusted and long-term friend. However, one buzz-checking 
experience can have a major effect on attitude. If an addicted agent is also in buzz range, the 
attitude of the agent who is checking rises by 20. (An addict is defined by a certain number of 
uses — a parameter — set to five in this case). Twenty is a substantial change, since the range is 
0 to 100. (By the way, the range is always kept between 0 and 100. It cannot go higher or lower.) 
 

There is some justification for this number (not this exact number, but for a number that 
represents a “big” difference). For one thing, youth reported such reactions: I was experimenting, 
or thinking of trying it out, and then I ran into so-and-so who’d turned into a junkie, and it really 
turned me off. Other evidence comes from Musto’s concept of “generational forgetting” 
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(Musto, 1999): after an illicit drug epidemic impacts one generation, the next generation tends 
not to use the drug, since they have seen use go from pleasant early on, to devastating for addicts 
and communities down the road. Recent observations in Baltimore and other cities suggest that 
African-American youth, having witnessed the crack epidemic, will have nothing to do with the 
drug, although a few will sell it as a lucrative niche in the underground economy. For many such 
youth now, a “drug-related problem” means dealing, not using. 
 

Next comes the moment of truth. If an agent is on a red patch, meaning heroin is 
available there, it compares its risk to its attitude, and if the risk is higher, it uses the drug. 
 

Immediately following use of the drug, an agent evaluates the experience with a function 
called “how-was-it,” unless the agent is already an addict, in which case, it no longer matters. To 
understand how this function works, we first look at two more parameters that play a major role 
in the analysis to come: (1) goodStuff and (2) badStuff. Each can vary between 0 and 100. 
Broadly speaking, this number represents a kind of quality evaluation. For the moment, we 
ignore problems of individual variation and context and assume there is some kind of average 
that makes sense. Overall, does the drug produce a pretty good or a pretty bad experience? 
Notice that both things can be true; in other words, a user might have an experience that he/she 
would describe as both good and bad. 
 

The rest of how-was-it is simple. After an agent has used the drug, it generates a random 
number between 0 and 100. If goodStuff is larger than that number, the agent records a positive 
experience. It then changes its attitude in a favorable direction (i.e., it decreases it) by an amount 
equal to (1/positive) × 20. Notice how the effect of the evaluation diminishes with increased use. 
The first positive experience reduces attitude by 20, the second by 10, the third by 6.67, and so 
on. 
 

Independent of the outcome of the goodStuff evaluation, the agent does the same 
evaluation using badStuff. The difference here, of course, is that if badStuff is larger than a 
random number between 0 and 100, the value of the agent’s attitude increases to make the agent 
less likely to use the drug. Another difference also occurs, which corresponds to the prospect 
theory principle that people are risk-aversive, as described earlier: this time the value changes by 
40 rather than by 20. The impact changes with experience, just as it did with goodStuff, from 
40 the first time, to 20 the second time, to 13.33 the third time, and so on. 
 

The justification for the diminishing impact lies in intuitions about “habit”: that is, the 
first experience of anything is the most significant, and subsequent experiences show an “I’m 
getting used to it” effect. A body of literature supports this assumption, which goes back to 
old-fashioned behaviorist psychology, which we take for granted in this paper. 
 

Immediately after using the drug, agents let their network know, with “tell-the-network.” 
Recall that the model was set up with an inverse power law social network distribution; that is, a 
few agents have large networks, and many agents have small networks. An agent who has just 
used a drug checks its network members. If a network member is already an addict, the agent 
who just used the drug has no influence on its attitude. But if the network member is not an 
addict, a couple of things might happen. 
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First, if the agent who just used the drug is an addict, it will “turn off” the members of its 
network by adding 20 to their attitudes. Recall that the same thing happened if an agent found an 
addicted agent nearby when it checked-the-buzz around it. 
 

If the agent who just used the drug is not an addict, something different happens. That 
agent “pulls” each agent in its network in the direction of its attitude, whatever it might be. It 
does this by the simple mechanism of assigning to the agent in its network the average of its own 
attitude and that agent’s attitude. 
 

The agent who used the drug will have an attitude that reflects its history of positive and 
negative experiences from checking-the-buzz and evaluating its own use. Tell-the-network will 
move the agent in its network toward its current attitude, which reflects those experiences. The 
assumption is that if the agent who used the drug is becoming more positive, it will make its 
network more positive. If it is becoming more negative, it will make its network more negative. 
Since all agents begin with the same attitude value, the attitude carries the cumulative positive 
and negative history of an agent with the drug, so its network members should get pulled in the 
direction of how that history has changed after drug use. 
 

Whatever the outcome of all this influencing (or lack thereof) is, the agent who just used 
the drug always offers heroin to all the agents in its network, no matter what. If the agents in the 
network have a risk greater than their attitude, they use the heroin and evaluate the experience, as 
the original agent did, with the same procedure: how-was-it. At that point, however, the network 
member stops. In other words, the network member does not, in turn, offer heroin to other agents 
in its own network. Perhaps it should, not in that particular tick of the program, not immediately 
but with some time lag. 
 

That is basically the interesting part of the program. Comparisons with actual cases 
together with observations of how DrugTalk generally behaves show that we are on the right 
track. The paradigm-busting argument learned from the youth — that a new drug is a consumer 
product — works as well when we model it as it did when we heard it in interviews. But the 
classic problem with ABMs occurs: many parameters in the model can vary. One strategy is 
simply to set up multiple runs to explore the space of possible outcomes by sweeping parameter 
values with regular intervals, something explored in a preliminary way in an earlier article. We 
decided to try something different: Design of Experiment approaches. 
 
 

DESIGN OF EXPERIMENT 
 

The Design of Experiment approach was developed to analyze real-world experiments 
where there is a practical limit to the number of experiments that can be performed, because they 
are either expensive or slow. An ABM like DrugTalk, as we saw in the previous sections, has 
many parameters: attitude, goodStuff, and so on. Ideally, to explore the model, we want to run it 
under all possible combinations of parameter values. The number of runs would be enormous. 
The motive for using Design of Experiment is that traditional “parameter sweeps” suffer from 
combinatorial explosion. Sweeping each of 10 parameters (as in this study) through each of 
10 values requires 10 billion experimental runs. If each simulation took 1 minute to run, it would 
represent a significant investment in time: close to 20,000 years, in fact. 
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The types of questions that Design of Experiment can answer are slightly different in the 
context of simulations than in real-world experiments. The latter tend to focus on optimization 
and prediction, trying to closely specify the input values that produce some desired effect in the 
output. In contrast, when Design of Experiment is applied to simulations, it answers broader 
questions: 
 

• It searches for insights for developing a basic understanding of a simulation 
or system. 

 
• It finds robust configurations, decisions, or policies. 
 
• It compares configurations, decisions, or policies (Kleijnen et al., 2004). 

 
Typical Design of Experiment designs involve specifying a series of experiments that 

take place at the maxima and minima of the various parameters (in a two-level design) or at the 
maxima, minima, and midpoint (in a three-level design). The experimenter selects maxima and 
minima that represent the range over which he/she wants to study the simulation. However, 
instead of running all possible experiments with these two or three values per variable (because 
again, 2n and 3n explode with n), a limited subset of experiments is carried out. This subset is 
balanced so that the values of any variable are equally represented. For example, in the three-
level experiment used in this study, one-third of the experiments were run with goodStuff at its 
minimum value, one-third were run with it at its midpoint value, and one-third were run with it at 
its maximum value. Depending on how restricted the subset is, combinations of variables show 
the same balance (e.g., the nine possible combinations of goodStuff and badStuff appear the 
same number of times in the experiments). It is this balance that gives Design of Experiment its 
validity. 
 

The current study uses a three-level design of 81 experiments that evaluates the “main 
effects” of 10 variables. (In terms of the “balance” concept above, the three values of each of the 
10 simulation inputs are equally represented in the experiments.) Main effects are a simple way 
of finding out what the important variables are. For a particular input variable, the 
81 experimental results are divided by high, average, and low values into three groups of 27, and 
the mean of each of these three groups is calculated. This process is repeated for each input 
variable. The three means for each input are then plotted in graphs. These graphs show which 
input variables have a large impact on the simulation output (i.e., there is a big difference 
between the smallest and largest values in that variable’s plot). 
 
 

DESIGN OF EXPERIMENT RESULTS 
 

The Design of Experiment analysis contains one small and one large surprise, both of 
which suggest the parts of the medical paradigm that need “busting” for the drug field. Examine 
Figures 1 through 3. Each figure shows the results for a different key outcome variable from the 
model. Figure 1 shows the effect of the 10 parameters on the total number of users. Figure 2 
shows effects on the total number of addicts. Figure 3 shows effects on the way agents become 
more or less at risk. 
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FIGURE 1  Parameter effects on number of agents that used the drug 
at least once 

 
 

Each figure, in turn, contains 10 charts, one for each of the parameters we looked at. Each 
chart shows an angular line. The more sharply vertical the line is, the stronger the effect that 
parameter has on that outcome. Limitations of space prohibit a full discussion of all the 
parameters tested, although we will be happy to provide additional information upon request. But 
most should be familiar from reading the model details in a previous section. 
 

Listed below are the seven parameters we tested that are not already discussed above. 
The abbreviations refer to the titles in Figures 1 through 3: 
 

• neighExp: the exponent that defines the initial network distributions, 
 
• demandResponse: the speed with which additional heroin patches are created, 
 
• goodExpEffect: the strength of a particular good experience, 
 
• addictEffect: the effect of having an addict in the neighborhood, 
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FIGURE 2  Parameter effects on number of addicts 
 
 

• agentDensity: the density of agents in the model, 
 
• aversionBase: the initial setting of attitude, and 
 
• badExpEffect: the strength of a particular bad experience. 

 
There is some vertical angularity in many of the charts. But if the reader looks across the figures 
and scans for repeated extreme angularity for the same parameter, three stand out in striking 
fashion.  
 

First is the small surprise. It is actually two parameters, but they are two sides of the same 
coin. They are goodStuff and badStuff, informal labels that echo ordinary conversation. They 
represent the quality of the drug as the user experiences it. Recall that badStuff has a stronger 
impact, reflecting the findings of prospect theory. Also recall that the effect of goodStuff and 
badStuff on agent attitude declines with the number of uses. Beginnings are most important. 
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FIGURE 3  Parameter effects on number of users at risk 
 
 

GoodStuff and badStuff collapse many things into a single number. Drug effects on a 
particular person at a particular time can change with biochemistry, setting, and the particular 
biographic and historic situation. These parameters are complicated. In the end, though, they are 
appropriate at a phenomenological and social-interactional level because, in the end, a new user 
is a person who tries something and tells stories to other people about how good or bad it was. 
 

The Design of Experiment analysis highlights the importance of these parameters. It 
makes the hidden fact explicit, because the fact was invisible in the medical paradigm. For an 
experimenter, an illicit drug is a commodity to be evaluated, not a disease to be caught or 
avoided. Ironically, when an earlier version of DrugTalk was presented at the University of 
California at Los Angeles (UCLA) conference on agent-based modeling in the social sciences 
(Agar and Wilson, 2002), the organizers put it in a session called “Marketing.” Untainted as they 
were by a medical paradigm, they immediately saw the model in a different way. 
 

The idea that a drug is a commodity that behaves like other commodities is not an alien 
concept in the drug field, but it is not a frequent one either. The idea just does not fit the medical 
tradition. In that tradition, any use is to be discouraged, so any use must be negative. At times, it 
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seems like an implicit guideline operates: there can be no reason why anyone would want to use 
an illicit drug (i.e., to catch a disease), so its use must be caused by pathology in the biological, 
psychological, or sociological system. 
 

This change in how illicit drugs should be understood  as a commodity, not a disease 
 surely counts as a paradigm shift, and a problematic one, given the mainstream U.S. “War on 
Drugs” policy. Would the concept allow for more effective intervention? Before considering that 
question, let us describe the second surprise, the large one. 
 

One parameter in DrugTalk is how many uses have to occur before addiction sets in: 
numUsesToAddict in the figures. Addiction is a loaded and ambiguous term, since the original 
meaning was the actual physical addiction produced by opiates. Now the drug field uses the 
more general DSM-IV concept of “dependence.” That concept defines dependence in 
psychological and sociological terms, that is, in terms of how an individual’s behavior changes. 
 

The critical changes basically show a shift from personal control over use of the chemical 
to chemical control over much, even most, of what a person does. Smoking a joint on Saturday 
night is one thing; needing a joint six times a day is another. When most of what you do with 
your time is getting the chemical, using the chemical, figuring out how to get money to buy the 
chemical, and thinking and talking about the chemical, etc., you obviously are dependent on that 
chemical. That is, in fact, a problem for you, your nondependent family and friends, your studies 
or work, and your community. 
 

Dependency should certainly make a difference in outcomes, so the fact that it did make a 
difference in the Design of Experiment analysis is not a surprise. A product that makes you 
dependent should literally capture market share. As Warren Buffet explained when speaking 
about a legal drug, “I’ll tell you why I like the cigarette business. It costs a penny to make. Sell it 
for a dollar. It’s addictive. And there’s fantastic brand loyalty” (Field, 2003). The Design of 
Experiment, in fact, showed that dependence is the most important parameter of all. 
 

The large surprise, though, is this: intuitively one would think that the faster a drug 
produces dependence (i.e., the fewer uses it takes), the more addicts it will produce in the end. 
Get them quick and you’ll get a lot of them. As it turned out, however, the Design of Experiment 
supported the opposite conclusion. The more uses it took before an agent became dependent, the 
more addicts it produced in the end. 
 

How could this be? What in the model explains this peculiar result? Once again, the 
model makes a hidden fact clear. Recall that it builds an event into an epidemic, something youth 
often talked about when we interviewed them. Once dependent persons appear in an agent’s 
friendship network or in its neighborhood, those visible examples of what that particular drug 
can do to a person have a negative effect. In fact, such events produce the strongest increase in 
attitude that ever occurs in the model. So that is probably the explanation: if no dependent agents 
show up for a long time, attitude will increase more slowly and less dramatically than if 
dependent agents do appear quickly. 
 

Colleagues in the drug field sometimes joke after a presentation of this model. The best 
thing to do for a new wave of heroin experimentation would be to fly in dozens of addicts and 
distribute them throughout the social world of the group that is experimenting. The Design of 
Experiment analysis explains the joke. It’s not funny. 
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So another bit of the medical paradigm encounters difficulties. First, Design of 
Experiment results suggest that a new drug that makes a big splash is to be less feared than a 
stealth drug that can be used for substantial periods of time before dependency appears publicly 
and deters use. 
 

Second, if a drug seldom causes dependency in a way that will publicly deter use, it will 
not go away once it gets going, if there is no draconian punishment. Consider marijuana as the 
classic case. 
 

Third, and most devastating for the medical paradigm, is this. The old notion of addiction 
as a matter of biological dependence is clearly inadequate. This is not news, as already noted, 
since the field now talks in terms of DSM-IV. But the notion of dependence as being primarily 
an individual problem with intrapsychic causes is inadequate as well. It might be important for 
clinical work, but it will not explain the shape of an incidence curve. The negative effect comes 
from social impact. This is a robust theme of ABMs in general: that individual-level properties 
will not explain system-level phenomena. 
 

Critical to the power of the addict parameter in DrugTalk is what the agents see around 
them as the social consequences of use become public. A biologically addicted psychopath who 
behaved in public would not have an impact on other agents’ attitudes. Without being aware of 
it, we told the model that what counts under dependence is the observation by other agents that 
continual use of an illicit drug can have a negative impact on their social world. That’s the theme 
of many of the stories that the youth told us: “And then I saw so-and-so; he was a junkie, and 
what a mess.” 
 
 

POLICY IMPLICATIONS 
 

As a result of ethnographic research, the ABM, and the Design of Experiment analysis, 
we see that drugs can be viewed as a commodity like any other. And we test the idea that the 
major deterrent to dependence is personal experience and/or stories from networks that 
dependence is a socially destructive condition. The implications of this paradigm change are 
massive and beyond the scope of this presentation. Let us just outline a few here: 
 

1. In a social world that is open to illicit drug experimentation, any drug that is 
high on goodStuff and low on badStuff will be tried if the market can provide 
it. A wave of experimentation will occur. Trying to prevent this wave is futile. 

 
2. Credible drug education must recognize the positive quality of the product, 

something it seldom does, as far as we are aware. 
 
3. Many drugs can produce traumatic results upon first use, and these results 

should be a topic in prevention. But they must be presented so that they 
correspond with actual experiences with which the population already is 
familiar. And they must not be presented as the inevitable, or perhaps even 
likely, outcomes of experimentation, nor must they be overemphasized by 
way of comparison with positive effects. 
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4. The most critical part of prevention is to prevent dependence. Educational 
materials should feature what life is like on the other side of dependence, 
realistically, with examples.  

 
5. Group sessions can serve as “story amplification” devices. Assuming 

dependence has already occurred and given the time lag between an epidemic 
and policy response, it is likely that potential and actual users will already be 
familiar with the drug’s effects. Program time should be dedicated to permit 
participants to tell stories about themselves and people they know. Material 
for prevention is, in fact, available in the worlds of both experimenters and 
nonusers. This only amplifies what naturally happens anyway, as reflected in 
ethnographic interviews and in DrugTalk. Group sponsors must accept that 
some of the stories that will be told about experimentation will be positive. 

 
6. The most important programs will deal with early intervention, something that 

is rare at this time. By this is meant that if an experimenter shifts to a user and 
a user shifts to a frequent user, he or she is “at risk” for dependence. Early 
intervention is an effort to intervene with a serious user on the edge of 
dependence and pull him or her back. Such serious users are typically 
identified by the friends, family, organizations, or communities with whom or 
where they spend their time. Early intervention referral may be a productive 
use of law enforcement mechanisms, such as drug courts. 

 
7. Dependence will occur, and dependent users will require treatment. Part of 

their treatment could be community service, where they could serve as 
speakers (assuming they are peers of the experimenting population), telling 
stories of the line between use and dependence, how they crossed it, and what 
the personal consequences were. We have found that often former addicts who 
are brought in as speakers are not peers. A 40-year-old ex-heroin-addict 
addressing a high school group is less credible than a session with a peer. 

 
There are other implications, but the list above is already controversial when measured 

against traditional War on Drugs practices. As far as we know, suggestions such as those in the 
list above have not been tried extensively or consistently. They might not work, of course, but 
they should be tried. We are at a juncture where it is widely recognized that the War on Drugs 
has failed. New alternatives are in order. The problem with the medical paradigm (not to mention 
the legal paradigm, which we have not dealt with here) is that it has not generated any new ideas.  
 

While our primary purpose has been to demonstrate an ethnography/ABM collaboration 
as a paradigm-busting device, we also want to emphasize that both the old and the new 
paradigms that define a particular application may well have massive social and political 
consequences. They certainly do for DrugTalk. The opportunity for real change in social 
practices is enormous, and implementation raises political issues that go well beyond the 
research framework suggested here.  
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ABSTRACT 
 
The 1st Marine Expeditionary Force has begun examining questions of interest with the 
Data Farming methodology developed by Project Albert. This methodology employs 
agent-based modeling and high-performance computing to gain insight into questions that 
legacy models and current methodologies have trouble generating. This paper deals with 
one of these questions: What are the effects of a coalition stability and support operation 
on civilian populations? To examine this question, we developed two agent-based models 
in NetLogo that focus on social interactions. The first model explores the dynamics of 
social interactions among and the effects of “good” and “bad” events on the contentment 
of civilians. The second model explores different social networks and the effects they 
may have on the dynamics of civilian contentment change. 
 
Keywords: Stability and support operations, agent-based modeling, data farming, 
NetLogo 

 
 

INTRODUCTION 
 

In January 2004, the 1st Marine Expeditionary Force (I MEF) held a workshop with the 
Marine Corps Warfighting Laboratory’s Project Albert to explore ways by which the Project 
Albert methodology of Data Farming (Fry and Forsyth, 2002) might be leveraged to assist I MEF 
with its missions throughout the world. One of the projects that came out of that workshop, and 
the focus of this paper, is a model examining how such events as coalition stability and support 
operations (SASO) affect civilian populations. This paper discusses the SASO model and how 
the Data Farming methodology will be used for verification and validation. 
 

Data Farming is a methodology pioneered by Project Albert (Horne, 2001; Brandstein 
and Horne, 1998). It is a broad term that encompasses not only developing the model but also 
running the model and analyzing the results. Data Farming starts with a complex multivariate 
question, such as the dynamics of a civilian population, that does not lend itself to a closed-form 
analytic solution. Once the question is formulated, it must be distilled so that it can be modeled. 
This distillation is usually accomplished by a collaborative team made up of modelers and 
subject-matter experts. The utility of Data Farming lies in the ability to create the models 
quickly, run them many times, and easily analyze and interpret the results. This approach 
requires relatively abstract models with very fast run times (usually less than one minute). Of 
course, the use of abstract models increases the importance of the subject-matter experts because 
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they must be able to distill the situation, as defined by the question, to its essence. Once this 
distillation is created, it is put into the Data Farming environment and run many times. 
 

Execution of the model within the Data Farming environment has two aspects. First, 
large parameter space is explored in either a full factorial experimental design or a sampling 
approach, such as a Near-orthogonal Latin Hypercube (Lucas et al., 2002). Second, because of 
the sensitivity of the models to slight perturbations in the initial layout of the agents or the 
random number stream during the run, they are run many times with the same parameter 
combinations but with different random seeds. Alternatively, the parameter combinations may 
not be set initially but may be created by using one of a number of different evolutionary or 
natural algorithms to find near-optimal parameter combinations on the basis of a user-defined 
fitness function.  
 

Finally, when the runs of the model are completed, the output data are analyzed to 
determine if the model was created correctly and if it adequately captured the essence of the 
question. Once the modeler and subject-matter expert are satisfied that the model represents the 
question at hand, the analysis enters the Operational Synthesis (Horne, 2001) cycle. The 
Operational Synthesis cycle involves placing the Data Farming methodology in a decision-maker 
support context. The results from the Data Farming development and analysis loop are used to 
inform traditional operations research and other analytic methods with particular emphasis on 
risk analysis and decision support. The insights generated from the Data Farming can be used to 
inform other aspects of the analytic processes, be they legacy models, traditional decision 
support, or even a war game.  
 

For this effort, we have developed an SASO model that focuses on agent interactions and 
the effects that “good” and “bad” events of varying intensity and scope have on civilian 
contentment and the attitudes civilians have about a coalition performing SASO. Civilians are 
defined in terms of a series of fixed parameters: sex, marital status, religion, ethnic group, 
wealth, and social influence. Furthermore, civilians have a number of internal dynamic states, 
such as Contentment, Orientation, and Predilection. The parameter Contentment is used as a 
measure of an agent’s (civilian’s) perceived quality of life. Orientation is a measure of how 
congruent the agent’s views are with the coalition forces. Predilection describes how the agent 
will interpret the “goodness” or “badness” of events. Finally, although good and bad events 
affect an agent’s Orientation, the changes in Orientation are generally small relative to 
Contentment.  
 

The modeling approach described herein is consistent with the work of Silverman et al. 
(2003) that models the cumulative effect of good and bad events on an agent’s stress level. 
Future events are then interpreted by a “construal filter” on the basis of the cumulative effect. 
This result also directly affects the agent’s choice of subsequent actions. Unlike Gillis and Hirsch 
(1999), we did not consider the frequency of events in determining the cumulative effect, but 
simply the number and magnitude of events. This approach seems reasonable for stability and 
support operations where the timeframes are long and events occur infrequently. The work 
herein is also consistent with Jager’s (2004) recent work that formalizes social judgment theory 
to incorporate processes of assimilation. Jager’s results have demonstrated that the attitude 
structure of agents can determine whether those agents will assimilate into a group. He postulates 
that the assimilation then can cause a group to reach consensus or develop a number of 
subgroups. However, the model was not created with specific theoretic underpinnings. The  
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dynamics and structure found in this model are based on the knowledge and opinions of subject-
matter experts. Now that the issues involved in the subject matter are well defined, we are 
researching and experimenting with relevant sociologic and computational theories, such as the 
aforementioned studies.  
 
 

GENERAL MODEL DESCRIPTION 
 

At its heart, this is a model of agent interaction, a screen shot of which is shown in 
Figure 1. We have removed most aspects of the environment and even of coalition, 
nongovernmental organization (NGO), and insurgent action. Instead of modeling specific 
actions, such as blocking a road, building a school, or distributing food, we aggregate the actions 
into generic good and bad events. In this regard, the model is “effect based.” We do not attempt 
to model actions; rather, we model their effects on the civilian population. Good events are 
defined as events that increase the standard of living. Conversely, bad events are those that 
decrease the standard of living. There are three general types of good and bad events: local, 
regional, and national. The spatial coverage and frequency of events are both adjustable 
parameters. For example, currently the model represents a notional three-month period of time, 
with each time step of the model representing six hours; therefore, if a local good event should 
happen once a day, on average that event will occur once every four time steps. More detail can 
be found in Section 3 of the appendix. 
 
 

 

 FIGURE 1  Screen shot of the model 
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Although the actions of the coalition, NGOs, and others are highly abstracted, the 
modeling of the civilians is relatively rich. Civilians have four canonical types: married female, 
married male, unmarried female, and unmarried male. Each civilian type is further subdivided 
into religious groups, clan groups, economic class, and social influence. Finally, each agent has 
some endogenous, dynamic parameter values, including preContentment, Contentment, 
Orientation, and Predilection. The user states the percentages of agents assigned to the four types 
(married/unmarried, male/female). We make the simplifying assumption that on the time scales 
considered within this model (months), no significant change will occur in the structure of the 
society. Hence, the values of type (married/unmarried, male/female), clan, religion, and 
economic status are held stationary throughout a simulation run. Similarly, Predilection and 
social influence do not change during the run. On the other hand, Orientation, Contentment, and 
preContentment (see appendix, Sections 2 and 3) do change during the course of the run as 
agents interact and are affected by good and bad events.  
 

Contentment is modeled as a logit curve (see appendix, Section 3, Equation 5) to provide 
bounding without arbitrarily forcing Contentment values within a given range. This is 
accomplished by giving agents an unbounded preContentment score that is then transformed via 
a logit equation into a score that is tangentially bounded by –1 and 1. We selected this 
methodology because it allowed us to create a population of agents with a simple memory of past 
experience and dynamics that fit with subject-matter experts’ input. Specifically, it will take a 
very happy individual a significant period of time to become unhappy when faced with small-
scale bad events. After a certain period of time, however, it will take relatively few additional 
bad events to make the happy individual unhappy. This is similar to the dynamics of a well-
buffered solution — an acid or base can be added to the solution, creating little change in the pH 
until the buffer is overwhelmed, at which point there is a nonlinear change in pH.  
 

Along with Contentment, agents have Orientation and Predilection. These parameters are 
used to explore the effects of good events (those that increase the standard of living) on 
individuals who do not want the SASO to succeed. For these individuals, coalition success is a 
negative event, even though they are benefiting from it — their standard of living is improving. 
Therefore, it is necessary to affect Orientation as a function of an agent’s Predilection (its 
tendency to be swayed toward the coalition’s values as quality of life improves) and the agent’s 
Contentment (its quality of life). In this way, agents with a Predilection that is in between 
Orientation and Contentment can become more anticoalition as their quality of life increases. 
This occurs because Predilection is an axis for the line connecting Orientation and Contentment. 
If the Predilection line is in between Orientation and Contentment, a change in Contentment will 
cause an opposite change in Orientation (there may be a difference in size, as well). A graphical 
representation of the above discussion can be found in the appendix, Section 4. If, on the other 
hand, Orientation was in between Predilection and Contentment, a change in Contentment would 
cause a similar change in Orientation (there may, of course, be a change in scale).  
 

In a sense, the Orientation can be defined as how vehemently an agent works with or 
opposes coalition action. As the coalition becomes successful, an agent with a low (<1) 
Predilection will become more opposed to the coalition, even though his individual quality of life 
is increasing. Conversely, as bad things happen for the coalition and quality of life decreases, 
agents with a low Predilection will become less severe in their opposition. In a sense, they will 
not have to be as active since the coalition is “doing their work for them” by being ineffective.  
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The agent can use one of two “movement” algorithms. First, the agents can simply move 
randomly about the torus-shaped landscape. Second, the agents can be gently biased to move 
closer to the agent within their vision (which can be set by the user) who is the most similar to 
them in the above-described characteristics.  Moving toward similar agents seems to be most 
congruent with guidance provided by the subject-matter experts. We note that in this context, 
movement is simply a vehicle for agents to interact and does not necessarily reflect movement in 
a geographic space. 
 

Finally, the coalition’s interaction with civilians is approximated by biasing the 
probability of good and bad events. For instance, if the coalition met with a great deal of success 
providing clean water and maintaining order, that would increase the likelihood of civilians 
being affected by good events. Conversely, if the coalition was doing poorly and was having a 
great deal of trouble rebuilding the electrical system or bridges, then the likelihood of civilians 
experiencing bad events would increase. 
 
 

AGENT INTERACTIONS 
 

Agents have two general types of interactions — with other agents and with good and 
bad events (see the appendix, Sections 2–4). The probability of an event occurring at any given 
time step is an input parameter. The occurrence of an event at any given time step is stochastic 
with a uniform distribution. When an event occurs, a single “target” agent receives a message 
describing the event characteristics. For example, this agent may be informed that a regional 
event occurred with x scope (or radius) and y magnitude. This agent then tells the agents in a 
given proximity (x radius) that an event of magnitude y occurred. Those affected agents then 
adjust their preContentment scaled by their distance from the “epicenter” of the event.  
 

Agents will also influence each other by direct communication. Agents within close 
proximity of each other will communicate with a probability based on how “similar” agents are. 
Similarity is based on factors such as clan, religion, and economic status. The more similar 
agents are, the greater the likelihood they will communicate. Communication affects an agent’s 
Contentment value in two ways. If agents share a common belief about their quality of life, that 
feeling will be strengthened. In addition, one agent may influence another to adopt a 
Contentment value closer to its own, based on its social influence parameter. A slightly richer 
description of agent communications is given in the appendix, Section 1. 
 

One issue is the importance of Euclidean geometry in this system. Currently, all things 
that affect an agent are somehow related to “physical” space around an agent. We are developing 
a second model to act as a prototyping environment for social networks. Social networks are very 
important for at least two reasons. First, civilian populations have social networks that are 
important sources of information and influence. Second, social networks decrease the relative 
importance of Euclidean geometry within the system, mimicking the effects of telephones, 
newspapers, and so on that allow for the widespread dissemination of information beyond that 
which occurs within the immediate purview of an agent.  
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NEXT STEPS 
 

The models that have been developed have produced “reasonable” answers that have 
passed informal face validity testing with subject-matter experts. We now plan on formally 
tuning the models with respect to real-world data to explore whether the models may have utility 
in a decision support environment. Once the models are tuned, we then can use the Data Farming 
environment to explore possible effects of various courses of action that a coalition may employ 
within the context of an SASO. Furthermore, we wish to explore accepted sociological, 
anthropological, computational, and other theories of social/agent interaction and change to 
further validate and tune the methodology used for agent interaction. 
 

Of particular interest to this research is the work of Sean O’Brien (2002, 2004) on 
country instability. O’Brien has collected considerable data relating to citizen unrest and conflict 
within and between nations. Moreover, his work also provides a derived measure of instability 
within a country, which we will attempt to relate to an aggregate measure of Contentment and 
Orientation from our model to begin the validation process of the model and to examine its 
ability to generalize from one region to another.  
 

The SASO model described in this paper has a significant amount of randomness and 
interdependence, as well as large ranges for the parameters. To fully understand how the various 
situations may affect the civilian populace, the parameter space must be thoroughly explored. As 
discussed above, this step will be accomplished with Data Farming. Currently, NetLogo is 
integrated into the Data Farming environment at the Maui High Performance Computing Center. 
By making use of the data from O’Brien (2002, 2004) and parameter space sampling, we will be 
able to gain insight on the utility of this model, its ability to represent reality, and its ability to 
generalize to various parts of the world, and, thus, continue development of the model. Another 
avenue we are pursuing is implementing the model into other agent-based modeling frameworks 
such as Repast and MASON.  
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APPENDIX 
 
 
1  Details of Agent Communications 
 

Agents can affect each other by “communicating.” Communications are limited to agents 
in close proximity and only involve discussions about each other’s Contentment values. 
Communications occur in the following way: every time step, agents look around in their 
immediate vicinity and if there are one or more agents they grab one at random. Once an agent 
has picked a partner, the agent determines the probability that they will interact. This probability 
is based on cultural factors dealing with interactions between types (do single males talk to 
married females?) and attributes held in common (do both agents have the same religion and clan 
affiliation?). Once the probability is determined, a random draw is made to see if a 
communication event will occur. In the current case, the subgroup interaction probability table is 
set up so that the more characteristics two agents share, the more likely they are to interact 
(assuming they find themselves spatially close enough).  
 
 
2  Communication-based Changes to Agent Contentment 
 

Communication between agents occurs in the following way. First, the agents check to 
determine if their Contentment scores are close enough for communication to be possible. If the 
agents’ Contentment scores are close enough, the agents then check if their Contentment values 
are beyond a runtime set threshold. If this is the case, the agents will move their preContentment 
scores farther out, thus reinforcing each other’s feelings. This effect is implemented in 
Equation 1. Finally, the agents will influence each other, thus moving their preContentment 
scores closer together (Equation 2).  
 
 [ ]ycommonalit*)scalar(*PretPretAgent_effect −+= 1111 , (1) 
 
 Pret*ycommonalitPret*)ycommonalit(Agent_effect 2111 +−= , (2) 
 
where t1Pre is Agent 1’s value of preContentment, scalar is a value from a defined look-up 
table, and commonality is a measure of how many attributes the two agents have in common. 
Equation 2 describes how agents influence each other. All variable definitions are the same as in 
Equation 1, and t2Pre is the preContentment value from the partner agent. This equation 
provides a great deal of flexibility to this communication dynamic. If the value of commonality 
is 1, the agents will swap preContentment values. If the value is 0.5, they will meet in the 
middle. On the basis of subject-matter expert input, the commonality tables are currently set up 
to produce commonality values between 0.0 and 0.07. 
 
 
3  Event-based Changes to Agent Contentment 
 

The SASO model contains good and bad event types. There are three scales to each type 
of event: local, regional, and national. The scale of the event determines how much of the 
population is affected on the basis of spatial distance between an agent and the epicenter of the 
event. The user can specify the frequency (which is the probability that event x will affect an 
agent in a single day) of each type of event by scale.  
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 Equation 3 describes bad events, whereas Equation 4 is used for good events. The 
parameters minPreContent and maxPreContent are set at runtime:  
 
 xx mentpreContentmentpreContent =+1                                                            (3) 

                             EventValue*
ContentPremin*

mentpreContentContentPremin x

2

−+ ,  

 
 xx mentpreContentmentpreContent =+1                                                            (4) 

                              EventValue*
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mentpreContentContentPremax x

2

−+ . 

 
Equations 3 and 4 allow the model to capture diminishing marginal effects of good and bad 
events on an individual agent. Therefore, repeated good or bad events will have less and less 
effect on an agent’s Contentment. After preContentment is created, the preContentment score is 
mapped into the Contentment score with a general logit curve equation (Equation 5): 
 

 

)meanx(slopee

LBUB
LB)x(f

−
+

−+=
1

1
, (5) 

 
where  
 
 LB  =  lower bound,  
 UB =  upper bound, and  
 slope and mean =  parameters set at runtime.  

 
To date, we have set UB = 1, LB = –1, slope = 0.05, and the mean = 0. This creates symmetrical 
movement toward happiness or unhappiness. Figure 2 shows the line created by this equation 
when varying slope from 0.01 to 0.16. In the model, f(x) represents Contentment, and  
x represents the value of preContentment.  
 
 
4  Event-based Changes to Orientation 
 

As shown in Figure 3, a given change in Contentment will cause a change in Orientation 
based on Equation 6: 
 
 ( ) ( ) ( ) ( ) ( )[ ]{ } )CyPy(/CxCyOy/CxOx*Py*OyCyCxxO 111111111112 −−−−−−= , (6) 
 
where  
 
 O(x2) = new Orientation value,  
 Oy1 = Orientation line (here a horizontal line with a y intercept of 0.2),  
 Cy1 = Contentment line (here a horizontal line with y intercept of –1),  
 Py1 = Predilection line (here a horizontal line with y intercept of 0.1),  
 Ox1 = current Orientation value, and  
 Cx1 = current time step Contentment value. 
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ABSTRACT 
 
In recent years, the evolution of a powerful and innovative methodological tool known as 
agent-based simulation has allowed integration and evaluation of existing theories of 
international relations by creating a synthetic international and national environment. 
This virtual system models the interaction of large numbers of heterogeneous “artificial 
agents” that mimic the behavior patterns of humans or entities. The “emergent 
macrobehavior” of the effects of the interacting agents can be used experimentally to 
evaluate strategic and tactical domestic and foreign policy decision making. The 
computational experimentation approach, wherein human players can participate 
concurrently with an agent-based environment, offers several benefits. First, it facilitates 
the seamless and interchangeable integration of human and software agents. Second, it 
allows a place where the consequences of decisions can be measured and analyzed. 
Finally, it is a virtual laboratory for testing the efficacy of theories, decisions, strategies, 
and tools. This paper describes the implementation of an agent-based virtual international 
system developed for the U.S. Department of Defense to examine how intra-nation 
dynamics, geopolitical situations, leaders’ predispositions, and citizens’ expectations, 
goals, and desires for well-being affect a nation’s capabilities and willingness to fight. 
Specifically, the goal is to understand the conditions that increase or decrease both the 
leaders’ and the people’s will to fight. 
 
Keywords: Agent-based simulation, computational experimentation, emergent behavior, 
virtual international system 

 
 

INTRODUCTION 
 

In the field of international relations, several influential theories have been advanced that 
aim at understanding the causes of international conflict, regional and state stability, and peace. 
The foremost contemporary debate that has consumed international relations research for the past 
few decades is between the neorealist paradigm and neoliberal paradigm. Each paradigm 
provides an ontologically distinct, sophisticated, and nuanced explanation of states’ behavior in 
the international system. The neorealists view the international system as being anarchic and thus 
eschewing cooperation among states. They analyze it in terms of (1) structures and their 
observable attributes (Waltz, 1979); (2) distribution of power and relative military capabilities of 
adversarial states (Bueno de Mesquita, 1978, 1981; Thompson, 1988; Huth, et al., 1993); (3) the 
relationship between a state’s resolve/willingness to take risks and the likelihood of war 
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(Snyder and Diesing, 1977; Bueno de Mesquita, 1985; Powell, 1990); (4) trade-offs between 
domestic ends and military power (Gilpin, 1981; Powell, 1993); (5) alliance structures and their 
effect on conflict; (6) military alliances and their effect on economic cooperation (Gowa, 1989; 
Gowa and Mansfield, 1993); and (7) one state’s risk propensity for seeking relative gains vis-à-
vis those of other states (Grieco, 1988, 1993). Neoliberals, by contrast, argue that anarchy does 
not eschew cooperative behavior among states. States’ mutual interests and concern for future 
payoffs compel them toward cooperative behavior (Lipson, 1984; Oye, 1986; Axelrod and 
Keohane, 1993). For neoliberals, states are more concerned about maximizing absolute gains 
and, as such, are indifferent to the gains of other states (Stein, 1983). 

 
While conspicuous attempts are being made to synthesize the contending theories into 

single integrated frameworks (Powell, 1991; Sterling-Folker, 1997), few methodological tools to 
test these contending theories are available. Agent-based simulation (ABS) is a methodological 
tool that has the capability to integrate and synthesize contentious theoretical frameworks and 
yield a comprehensive understanding of political, economic, and social systems and processes. In 
recent years, a significant amount of social science research has been using ABS in various 
applications, such as the development of synthetic economies (Chaturvedi, et al., 2005) and 
societies (e.g., ethnic conflict) (Bhavani and Backer, 2000); investigation of conditions for 
alliance among nations (Axelrod, 1997); conditions for state formation and dissolution 
(Cederman, 1997); identity development and diffusion (Lustick, 2000); secessionism in 
multiethnic states (Lustick, et al., 2004); and emergence of ethnocentrism (Axelrod and 
Hammond, 2003). However, very little of this work has focused on creating a holistic model of 
the international system. This paper describes the implementation of an agent-based virtual 
international system (VIS) developed for the U.S. Department of Defense to examine the 
interrelated effects of intra-nation dynamics, geopolitical situations, leaders’ predispositions, and 
citizens’ expectations, goals, and desires for well-being, on a nation’s capabilities and 
willingness to fight. Specifically, the goal is to understand the conditions that increase or 
decrease both the leaders’ and the people’s will to fight. 
 
 

AGENT-BASED MODELING OF A VIRTUAL INTERNATIONAL SYSTEM 
 

In recent years, the evolution of the powerful and innovative methodological tool known 
as ABS has allowed us to integrate and evaluate existing theories of international relations by 
creating a synthetic international and national environment. This virtual system models directly 
the interaction of large numbers of heterogeneous “artificial agents” that mimic the behavior 
patterns of humans or entities (citizens, leaders, groups, organizations, and institutions). The 
emergent macrobehavior of the effects of the interacting agents can be used experimentally to 
evaluate strategic and tactical domestic and foreign policy decision making. Furthermore, ABS 
allows us to test the relative explanatory value of the various theoretical approaches in 
international relations such as theories on deterrence, escalation of crisis, conflict, negotiations 
and bargaining, and peace operations by elaborating, refining, and testing the logically 
interconnected theoretical claims. 

 
Also known as intelligent agents, artificial agents are “software modules equipped with 

artificial intelligence mechanisms that are capable — independently or in cooperation with other 
agents — of achieving specific goals. [Intelligent agents] can autonomously react to unexpected 
situations and learn from errors (and experts) to improve efficiency” (Boudriga and Obaidat, 
2004, p. 35). Tens of thousands of these agents are situated in the artificial environment, and 
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each agent typically represents one or more people in a simulation. The artificial agents can 
interact with other agents and with the environment; communicate, negotiate, and cooperate with 
each other; interact with human players; anticipate and adapt to changes in the environment  
and users’ needs; and effectively communicate with user and network resources. There is a 
distinction between artificial agents and human agents. The behavior of the human players is not 
predetermined; they are free to act as they wish under prevailing conditions (which might include 
various capabilities and constraints), and these conditions are very clearly described and 
presented to them. The roles of the human and artificial agents can be interchanged on the basis 
of the requirements of the problem domain and the design of the experiment. 

 
The computational experimentation approach, wherein human players can participate 

concurrently with an agent-based environment, offers the following benefits. First, it facilitates 
the seamless and interchangeable integration of human and software agents, which allows us to 
conduct significantly more complex experiments and simulations than are usually possible in the 
fields of experimental economics, psychology, political science, and epidemiology. Second, it 
allows a place where the consequences of decisions can be measured and analyzed. This extends 
the purview of traditional decision support from building models that support human decision 
making to actually being able to gauge the impacts of decisions as well. Finally, it is a virtual 
laboratory for testing the efficacy of theories, decisions, strategies, and tools. Experiments can be 
devised that measure the effects of various decisions against the support tools used to arrive at 
those decisions (Buodriga and Obaidat, 2004; Chaturvedi et al., 2005). 
 
 
Virtual International System: A Case Study 
 

In this section, we describe a scenario-based case study in which the VIS is used to 
analyze the issues involved in coordinating diplomatic and military actions. We used VIS to 
represent 10 countries in a strife-torn region of the world. Developed by using the Synthetic 
Environment of Analysis and Simulation (SEAS), VIS comprises an environment containing 
multiple classes of agents. The SEAS platform allows the creation of virtual societies, nations, 
organizations, and institutions that “mirror the real world counterparts in all its key aspects by 
combining large numbers of artificial agents with smaller numbers of human agents to capture 
both detail intensive and strategy intensive interactions” (Chaturvedi et al., 2005). The virtual 
environment also provides the rules that govern and guide the actions of agents and interactions 
between agents. The VIS environment is composed of geographic entities (nations, provinces, 
cities) and their infrastructures (electricity, telecommunications, transportation), political systems 
(type of government, political parties/factions), social systems (institutions, group), economic 
systems (formal and informal sectors), and information systems (print, broadcast, Internet), as 
shown in Figure 1. 
 

The VIS consists of teams of players — human as well as synthetic. The coalition task 
force (CTF; Blue team) is represented and played by humans. The other teams are the country of 
interest (COI; Red team); the other regional countries, that is, Country X (Green teams); and the 
media (Red-leaning, Blue-leaning, and Neutral teams). They are represented by more than 
200,000 autonomous agents. The goal of this experiment is to analyze the COI’s will to fight at 
the strategic, operational, and tactical levels. 
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FIGURE 1  Conceptual model of VIS represented in terms of a political, military, economic, 
social, informational, and infrastructure (PMESII) framework 
 
 

MODELING THE COUNTRY OF INTEREST: SOCIETY OF SYNTHETIC AGENTS 
 

We modeled the COI at the provincial level. Each province within the COI consists of 
five types of synthetic agents: citizens, leaders, organizations, institutions, and states. To 
represent a synthetic nation, individual citizen agents are constructed as a proportional 
representation of the societal makeup of a real nation. Each individual agent is encoded with 
static traits, such as gender, nationalism, ethnicity, race, income, education, and religion, and 
dynamic traits, such as political, societal, religious orientation, and will to fight. 

 
The agent’s well-being consists of six elements or needs: basic, health, security, religious, 

educational, and freedom of movement. Agents take actions on the basis of their assessment of 
their perceived state of their well-being. The agent’s emotional state is the second psychological 
parameter that the system tracks. Either a leader or an event reported by the media can affect the 
agent’s emotional state. The role of the emotion is to capture the level of arousal and the 
intensity of the action in which the agent engages. Allowable actions for citizen agents include 
joining organizations, leaving organizations, demonstrating, supporting Red or Blue teams or 
staying neutral, fighting or fleeing, and committing hate crimes. 

 
Leader agents are leaders of various organizations. The leader agent’s repertoire is larger 

than that of the citizen agent and includes traits such as fundamentalism, nationalism, power 
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base, and stance on domestic, economic, and social policies. Leader agents are categorized as 
social, religious, and political and are encoded with influence levels that reflect their power 
within groups, organizations, and institutions. These agents affect the political and social climate 
within the synthetic environment. They work to effectively impose their stances upon citizens 
and organizations to promote their goals. The goal of leader agents is to solidify their positions in 
the environment and to try to persuade organization agents to make decisions that favor those 
positions. Like citizen agents, leader agents use measures of well-being to access action. 
However, their actions are based on their position in the synthetic environment with regard to 
political orientation, freedom of opinion, societal orientation, economic policy, openness to 
western investment, religious orientation, and power base. A specific leader’s perception about 
these attributes defines his/her stance and will to fight. The value of these attributes may then 
influence the corresponding organization agent’s behaviors. Leader agents can take the following 
actions: incite agents to take actions, harmonize dissenting views, and persuade. 

 
Clusters of agents form groups, organizations, or institutions. They differ from individual 

agents with regard to the rules that govern their behavior and intent. Groups can be formal or 
informal. Formal groups and factions operate overtly in the synthetic environment, while 
informal groups, such as terrorist cells, operate covertly. Organizations and institutions are legal 
entities that provide structure to the synthetic environment. Like groups, organizations can be 
formal or informal, although they differ from the latter with regard to size (larger) and structural 
development (more refined). An organization’s will to fight is constitutive of operational will-to-
fight measures.  

 
Institutions are increasingly more formal than organizations with regard to policy 

development, implementation, and adjudication capabilities. Some institutions have the right to 
use force. Some specific traits for groups, organizations, and institutions include political 
orientation, freedom of opinion, societal orientation, economic policy, openness to western 
investment, control over resources, and power base. The institution’s will to fight is constitutive 
of strategic will-to-fight measures. 
 
 
Modeling Country X 
 

Modeling Country X is at the heart of the VIS. Considerable research has been conducted 
to show the possible links between societal attributes of a state and its foreign policy behavior. 
According to Zakaria (1992, p. 198), “a good account of a nation’s foreign policy should include 
systemic, domestic, and other influences, specifying what aspects of the policy can be explained 
by what factors.” Waltz (1979, p. 64) further argues that explanations for a state’s behavior that 
emphasized national or subnational interest would be reductionist at best, since “one cannot infer 
the condition of international politics from the internal composition of states, nor can one arrive 
at an understanding of international politics by summing the foreign policies and the external 
behaviors of states.”  

 
Nation states in VIS are a cluster of agents representing the legislative and executive 

institutions.1 The clusters exhibit intelligent behavior based on internal and external dynamics, as 
shown conceptually in Figure 2. 
 
                                                 
1 Judiciary institutions are not implemented in the current version of VIS. 
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FIGURE 2  Internal and external dynamics of agent clusters 
 
 
Internal Determinants 
 

A state’s foreign policy reflects the interests and relative power positions of competing 
groups within the state. For this simulation, we chose seven societal determinants of foreign 
policy. A brief description of the determinants follows: 
 

1. Nationalism: Nationalism is defined as the psychological attachment to the 
nation-state, and this attachment, in turn, gives the nation-state its legitimacy. 
Nationalist sentiment is the feeling of anger aroused by the violation of the 
principle or the feeling of satisfaction aroused by its fulfillment (Gellner, 
1983). 

 
2. Type of government: There is an important distinction in policy-making 

functions between a democratic and an authoritarian system. In democratic 
systems, periodic elections give people a chance to shape policy through the 
selection and rejection of key policymakers. In authoritarian regimes, military 
councils, hereditary families, or dominant political parties choose 
policymakers. Hence, the contribution from citizens is negligible. In anocratic 
states, however, opportunities to affect policies are extended to certain 
segments of society, such as the elite and the intelligentsia (Almond et al., 
2002). 
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3. Internal ethnic conflict: Most scholars agree that ethnic conflict has a 
detrimental effect on a state’s stability and is strongly correlated with 
terrorism, guerilla warfare, and civil war. Linkage of groups might cause 
domestic conflict to “spill over” to neighboring countries or to the 
international arena. Domestic turmoil is often seized upon by traditional 
enemies to further destabilize the nation by providing incentives, finances, and 
revolutionary ideology (Horowitz, 1985; Gurr and Harff, 1994). 

 
4. Public opinion: Public opinion provides legitimacy to a state’s foreign policy 

goal. Hence, states and substate actors seek to influence the range of views 
held by the citizens of a state on foreign policy. They attempt to influence 
views because, in the end, policies are carried out by ordinary people, such as 
soldiers and bureaucrats. Public opinion has a greater influence on foreign 
policy in democracies than it does in authoritarian governments (Herrmann 
et al., 1999).  

 
5. Economic stability: Resource availability makes a difference in how active a 

policy a state can pursue. It also has an important impact on military and 
economic strategies. Conversely, a state with limited resources can ill afford 
to pursue a global foreign policy (Gasiorowski, 1995).  

 
6. Military-industrial complex: The military-industrial complex tends to have 

considerable influence on a country’s foreign policy decision making. Since it 
is the most modernized and skilled sector of the society, it has the ability to 
influence decision making and mobilize support through glorification of past 
and present military strength and through its association with all segments of 
the elite and the nation’s leadership (Millet et al., 1986).  

 
7. External threat: Decision makers use external conflict to unify their 

population and galvanize support for foreign policy decisions. External threat 
is also used to foster alliances, especially in the military domain (Huth et al., 
1993; Bueno de Mesquita, 1997).  

 
 
Systemic Determinants and Strategic Objectives 
 

Although states are sovereign entities in the international arena, they are not autonomous. 
Their relative position in the international structure is determined by their relative power 
position, distribution of power regionally as well as globally, political and economic alliances, 
cultural/religious affinities with other nations, and regional public opinion. 
 

• Power: A state’s power is determined by its relative capabilities, which, in 
turn, determine its position regionally and globally. A state’s capabilities are 
the combination of its industrial, military, and demographic power (Singer 
et al., 1972).  

 
• Balance of power: To manage insecurity, states try to balance themselves 

against other states and, in the process, make rational and calculated 
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evaluations of the costs and benefits of particular policies that determine their 
role in the system (Waltz, 1979; Walt, 1987).  

 
• Alliances: States form alliances to prevent possible aggression from other 

states. Alliances have a significant impact on foreign policies of allied 
countries and provide the basis for power projection. Two main factors are 
important to the formation of alliances: (1) an idealistic factor that is a 
national commitment to alliances based on shared values and ideas and  
(2) a realistic factor based on cost and benefits. The assumption is that 
alliances can save costs and multiply benefits through division of 
responsibility, sharing of common assets, and protection of a stronger country 
(Walt, 1987; Gibler, 2004). 

 
• Treaties: Bilateral and multilateral treaties between states are reciprocal 

arrangements and facilitate cooperation, which, in turn, affects the power 
structure of the region (Jervis, 1988).  

 
• Trade agreements: Trade agreements are economic strategies that states adopt 

to maximize their own wealth and economic power in the process of carrying 
them out. Trade agreements can promote cooperation by increasing 
reciprocity and linking various issue areas (Keohane and Hoffman, 1991).  

 
• Reciprocity: States use reciprocity as a strategy for achieving cooperation in a 

situation of conflicting interests. Reciprocity is a specific bargaining strategy 
that a state adopts to enhance its own goals and to induce other actors to take 
the actions it desires (Lebovic, 2003).  

 
• Intergovernmental organizations: International organizations set the norms 

and rules of behavior for their member states. They provide conditions that are 
conducive to greater cooperation and interdependence among states, thereby 
regulating interstate conflict (McCormick, 1980). According to Ruggie 
(1992), multilateral norms and institutions “appear to be playing a significant 
role in the management of a broad array of regional and global changes in the 
world system today.”  

 
• Culture and religious affinities: According to Axelrod (1997, p. 82) states 

have “some interests that affect their behavior toward other countries, such as 
the desire to be militarily secure, but also have specific conflicts and affinities 
with particular other states based upon ideological, ethnic, economic, or 
prestige values.” Similarities or dissimilarities in culture and religion across 
states affect their strategic calculations accordingly.  

 
• Territorial disagreements: Bilateral territorial disagreements significantly 

increase the probability of war, which determines a state’s policy regionally as 
well as globally. States tend to increase trade relations and alliances with the 
adversary and/or neighboring states; increase their military capability vis-à-vis 
their adversary; and/or negotiate, bargain, and follow other diplomatic 
channels, such as cultural exchange, with the adversary to balance their 
position in the region (Vasquez and Henehan, 2001).  
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• Regional public opinion: Globalization and information technology contribute 
extensively to a state’s foreign policy objectives. Information sharing can 
galvanize the masses, compelling states to adjust their foreign policy choices 
accordingly (Robinson, 1999).  

 
 

PUTTING IT ALL TOGETHER 
 
 Figure 3 depicts the interaction between the CTF and COI and the role of the media. As 
mentioned earlier, the COI is composed of citizens, leaders, organizations/institutions, and 
infrastructures. A user interface was designed to allow the CTF to interact with VIS. The CTF 
has diplomatic, information, military (actions limited to information and psychological 
operations), and economic (DIME) action sets.2 Each action has intensity levels on a scale of 
zero to six. Zero implies a “status quo” level of effort, and six represents an extremely high level 
of effort. Each of these actions can be directed toward any entity in the system, such as one or 
more persons, organizations, infrastructures, or governments. While only the logical actions have 
effects on targeted entities, no constraints exist in VIS on what actions can be taken or to which 
entity they can be targeted. In this way, VIS does not eliminate certain types of errors committed 
by the players. 
 
 

 

FIGURE 3  VIS environment 

                                                 
2 Attrition-based simulation ran in parallel to SEAS runs. The output of that model was entered in SEAS, and 

SEAS output was entered into the attrition-based model. 
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Agents in VIS can either directly sense the state of the environment or receive the news 
from the media. Three types of media are modeled: neutral/news wire, red-leaning, and 
blue-leaning. The role of the news wire is to present the “ground truth” to the red- and 
blue-leaning media. The red- and blue-leaning media bias their messages to meet their respective 
agendas and goals. Agents subscribe to the media on the basis of their own beliefs. In the starting 
condition, about 20% of the population subscribes to the red media, 20% subscribes to the blue 
media, and 60% subscribes to both. The media report on the well-being parameters of all agents. 
Agents can subscribe or unsubscribe to the media on the basis of their pattern of believability in 
reporting. 
 

Before the model was used in the experiment, a lengthy process of calibration was 
performed. In our agent-based model, each agent is a microsimulation, and the entire system is a 
society of simulations. Therefore, we validate each class of agent against theory and calibrate the 
emergent behaviors of the system against empirical data (if available) and/or experts’ opinions 
regarding the subject matter, as shown in Figure 4. Typically, a third party performs the 
validation and verification of the model before it is made available for experimentation. 
 
 
Experiments and Results 
 

This section presents partial results of an extensive set of experiments with subject-matter 
experts. The experiment has two parts. The first part entails actions taken during the period 
D − 90 to D-day. D-day represents the day of the start of major military intervention. The goal of 
the D − 90 to D-day simulation is to use diplomatic, informational, and economic means to bring 
the COI to the negotiating table. 
 

The second part of the experiment pertains to the use of diplomatic, informational, and 
economic interventions in conjunction with a major military offensive. CTF’s actions (Figure 5) 
and the corresponding COI’s posture during D − 90 to D + 10 are shown in Figure 6. Results 
indicate that as the tension in the region increased during the D − 90 to D-day time period, the 
public mood and employment began to slide downward as a result of the informational and 
economic operations of the CTF. However, the national pride index remained relatively high. 
 

The states of the strategic, operational, and tactical wills to fight are shown in Figure 7. 
The tactical (public) will to fight (as a function of public well-being and emotion) continued to 
rise and the operational (military and militia) will to fight stayed relatively constant, whereas the 
strategic will to fight (political leadership) fluctuated significantly. 
 

After the breakout of hostilities on D-day, diplomacy, psychological, and informational 
operations seem to be quite effective. Although the tactical and operational will to fight remained 
steady, the strategic will to fight decreased, implying that the leadership of COI was willing to 
negotiate. The strategic will to fight could continue to stay low by providing economic incentives 
and rapid de-escalation. 
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FIGURE 4  COI calibration process for will-to-fight measures 
 
 

 

FIGURE 5  CTF actions at times D + 1 (day 91) and D + 10 (day 100) 
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FIGURE 6  Public mood, employment, and national pride indicators of COI 
(Day 9 represents D-day, when the hostilities start. Day 10 represents a major 
attack with casualties and infrastructure damage. Day 11 represents a reduction 
in information, military, and economic interventions.) 

 
 

 

FIGURE 7  Effect of CTF’s actions on strategic, operational, and tactical will to 
fight (D − day = day 90; on D + 10 or day 100, CTF achieved the minimum 
strategic will to fight and sustained it until D + 30 or day 120.) 
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Discussion and Implications 
 

Agent-based simulation is a constructivist approach that offers a compelling argument for 
theoretical convergence, synthesis, and exchange of ideas. According to Lustick (2000), this 
paradigm “opens wonderful opportunities for complementary application of different approaches 
to the study of an important set of inter-related phenomena.” ABS allows us to integrate different 
methodological tools to study individual and state interactions. This research is the first attempt 
to model micro- and macro-level interactions in a single environment. 
 

Although the model does not yet have the fidelity to be used as a predictive tool, an 
extended VIS exercise could definitely provide a CTF with insight into the complex linkages 
between and across a diverse set of entities in the international system. While we were successful 
in integrating and testing models from a wide range of disciplines, several challenges still 
remain, as described below: 
 

• Common representation of knowledge from multiple disciplines: Although 
there is reasonable representation from the agent, group, organization, and 
system levels, considerable work still needs to be done. 

 
• Extremely large number of causal factors: An automated method for isolating 

and validating causal relationships needs to be developed.  
 

• Difficult-to-perform multiple trials: It takes about 2-4 minutes each day to run 
trials on a 4 dual xeon cluster. The processing time needs to be further 
reduced to accommodate more rigorous experimentation.  

 
• Human elements: The outcome of an exercise depends on the human players 

and their understanding of the problems and issues. A distributed 
experimentation environment, with nodes at many universities, “think tanks,” 
and national laboratories, would help us to develop a deep understanding of 
the intricacies of the international system.  

 
• Repeatability and reproducibility: This factor is always a challenge for ABS. 

A more formal stochastic paradigm is required to repeat and reproduce the 
results from complex, nonlinear systems.  

 
• Multiple granularities in space and time: To deal with the complexities of a 

large-scale system, such as the virtual international system, a formal paradigm 
needs to be developed to deal with multigranularity in space and time.  

 
In summary, we described a computational experimentation environment for a VIS. We 

also presented a case study in which we analyzed the impacts of diplomatic, informational, 
military, and economic actions on the strategic, operational, and tactical will to fight. This 
research is a work in progress, and, as such, there are several limitations. The long-term goal of 
this project is to develop a comprehensive computational experimentation environment in which 
scholars can contribute their theories, models, and data. 
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DISCUSSION: 
 

NATIONAL SECURITY ISSUES 
 

(Saturday, October 9, 2004, 1:30 to 3:00 p.m.) 
 

Chair and Discussant:  Keven Ruby, The University of Chicago 
 
 
Epidemiology or Marketing? The Paradigm-busting Use of Complexity 
and Ethnography 
 

Keven Ruby:  Today we have three very interesting papers, and we’re going to begin 
with Stephen Guerin who will talk on the structure of agent-based revolutions. 
 

Stephen Guerin:  I have a small consulting company in Santa Fe [Redfish Group]. My 
collaborators are Michael Agar at the University of Maryland and Robert Holmes and Dan 
Kunkel. Mike is an ethnographer. Dan and I are software developers and are involved with 
visualization. Robert Holmes is a mathematician who does analytics for us, funded by the 
National Institutes of Health and the National Institute on Drug Abuse. 
 

In light of this morning’s conversation, what are some possibilities for empirical 
calibration, and what are some visualization challenges? I want to start by saying that we’re an 
applied company, but this was not an applied project. It was a research project, so it doesn’t 
contain the same kind of customer requirements. This came out of Mike’s work as an 
ethnographer. He’s had 20 years in the field studying illicit drug use in the streets of Baltimore. 
The title that Mike came up with means, “Is There a Paradigm Shift Going on Here That We Can 
Capture with an Agent-based Model?” As an ethnographer, he’s interested in using agent-based 
modeling as a way of presenting ethnographic hypotheses or ideas, as opposed to producing 
some kind of written treatise on ethnography that you would put up on a shelf. He’s very 
interested in getting ethnographies that are models that people can play with and iterate after 
obtaining feedback. So this idea came out of the field work and the desire to feed back to 
policymakers and the kids in the streets to ask them if this is their reality. 
 

[Presentation] 
 

Ruby:  Thank you, Stephen. We’re going to save the questions for the end of the session, 
unless somebody has immediate questions. 
 

Zhian Li:  I am Zhian Li, from Argonne National Laboratory. I would really like to hear 
something about how you overlap your social and geographic networks. 
 

Guerin:  We basically had two events, time stamps, and you’re moving between the two 
geographically. I’m thinking about putting a radius around the destination and increasing that 
radius interactively, so that once people are inside that radius, they are no longer trying to get to 
the destination, but now interact more socially, like embedded springs at that point. Once they’re 
inside that, they’re random walkers, repelled by other people that they’re not connected to and 
attracted to the people that they are connected to. So if you want to go purely geographic, you’d 
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make that radius zero, and if you want to go purely social, you would make that radius go all the 
way out so that it has no geographic influence. I can show you examples. 
 

Li:  So you can turn off some stuff purposely. 
 

Guerin:  Right.  
 
 
Agent-based Computational Model of a Virtual International System 
 

Ruby:  We move on to Alok, who’s going to be talking about a virtual international 
system. Something to think about during his presentation is how the models that have been 
presented so far have been advancing in complexity. 
 

Alok Chaturvedi:  Thank you, Keven, for giving me the opportunity to speak to you. 
Sitting through several presentations has been a fascinating experience. What I’m going to 
present is an effort that we have been working on for over 10 years. You’ll see a certain maturity 
in some of the modeling, especially the computer science aspect of it. 
 

I’ll go over the building blocks very quickly, the calibration, validation, and 
experimentation capabilities, and then talk about all of the challenges. Support for our effort is 
primarily from the National Science Foundation through a medium ITR grant, Indiana State 21st 
Century for Department of Defense, and Simulex, Inc., which is a company. I am the principal 
investigator of this effort, and several other people are involved from Purdue, Naval Post-
Graduate School, and Indiana University, as well as from the company. 
 

[Presentation] 
 

Ruby:  I have a few framing comments for the discussion. We’ve heard three very 
interesting presentations that address some important topics under the heading of national 
security, including how to approach the question of occupation and conflict dynamics, as well as 
how to rethink the drug problem and the impact that may have on drug policies in the so-called 
‘War on Drugs.’ Methodologically, we’ve seen at least two very different approaches. The first 
two papers used a more standard agent-based modeling approach in which all of the action takes 
place within the model; whereas, the presentation we just heard, which is very interesting in 
developing a more realistic model of the world, has added considerable complexity and has 
created, in a sense, a double laboratory in which the first is the model itself and then the second 
is the interaction between the model and the human decision makers as they try out different 
strategies and test them against model results. 
 

The questions that I have are very general and apply across the presentations. But the 
main one involves correspondence or external validity, particularly with respect to the last 
presentation. As the complexity goes up, the model becomes somewhat more of a black box, and 
it’s not clear to what degree policymakers can be sure that what’s actually driving the results 
corresponds to actual mechanisms in reality. 
 

Also in many of the cases, a lot of parameters are included that are not fully explained, 
such as in the Marine support operations model. It’s not clear why, for example, sex and marital 
status are incorporated into the model. The distributional effects of parameters would also be an 
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interesting thing to at least include briefly in the papers. So with that, I will open the discussion 
to questions from the floor.  
 

Cioffi-Revilla:  I’m Claudio Cioffi, from George Mason. My question concerns the last 
presentation. I’m at a loss for words. I’m baffled. The reason I’m baffled is that modeling 
international systems has been my business for the last 30 years. You said you’ve been working 
on this model for the last 10 years? 
 

A. Chaturvedi:  Yes. 
 

C. Cioffi-Revilla:  On the international system? 
 

A. Chaturvedi:  No. Not on the international system, but on this whole framework, the 
computer science end of it. 
 

Claudio Cioffi-Revilla:  This international system model is completely new and 
unpublished, as far as I know. I go to these meetings, and I’ve never heard any colleague who 
works in this community ever mentioning this model — not Barry Hughes, not the late 
Stu Bremer. I mean, the theories that you’re referencing here, about balance of power and so 
forth, are extremely unsettled; they lack tremendous efforts in validation. And the field that 
studies these things in IR [international relations], quantitative IR — as I said, I’m at a loss for 
words because you’re portraying a tremendous amount of positive science that in fact does not 
exist in that area. The construction of international models has been a very challenging thing for 
a long time. I’m not saying that it is an impossible feat to achieve, and perhaps you have done it, 
but I get very nervous when results from this type of work are going to high councils to help 
decide on policy without really a whole lot of scientific diffusion and peer review and validation 
and publication and so forth; I’m just shocked. 
 

A. Chaturvedi:  Okay. Thank you for your comment. 
 

Cioffi-Revilla:  I hope you got it right. 
 

A. Chaturvedi:  I’ve been working on the computer science end of it for 10 years. I 
mean the modeling. We started working on SEAS back in — I mean, my personal background is 
in machine learning in a multi-agent system, right from the beginning, from distributed AI to 
multi-agent systems. We started by looking at the deregulated telecommunications industry, by 
working on synthetic economies. From that point onward, we started looking at terrorism. The 
Virtual International System [VIS] is a new phenomenon for us; we were approached by the 
Department of Defense to develop a political, military, and social information infrastructure 
model. We have been working with the Department of Defense (DoD) for about a year, and this 
VIS is a new phenomenon about which we are just beginning to publish. 
 

Now, as to the questions you raised about being scientifically validated, none of our 
assumptions are black boxed. When we work with our colleagues and policymakers, we are 
working with intelligence communities; we are working with many people who know exactly 
what is going on in the parts of the world we are trying to model. One of the things we have been 
able to achieve is to make the model totally transparent; you can see whatever assumptions we 
use. We are saying that these are the theories on which we are basing our models. So if there are 
accredited people who tell us that these are not valid models, then we can change that. Our goal 
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is to develop a paradigm, a method whereby people can put in their theories, put in their 
assumptions, and run and test them. As far as individual models are concerned, the psychology 
of people or the hedonic psychology of people, the sociology of peoples — we have experts in 
different areas who are helping us out. 
 

Unidentified Speaker:  Can you talk a bit about the IR construction? 
 

A. Chaturvedi:  Several people have worked in the IR construction, so we have our own 
experts. At Purdue University, we have worked with people like Michael Stoll. Michael Stoll 
used to do a lot of work on terrorism when he was at Purdue; now he is at Santa Barbara. 
 

Cioffi-Revilla:  Terrorism is one subject. International systems dynamics is a very 
different field. 
 

A. Chaturvedi:  Yes. Oh, absolutely. 
 

Cioffi-Revilla:  It’s like saying biology and chemistry are the same thing. 
 

A. Chaturvedi:  No. I mean, everything is very difficult. I’m not saying that we have 
solved all of the problems. You are free to use the system. You can test your theories; you can 
validate or invalidate them. I’m not a subject-matter expert in that; that is not my thing. I mean, 
I’m an agnostic. What I’m saying is that if you have an assumption, if you have a theory, we can 
validate or invalidate the theory; all of those things are open to you. I’m not saying that we are 
proving certain axioms or certain theorems. All we are saying is that this is a framework, 
a mechanism whereby you can test these things. That’s all. 
 

Unidentified Speaker:  I’m from Argonne National Laboratory. I’d like to approach the 
subject from the same direction, more or less, as Claudio, but with a slightly different focus. 
Some of the problems you face are problems that we all face, but your research program is 
particularly ambitious; therefore, it seems more vulnerable to these kinds of issues. 
 

For example, you just said that you’re not saying you solved all of the problems. But the 
question is whether you have a methodology that seems likely to solve the necessary problems. 
I have two questions related to that. One is that social science theories are notoriously 
fragmented, and if you are using some default theories, then when you have outliers going and 
are finding other theories to explain the outliers, how do you avoid radically overfitting the 
particular circumstances of the case? That’s the first question. The second question is more 
specific to the example you used of the will to fight. You were calculating the will to fight. Well, 
this is one of these examples that is inherently complex. Sometimes an attack demoralizes; 
sometimes it enrages. In the Revolutionary War, the soldiers had to go home in the spring to 
plant their crops. You could continue to point out examples of that, where these are inherently 
complex dynamics that are (a) hard to capture by a single theory, and (b) if you create a pastiche 
of a number of theories, you’re explaining one thing, but without the ability to generalize. So my 
second question is, do you think that you can achieve your goals without substantive progress in 
social theory per se? 
 

A. Chaturvedi:  Oh, these are wonderful questions, so let me take the second question 
first. I cannot do it by myself. One of the reasons why the National Science Foundation has 
funded us is to make this computational experimentation paradigm available to the wider 
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community. So one of the things that we would like to do is have the wider community 
contribute their own thoughts and their own models to this arena. 
 

As for the first question, yes, what we are trying to do is orders of magnitude more 
complex than anything else. So in terms of a paradigm, we are trying to create a virtual society in 
which we have all of these competing theories. Now, we can say that there are some 
governments or states that believe in maximizing power, while another state is trying to achieve 
more balance of power — although these two different types of theories are not very well 
understood, at least they are certain assumptions. 
 

When we start populating our virtual environments with these types of behaviors, starting 
from micro- to macro-level behaviors, because one of the bigger challenges in our coming here is 
that we are taking individuals, the citizens, and attempting to scale to the macro-level behaviors 
from the government point of view or from the institutional point of view. So these are 
challenges, and we are not saying that we are already there, but we are developing frameworks in 
which we can start understanding it, or at least learning about it. We can isolate different regions, 
different countries, different states, and then we can try and test those theories. It is more of 
experimentation, so I am not saying that this is policymaking or a solution, but this is an 
experimental environment in which people can say that it is okay if this group or community 
behaves in a certain way, but what are the ranges of outcomes that we can get? Once you start 
getting those ranges, you can have a more rigorous statistical analysis of that. Whether those 
conform to theories or do not conform to theories are different things that other people will have 
to interpret. 
 

What we are trying to do is build a set of instruments that can be applied by wider 
communities in starting to develop certain types of frameworks and metrics to have a much 
deeper understanding or at least a quantitative analysis of international systems. I mean, 
international systems are one of the things, obviously the bigger thing, but all of these different 
building blocks lead to that. 
 

Nick Gotts:  Nick Gotts, Macaulay Institute. This question is for the last two speakers. 
I’d like to ask what they feel are the moral implications of modeling ways to invade and subdue 
other countries. It’s a serious question, and I would like a serious answer. 
 

A. Chaturvedi:  That is a valid question, and we have considered that. Our approach to 
this problem is to not do the end piece, the military piece. We are trying to see how we can bring 
about peace, peace in the community. Although we are working with DoD, the thing that we 
have been able to do is energize the State Department and USAID and others, so that these 
interagency groups have a better say in what is going on. We are looking more on the peaceful 
side. 
 

Gotts:  It didn’t really sound like that because you were talking a great deal about the 
will to fight. 
 

A. Chaturvedi:  The will to fight, yes. From the State Department and USAID points of 
view, the will to fight is involved with how you can stop a war from happening. 
 

Gotts:  Well, one way is not to start it yourself. 
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A. Chaturvedi:  Yes, exactly. When we are working with them, we are looking at how to 
prevent the war. We are at the front end of many of these war games and exercises involving the 
State Department, USAID, and all of the other interagency groups because we are not modeling 
attrition; we are not doing shooting wars; we don’t simulate that at all. 
 

Elenna Dugundji:  Elenna Dugundji, from the University of Amsterdam. I just had 
a technical question. I was very impressed by the large-scale nature of this. You said you had a 
distributed application of parallel processing. I was wondering if you could comment on some of 
your experiences and give some advice in the area of the challenges that you had to overcome, or 
just a few words of wisdom from this experience with a distributed application. 
 

A. Chaturvedi:  That is my area. I can speak for days on that. But the critical thing is 
that most of the applications are designed to run on a single machine at first, and then people try 
to parallelize it and run it as parallel processes. That is the wrong way of doing that. 
 

If you are designing the algorithms on your system, you should parallelize it. An agent-
based model is very, very conducive to that. You can distribute different agents, you can break 
down geographies, and you can run different geographies on different things, or you can run 
different classes of agents. How you can configure your system is one of the key things. When 
you’re designing your system, make sure that you are not hardcoding or hardwiring to bring the 
configuration in. You should be able to distribute the agents whichever way you want. 
 

The second thing is the input-output, which is critical, because that is where most of the 
bottleneck occurs. If you are not designing your system for inputs and outputs, then you are 
going to have a bottleneck. No matter how large the machine is, you are not going to get the 
throughput you need. So distributed memory management is one of the critical pieces — how 
you distribute the memory — then you can build the input and output. Those are two critical 
things: distributed memory management and configurability. 
 

Greg Madey:  Greg Madey, University of Notre Dame. I have a few short questions. 
Who at DoD — what office or branch — is sponsoring your work? 
 

A. Chaturvedi:  It is coming from OSD [Office of the Secretary of Defense] and several 
war games that we run for DoD. 
 

Madey:  On the slide you have there, you say you validate at the individual level and you 
calibrate at the population level. What does that mean? Why won’t you do it the other way 
around? 
 

A. Chaturvedi:  If you are developing a true agent-based system, then each agent should 
be a micro-simulation in itself. It should have its own user interface; it should have its own 
memory; it should have its own execution and everything. Once you are doing that, you are 
essentially building a society of simulations. When you are building a society of simulations, 
then obviously each microsimulation is a lot easier to validate and verify. 
 

To give you an example, we developed an epidemiological model for smallpox and 
influenza. You can use the epidemiological model, which is essentially a population-level model, 
and try to look at the individual from the population. If you are studying the epidemiology of 
STD, which is an individual-level model, and then you try to look at the population, the agent-
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based model allows you to do the individual level as well as the population level because you 
have many individuals. 
 

The reason for validating at the individual level is that the rules and behaviors are a lot 
simpler. When you put hundreds of thousands of these agents, or tens of thousands of these 
agents, depending on what you are trying to study, it is a lot easier to calibrate at the population 
level. Take the field of marketing, for example. I cannot predict what you are going to do, and 
you cannot predict what I am going to do. But you can segment me in a population, then you can 
say with pretty good certainty how much of this type of toothpaste this population or group or 
segment is going to buy. There’s a lot more confidence at the small-group or population level 
than at the individual level. That is the reason why we like to validate at the individual level and 
calibrate at the population level. 
 

Ruby:  We have time for two more questions.  
 

Roger Burkhart:  This is Roger Burkhart, John Deere. A question for Alok. Do you use 
any standard framework for integrating all of these distributed components, such as the DoD 
high-level architecture for real-time simulation? 
 

A. Chaturvedi:  We have an extension of high-level architecture because high-level 
architecture has many limitations in terms of time management. Some of the things we are doing 
require more extensive time management, temporal relationships, so we can do things in high-
level architecture, HLA, and we can use RTIs, but in the simulation bridge we are building, 
especially our shared reality engines, we can interoperate very easily with RTIs. 
 

Zhian Li:  Zhian Li from Argonne. I would like to follow up with a very technical 
question. In the morning, Dr. Macal gave a speech about complexity and reality, saying that one 
must occur on the bottom and the other on the top. So when you build this model, how do you 
justify which way you want to go? If you want to build a system with all of the overhead for 
distributed simulation, how do you handle the concurrency issues? Or if you build a small, 
simple model and you do a conceptual or case study, how do you then expand from that? 
 

A. Chaturvedi:  We do both, actually. Each of our agents is very simple, very elegant 
models. Whether you are looking at psychological behavior or economic behavior, you can 
isolate all of these behaviors of an agent and you can run tests to see whether these behaviors 
conform to the theories that you want to program these agents on. Each individual agent is a 
microsimulation in itself. It’s very elegant, runs very fast, and you can isolate behaviors 
completely. So whether in terms of hedonics or well being, you can look at basic necessities or 
security requirements or whatever. You can define all of those based on hedonic psychology, that 
is, the well being that this agent is trying to meet or maximize. Then you can populate; you can 
create groups of agents; you can create societies of agents; you can create an organization of 
agents, so you can very nicely start putting in structures. And then you can start building things, 
start building bigger blocks. You can put a leader in an organization and specify how the leader 
interacts with all of the agents. So you can start in a simple, very elegant way at the agent level, 
and then you can start expanding that to build the synthetic cities and synthetic nations. 
 

Ruby:  We have time for one final question. 
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John Sullivan:  John Sullivan, Ford Motor Company. This is an observation. It’s more 
philosophical and maybe someone, perhaps you, can explain this to me later, if need be. A good 
tool of the kind that you’ve just described, one that’s available, could be used, not only by us, but 
also by our enemies, it seems to me. Why are you here, if this thing is as good as it is purported 
to be? 
 

A. Chaturvedi:  I’m an academic, and I would like for more people to develop models, 
more people to understand what is going on because, as was mentioned, social science is very 
fragmented, whether it involves international relations or sociology or other areas. I’m working 
with the Department of Defense as a computer scientist. We are also working with several 
Fortune 500 companies. We have people coming to us to look at virtual product introduction. So 
promoting this whole notion of computational experimentation, and that is what the NSF is 
funding us for, serves to create a new paradigm, or at least enhances a certain paradigm that was 
widely available in engineering and science because, for example, the national labs are big on 
computational experimentation. The national labs are the ones who are proposing that 
computational experimentation be a third leg of science, in addition to the analytical and 
observational legs. 
 

Unidentified Speaker:  I’m sorry. I have to correct you. That was not something the 
national labs invented. 
 

A. Chaturvedi:  Department of Energy. 
 

Unidentified Speaker:  No, that’s something Robert Axelrod invented. 
 

A. Chaturvedi:  Yes, okay. But you’re going to see computational experimentation at 
most of the DOE Web sites. We are just trying to have computational experimentation as a 
paradigm for social science and business. I’m primarily in business school, so that is what I’m 
looking at. 
 

Ruby:  Thank you very much to the presenters and to you for a very great discussion. 
 

Unidentified Speaker:  Thank you very much, Keven Ruby, for chairing the discussion. 
John, I think perhaps the short answer to your question is that Alok is here with us because he’s 
‘on our side,’ apparently. 
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ABSTRACT 
 

As business processes become more streamlined through the use of interorganizational 
information systems, supply chains have been transformed into supply networks. Key 
among these processes is the ordering decision process, which has improved over the 
years through the use of various modeling approaches. The trend is to create systems that 
reflect the real world; however, the complexity of the models soon reaches the limits of 
mathematical analysis. Agent-based models, however, have proved to be very useful for 
studying supply chains. The learning capabilities found in such models form the 
foundation for our broader study on supply networks. This paper examines an approach 
in which models are used to explore different operating policies and modes of operation. 
Two learning methods are explored: Q-learning and derivative following (DF). Briefly, 
Q-learning involves reinforcement; that is, positive reactions result in positive feedback 
and vice versa. The DF approach involves continuously acting in one of two directions  
if feedback is positive and reversing direction otherwise. This study investigates how 
both algorithms perform as a search mechanism in the context of supply networks. The 
paper also examines the effectiveness of the learning algorithms in either a low- or a 
high-competition setting. Results show that both Q-learning and the DF approach are 
effective in searching for optimal solutions in the low-competition setting. Both 
approaches fail, however, in the high-competition setting. More sophisticated algorithms 
are needed to prevent learning failure in the high-competition setting. 
 
Keywords: Agent-based modeling, supply networks, competition settings 

 
 

INTRODUCTION 
 

As business processes become more streamlined through the use of interorganizational 
information systems, supply chains are transforming into supply networks. Many decisions need 
to be reconsidered in light of this transformation. Key among these is the ordering decision 
(i.e., when to order and how much to order). Various models and solutions have been suggested, 
from the simple model of economic ordering quantity proposed in the early days, to the more 
sophisticated news-vendor model and order-up-to policy (Clark and Scarf, 1960; Scarf, 1960), to 
the complex models of more recent years that take into account such factors as capacity 
constraints and information sharing (Federgruen and Zipkin, 1986; Cachon and Fisher, 2000; 
Moinzadeh, 2002). The trend is to incorporate greater reality in the models. The problem with 
this approach, however, is that the complexity of the models quickly reaches the limits of 
mathematical analysis.  
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Agent-based models (ABMs) have proven to be very useful for studying complex 
phenomena (Axtell, 2000) and have been applied to supply chains (Macal and North, 2003). In 
the context of supply chains, ABMs are generally used in two ways: (1) for calibrating the agent 
models and parameters with real-world data and examining various scenarios that may play out 
or (2) for devising agent models to explore different operating policies and modes of operation. 
The latter approach can be useful in several ways. For example, it can be used to examine 
different supply network configurations for which no real data may be available, to use as a 
decision support tool in designing supply networks, and to seek good operating policies in 
different settings. This study adopts the second approach and examines the effectiveness of 
learning as a mechanism for searching in agent models.  
 

In this paper, learning is studied as a mechanism for searching rather than for adaptive 
control (Greenwald, et al., 1999). In other words, we examine whether agents can simultaneously 
learn “optimal” or close-to-optimal decisions. Since optimality can be difficult to discern in 
complex systems, we are not concerned with achieving strict optimality in an analytical sense but 
rather with seeking operating policies that are generally good. ABMs will also be useful in 
evaluating the robustness of policies and decisions, an important criterion in real-world supply 
networks.  

 
Two learning algorithms are explored in this study: Q-learning and derivative following 

(DF). Our study investigates how both algorithms perform as a search mechanism in the context 
of supply networks. Q-learning (Watkins, 1989) is a type of reinforcement learning, in which 
actions resulting in positive feedbacks are reinforced and more likely to be taken in the future, 
while actions leading to negative feedbacks are less likely to be taken in the future. Q-learning 
has been found to be a better adaptive mechanism than other learning algorithms, including DF 
(Greenwald, et al., 1999). The idea of DF is to continuously act in one of the two possible 
directions if feedback is positive and to reverse direction otherwise. This learning method has 
been studied in the context of dynamic pricing in agents (Greenwald, et al., 1999; Kepart, et al., 
2000; Dimicco, et al., 2003).  

 
The effectiveness of the learning algorithms is examined in two types of competitive 

settings. In a low-competition setting, agents randomly select suppliers from an upper tier  
to place a new order. This setting represents supply networks in which customers are less 
informed about the suppliers’ status and thus select suppliers largely on a random basis. In a 
high-competition setting, agents select suppliers on the basis of the suppliers’ inventory position. 
The supplier who has the largest amount of uncommitted inventory at the time of ordering is 
selected.  
 

Results show that Q-learning is very effective in searching for optimal solutions in the 
low-competition setting. DF performs quite well in the low-competition setting, too. Both 
algorithms fail in the high-competition setting, however. Modifications made to the DF 
algorithm and related factors show that more sophisticated algorithms are needed to prevent 
learning failure in the high-competition setting. 

 
 

MODEL 
 

 We model a supply network with three tiers: buyer, vendor, and manufacturer (Figure 1). 
Each tier contains two agents. In addition to the three tiers, the network contains an external 
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customer who is responsible for generating end demands and an external supplier who serves as 
the ultimate source of raw materials. Agents operate in discrete time steps. In each time step, 
they receive shipments from suppliers, process orders from customers, and place new orders. The 
model allows both informational and physical lead times. For the experiments in this study, 
orders are assumed to reach destinations immediately, but shipments are subject to delays. 
Agents use a standard order-up-to policy as follows:  

 
 O = (1 + L) θ + β ( )σL+1  − I + B − G , (1) 
 
where  
 

β  = safe stock coefficient (SSC),  
 
θ = moving average of demand (over a forecasting window of 80 periods),  
 
σ = moving variance of demand (over a forecasting window of 80 periods),  
 
B = back order,  
 
I = inventory at hand,  
 
L = lead time,  
 
O = ordering quantity, and  
 
G = outstanding purchase orders (orders placed but not yet received).  

 
Agents seek to learn the value of the SSC in the ordering policy (Equation 1). The action 

space in the Q-learning consists of 41 SSC values ranging from 0 to 40, with an interval of 1. 
Each action is associated with a Q value; these are initiated to some small values and updated 
every 120 periods, on average (Equation 2). Actions are selected by using Boltzmann selection 
(Equation 3).  
 
 )( 11 nnn QA/P*Q −κ= ++  , (2) 
 

 ∑=ρ
i

t/Qt/Q
i

ii e/e , (3) 

 

 

 FIGURE 1  Three-tier supply network  
 
 



706 

 )999.0*,max( *20
maxmin

n
n ttt = , (4) 

 
where 
 

κ = learning rate,  
 
ρ = selection probability,  
 
A = profit scaling factor,  
 
i = action i,  
 
n = number of updates,  
 
P = average profit per period since last update,  
 
Q = Q value, and 
 
t = temperature. 
 

In DF, agents change their SSC values sequentially, as follows:  
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otherwise, 
 
 ,)1or(10 −=λ  (8) 
 
where 
 

 ν = variable change size,  
 
 ω = minimum change size,  
 
 H = updating threshold (a small positive number),  
 
 M = minimum updating interval,  
 
 R = random updating interval,  
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 SSC = safe stock coefficient, and 
 
 T = SSC update time.  
 
 

RESULTS  
 

Results for Q-learning in the low-competition setting are presented first. Three learning 
scenarios are considered: (1) a single agent learns, (2) two agents learn simultaneously, and 
(3) all agents learn simultaneously. Performance of the learning is gauged by comparing the 
learned SSC values with the optimal SSC values. The optimal SSC values are obtained by 
sweeping over a reasonably wide range of SSC values for corresponding agents. Results for DF 
in the low-competition setting are presented next. To avoid repetition, only results for the most 
complex scenario  where all agents learn simultaneously  are presented in this part. Results 
for high-competition setting are presented last.  

 
 

Low-competition Setting  
 
 
Q-learning  
 
 As mentioned above, agents randomly select suppliers from an upper tier in the 
low-competition setting. Results show that Q-learning by a single agent (buyer-0) performs very 
well. The learned value of SSC is very close to the optimal value. Figure 2 shows the learning 
process. The figure shows that initial learning focuses on the exploration of different SSC values. 
At about step 50,000, learning starts to converge. To examine the converged values of SSC, a 
frequency distribution of SSC values between steps 50,000 and 150,000 (sampled every 
100 steps) was calculated (Table 1). Table 1 indicates that most of the time, SSC has a value of 
9, 10, or 11, with 10 being the most frequent. As a result, the learning can be considered to 
converge at 10. To test the optimality of the converged value, a sweep-over was conducted on 
buyer-0’s SSC. During the sweep-over, buyer-0’s SSC was systematically changed from 0 to 20, 
with an interval of 2. At the same time, the other agents’ SSCs were kept constant at the same  
 
 

 

FIGURE 2  Q-learning by a single agent 
(buyer-0) 

TABLE 1  Frequency 
distribution of buyer-0’s SSC 

 
Buyer-0 SSC Frequency 

  
8 19 
9 329 

10 539 
11 112 
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values as those when buyer-0 learns. Buyer-0’s 
average profit per step was then plotted with the 
SSC values (Figure 3). Figure 3 shows that 
buyer-0’s average profit increases rapidly as SSC 
increases from 0, and it peaks when SSC  
reaches 9. After that, the profit declines gradually. 
It is clear from the figure that the optimal value of 
SSC is around 10. This verifies that the learned 
SSCs (9, 10, and 11) indeed are close to the 
optimal value. 

 
Results show that simultaneous Q-learning 

by two agents (vendor-0 and vendor-1) is also 
very effective. Both vendor-0 and vendor-1 learn 
close to optimal SSC values. Figure 4 shows  
the learning process of both agents. It shows that 
the learning of both agents converges at about 
step 50,000. To show the converged values, the 
frequency distribution of SSC values between 
steps 50,000 and 150,000 (sampled every  
100 steps) is summarized in Table 2. Table 2 
shows that vendor-0’s SSC converges at 3 and 4, 
and vendor-1’s SSC converges at 4 and 5. To 
evaluate the optimality of these converged values, 
a sweep-over was conducted for vendor-0’s SSC 
and vendor-1’s SSC (Figure 5). Since vendor-0 
and vendor-1 were identical, their SSCs were kept 
the same during the sweep-over. The SSCs start at 
0 and end at 10, with an interval of 0.5. Figure 5 
shows that both vendor-0’s and vendor-1’s 
average profit per time step is highest when SSC 
is 4. This suggests that the SSC values learned by 
both vendor-0 and vendor-1 are close to optimal.  

 
Simultaneous Q-learning by all agents also 

exhibits excellent performance. Figures 6a through 
6c show the learning processes of all agents, with 
each figure showing two agents belonging to the 
same tier. Learning of all agents converges at 
around step 50,000. For ease of analysis, the mean 
rather than the frequency distribution of SSC 
values after convergence (between steps 50,000 
and 150,000) was calculated (see Table 3). To 
determine the effectiveness of the learning, a 
sweep-over was conducted on SSCs of the three 
tiers in order to find “global optimal.” The same 
SSC was used for both agents belonging to a 
common tier. The buyer SSC starts at 0 and ends  
 

 

 FIGURE 3  Sweep-over of buyer-0’s SSC 

 

FIGURE 4  Simultaneous Q-learning by 
two agents (vendor-0 and vendor-1) 

TABLE 2  Frequency 
distribution of vendor-0’s 
SSC and vendor-1’s SSC 

  
Vendor-0 SSC Frequency 

  
3 166 
4 796 
7 38 
  

Vendor-1 SSC Frequency 
  
3 94 
4 602 
5 304 
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FIGURE 5  Sweep-over of vendor-0’s 
SSC and vendor-1’s SSC  

at 20, with an interval of 2. The vendor and 
manufacturer SSCs start at 0 and end at 10, with  
an interval of 1. Therefore, there are 11 levels of 
SSC for each tier, and the total number of 
combinations in the sweep-over is 11 × 11 × 11 = 
1,331. Figures 7a through 7c show each tier’s 
average profit per step with respect to that tier’s 
SSC, as well as the other two tiers’ SSCs. For 
example, Figure 7a shows that the buyer tiers 
average profit with respect to buyer SSC. For each 
level of buyer SSC, there are 11 levels of vendor 
SSC and 11 levels of manufacturer SSC, which 
means 121 combinations are possible. Average tier 
profits for all 121 combinations are plotted at the 
corresponding buyer SSC. As a result, there appears  
 
 
a. Learning of Buyers  
 

 
 

 b. Learning of Vendors  
 

 

c. Learning of Manufacturers  
 

 

  
 

FIGURE 6  Simultaneous Q-learning by all agents 
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TABLE 3  Mean values of SSC 
after step 50,000 

 
Agent Mean of SSC 

  
Buyer-0  10.9 
Buyer-1  10.4 
Vendor-0  4.0 
Vendor-1  3.4 
Manufacturer-0 5.0 
Manufacturer-1 4.0 

 

to be a “vertical bar” for each buyer SSC. Each dot in a 
“vertical bar” represents profit for a different combination 
of vendor SSC and manufacturer SSC. Figures 7a through 
7c show that the tier profit is affected by both the SSC of 
that tier and the SSC of the other two tiers. More 
important, the figures show the maximum profit and the 
corresponding optimal SSC value for each tier. Figure 7a 
shows that of the 1,331 combinations of SSC values, the 
buyer SSC value in the optimal combination that is 
associated with the highest buyer tier profit is 10. Thus,  
10 can be considered a globally optimal value for buyer 
SSC in the space considered. Similarly, Figure 7b shows 
that the global optimal value for vendor SSC is around 3.  
 
 
a. Buyer Tier Profit vs. Buyer SSC  

 
 

 b. Vendor Tier Profit vs. Vendor SSC  

 

c. Manufacturer Tier Profit vs. Manufacturer SSC  

 

  
 

FIGURE 7  Sweep-over SSCs of buyers, vendors, and manufacturers 
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Figure 7c shows that the global optimal value for manufacturer SSC is also around 3. A 
comparison of these global optimal values with those learned by agents (see Table 3) shows that 
the learned values are quite close to the global optimal, which suggests that the learning is 
effective. 
 
 
Derivative Following  
 

Derivative following is also an effective learning technique in our model. To avoid 
repetition, we report only results where all agents learn simultaneously. Figures 8a through 8c 
show the learning processes. Apparently, DF’s learning course is very different from that of 
Q-learning. One major difference is that there is minimal exploration of different SSC values at 
the early stage of DF. For example, one of the vendors (Figure 8a) and one of the manufacturers 
(Figure 8c) start with a very high SSC value (over 30). Without spending much time exploring 
different SSC values, both agents quickly lower their SSC values close to the optimal values. 
However, once the SSC values are close to the optimal, they keep fluctuating, which makes it 
difficult to discern if or when the learning converges. We consider the learning to have 
converged when the fluctuation is within a reasonable range for a period of considerable length.  
 

 
a. Buyers  
 

 
 

 b. Vendors  
 

 

c. Manufacturers  
 

 

  

FIGURE 8  Simultaneous learning from using derivative following by all agents  
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For Figures 8a and 8c, we consider learning to have 
converged after step 100,000. For Figure 8b, we consider 
learning to have converged after step 200,000. To evaluate 
the performance of the learning, the mean of the SSC 
values after convergence (sampled every 100 periods) was 
calculated (see Table 4). A comparison of these means 
with the global optimal values obtained above shows that 
buyer’s and vendors’ learned SSC values are very close to 
the optimal, and that the manufacturers’ learned SSC 
values are a little bit larger than the optimal values. 
 
 
High-competition Setting  
 

As mentioned in the Introduction, an agent selects the supplier who has the largest 
amount of uncommitted inventory at the time of ordering in a high-competition setting. Results 
show that both the naive Q-learning and the naive DF as described in the model section fail in 
the high-competition setting. Figures 9a and 9b show the process of simultaneous Q-learning by 
both vendors. Figure 9a shows that one of the vendors learns to set its SSC at the highest 
possible value, 40, while the other vendor keeps changing its SSC values. Figure 9b shows that 
the vendor who sets its SSC value at 40 takes over the entire market, with an average profit 
around 4,000, while the other vendor has a zero average profit. Apparently, the vendor with zero 
profit is not receiving orders from customers.  
 

The naive DF-learning shows similar failure (Figures 10a and 10b). Figure 10a shows 
that after a certain time, one vendor consistently sets it SSC value larger than the other vendor’s. 
As a result, the vendor who sets its SSC at the higher values gets all customer orders and enjoys 
a high profit, and the other vendor receives no customer orders and has a zero profit. Both 
vendors should have positive profit and continuously receive customer orders for the learning to 
be considered effective because both their attributes and their behaviors are identical. 

 
 

a. SSC  
 

 

 b. Profit  
 

 

FIGURE 9  Simultaneous Q-learning by two vendors with inventory-informed supplier selection 
 
 

TABLE 4  Mean values of SSC 
after step 100,000 

 
Agent Average of SSC 

  
Buyer-0  10.3 
Buyer-1  11.1 
Vendor-0  4.3 
Vendor-1  4.2 
Manufacturer-0 5.8 
Manufacturer-1 5.7 
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a. SSC  
 

 

 b. Profit  
 

 

FIGURE 10  Simultaneous learning by two vendors using DF, with inventory-informed supplier 
selection  
 
 

The original DF algorithm and ordering policy is modified to explore strategies that 
prevent the learning failure described above. The DF algorithm is modified as follows:  
 

If average demand since the last update is less than 5% of total end-customer demand,  
 

 11 =λ +n . (9) 
 
Otherwise, determine 1+λn  by using Equation 7. 
 

The ordering policy is modified by replacing the moving average of demand θ in 
Equation 1 with a fixed value of half of total end-customer demand. By using the modified DF 
algorithm and ordering policy, both vendors stay in operation but engage in an “inventory war” 
(Figures 11a and 11b). Figure 11a shows that the two vendors gradually and steadily increase 
their SSC values as they compete with each other for customer orders. However, Figure 11b 
shows that because vendors overly increased SSC values, the vendors’ profit becomes negative.  
 
 

DISCUSSION  
 

This study demonstrates that Q-learning and DF are two effective learning algorithms for 
searching optimal solutions in supply networks that have a low degree of competition among 
agents. Both algorithms find close to optimal SSC values even when all agents learn 
simultaneously. A comparison of the two algorithms shows that Q-learning converges better, 
while DF spends less time exploring nonoptimal solutions. Q-learning tends to converge to one 
or two specific values, while convergence in DF is more difficult to discern. DF’s ability to 
quickly approach the optimal values can be an attractive attribute for situations where 
nonoptimal decisions are very costly.  
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a. SSC  
 

 

 b. Profit  
 

 

FIGURE 11  Simultaneous learning by two vendors using modified DF, with inventory-informed 
supplier selection  
 
 

Learning capabilities in ABMs form a foundation for our broader study on supply 
networks. In the absence of a learning capability, models need to prespecify operating policies 
and parameters, the implications of which may not be apparent in complex environments. Agents 
that can learn appropriate operating policies in different settings and organizational contexts will 
be able to examine varied configurations and situations and help in obtaining answers to key 
issues (e.g., the implications of different modes of information sharing in supply networks, or the 
propensity of agents to share information in different contexts).  
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ABSTRACT 
 

The agent-based simulation approach is discussed for modeling and analyzing various 
supply chain planning and control strategies and different configurations in the forest 
products industry. The discussion focuses primarily on how the experimental platform 
addresses the distributed and agent-based discrete-event simulation. In addition, the 
discussion examines what is envisioned for the future to ensure that a real system is 
implemented and used in the forest products industry. 
 
Keywords: Agent-based simulation, distributed simulation, distributed manufacturing 
systems, forest product supply chain 

 
 

1  INTRODUCTION 
 

Organizations can no longer be considered isolated, as evident in the many networked 
organizational paradigms being discussed. When organizations are seen through a network 
structure, the problem of planning and control can be considered as being both multi-faceted and 
intricate. To address this problem, agent-based simulation has demonstrated great applicability 
and provided significant results. 
 

The use of distributed and independent simulations across a supply chain associated with 
agent-based simulation can also be considered an interesting approach for achieving better 
simulation results. Likewise, the use of simulation can be streamlined by obtaining real, updated, 
accurate, and sometimes on-line and real-time information from a set of dispersed and different 
planning and control systems employed across a supply chain. 
 

The FOR@C Research Consortium (http://www.forac.ulaval.ca), a Canadian research 
group in e-business and supply chain management (SCM) in the forest products industry (based 
at the Université Laval, Quebec City, Quebec, Canada), is investigating ways in which these 
approaches can be combined in what is called the FOR@C Experimental Planning Platform. 
This system will allow researchers to test different planning and control scenarios across the 
forest product supply chain (FPSC). 
 

This paper discusses the advances of such an experimental platform. It is organized as 
follows. Section 2 provides the general context of this research. Section 3 discusses the FOR@C 
Experimental Planning Platform in general terms and presents the FOR@C experimental 
planning platform in the future. Section 4 provides some final remarks. 

                                                 
∗ Corresponding author address: Luis Antonio de Santa-Eulalia, FOR@C Research Consortium, Pavillon Pouliot, 

Université Laval, Quebec City, Quebec, G1S 3E4, Canada; e-mail: luis.antonio.santa.eulalia@centor.ulaval.ca. 
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2  GENERAL CONTEXT 
 
 
2.1  Planning and Control in Dynamic Networked Organizations 
 
 The concept of collaboration has been discussed at length in both the business and 
academic world. The topic has emerged as a result of the perception that a company is not an 
isolated island but rather part of an interdependent world. Enterprises depend on their 
partnerships and relations with other organizations to reach better competitive levels (Pires et al., 
2001). Browne and Zhang (1999) wrote that the traditional view, which treats companies as 
having well-defined boundaries and relations with other organizations and a focus on internal 
performance, is no longer valid. This conclusion gives rise to the emergence of inter-firm 
network concepts, which have led to the generation of a number of related concepts, such as the 
extended enterprise, virtual organization, networked organization, SCM, and cluster of 
enterprises (Camarinha-Matos and Afsarmanesh, 1999). 
 

These new requirements have stimulated researchers to propose new concepts and 
promote the evolution of decision making, coordination, and control structures for networked 
manufacturing systems. The complexity of the decision problem is of crucial importance in this 
context. The complexity, which arises from the intricacy of the network of interdependent 
decisions, consistently relies on the articulation, integration, and coordination of several 
distributed decision-making units. It is also a result of the characteristics of the information, 
which can be stochastic, incomplete, inaccurate, delayed, or asymmetric; these characteristics 
contribute significantly to the complexity of this kind of system. 
 

In practical terms, manufacturing planning and control — when performed in dynamic, 
open, highly competitive markets and in intricate production systems and supply chains — can 
be considered to make up a very complex problem. This problem involves several constraints 
and variables. Also, the unreliable nature of manufacturing, demand, and supply can add to the 
complexity of the problem (Davis, 1993). 
 

This entire situation makes it difficult to perform analyses of and make strategic 
decisions about the planning approach and supply chain configuration, especially when the 
stochasticity of the environment needs to be considered (particularly when one wants to compare 
distributed and centralized planning strategies). This timely research question requires the full 
support of simulation technology and of decision support systems. An approach for addressing 
the integration of these technologies that is getting more popular is agent technology, which is 
briefly discussed next. 
 
 
2.2  Agent Modeling and Multi-agent-based Simulation in Supply Chains 
 

According to Marcenac and Giroux (1998), the complexity of a system can be treated by 
using an agent-oriented approach. In such approaches, interactions lead to a global behavior, 
which helps researchers understand how stochastic behavior can emerge from interactions 
between agents. Marcenac and Giroux think this agent-based behavior is close to the 
self-organized criticality used to explain natural phenomena. Marcenac and Giroux (1998) 
explain that problems are solved by agents using distributed control instead of global controls, as 
occurs in parallel systems. 
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Shen (2000) argues that distributed manufacturing (as with a supply chain) concepts can 
usually be modeled and implemented with agent-oriented technology. Many authors have 
experimented with this approach, such as Parunak (1998), Parunak et al. (1998), Swaminathan 
et al. (1998), Fox et al. (2000), Anosike and Zhang (2002), and Frayret (2002). This distributed 
computing technique is inherently modular and possesses most of the mentioned requirements 
needed to design intelligent distributed manufacturing systems (Shen and Norrie, 1999; Anosike 
and Zhang, 2002; Frayret et al., 2004). 
 

Shen and Norrie (1999) and Sauer and Appelrath (2003) wrote that agents represent an 
interesting approach for treating problems in the domains of manufacturing planning and 
scheduling because of several characteristics: 
 

• Social ability. Agents can work in groups or in communities in order to define 
a schedule or to solve a problem. 

 
• Capacity to treat knowledge. Agents have some knowledge of the problem to 

be solved, such as a scheduling problem. 
 
• Autonomous nature. As independent entities, agents can plan and schedule 

their own activities. 
 
• Negotiation capacity. Agents need to solve problems in a multipartner 

environment. 
 
• Reaction capacity. Agents can react to changes in the environment and adjust 

their plans and schedules. 
 
• Proactivity capacity. Agents can optimize their own plans and schedules. 
 
• Encapsulation capacity. Agents can put certain existing comportments and 

methods in a nutshell. 
 
• Representation capacity. Agents are capable of embodying manufacturing 

resources, such as workers, cells, and machines. 
 

These abilities, capacities, and properties of agents, combined with the concept of 
simulation, lead to the notion of multi-agent-based simulation (MABS). MABS has 
demonstrated a large utility when applied in distributed manufacturing environments. 
“Multi-agent systems are appropriate for modeling SCs because they involve divisible processes 
with loosely coupled command and control” (Strader et al., 1998). Labarthe et al. (2003a) 
explain that an MABS focuses on distributed behavioral descriptions and studies in dynamic 
societies composed of agents. They argue that the concepts of autonomy and cooperation in 
multi-agent systems have shown promise by providing a modeling and simulation framework for 
industrial systems, especially supply chains. 
 

The theory and practice of applying MABS in manufacturing and supply chain 
environments can be considered a powerful instrument to support the SCM paradigm. These 
concepts are suitable for use in many industrial sectors (specifically, the forest products 
industry), as discussed in Sections 2.3 and 3. 
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2.3  Gap in the Forest Products Industry 
 

The forest products industry is facing increasing global competition and is compelled to 
respond to new requirements. The FPSC is of great importance in Canada because it is one of the 
largest industrial employers and generates a significant part of the national revenue. This supply 
chain is defined by the FOR@C Research Consortium (2004) as being the value creation 
network that includes all the companies and business units involved in the procurement, 
production, and distribution of a given forest product to the market. This can include companies 
responsible for forestry operations, sawmilling, value-added production, furniture manufacturing, 
and pulp and paper. 
 

The FPSC has some particular characteristics that can complicate its SCM practices. 
These characteristics include the growing market pressure for high service levels and guaranteed 
volume; the long and variable production cycle times (harvesting and transformation); the 
stochastic process of “disassembling” trees/logs (due to the very nature of fiber); the growing 
market pressure for direct delivery (to stores, construction sites, mills); and the growing pressure 
to reduce operating costs and increase customer value (e.g., quality, new product, e-business) 
because of the large fluctuations in the demand for and prices of its products (D’Amours, 2004). 
 

All these particular characteristics lead to intricate manufacturing planning and control 
across the entire value chain. In this way, SCM practices related to manufacturing coordination 
across the FPSC can be considered an important challenge to address in order to improve the 
competitiveness of the supply chain. Considering this situation, the FOR@C Research 
Consortium concentrates on the management of value creation networks of the FPSC and is 
carrying out a set of research initiatives in order to help supply chain coordination. 
 

The FOR@C Research Consortium is using the concepts of distributed planning to 
develop an experimental planning platform, thereby making a major contribution toward closing 
the gaps discussed. The platform is discussed in the following section. 
 
 

3  FOR@C EXPERIMENTAL PLANNING PLATFORM 
 

The FOR@C Experimental Planning Platform is one of the main initiatives of the 
Consortium. Its main objective is to test (1) different configurations of the FPSC and (2) what-if 
planning and scheduling scenarios. The distributed decision is established around planning units, 
such as a sawmill or paper mill, which are capable of making their own planning decisions and 
of interacting among themselves in order to find mutually acceptable solutions. 
 

The agent-based platform embodies the concept of distributed planning to integrate 
multi-agent software in the simulated environment used to test the agent’s behavior when it is 
faced with different dynamic stimuli. In more specific terms, the platform aims at helping define 
how the FPSC should coordinate distributed decision-making units and also how it should react 
to a turbulent environment in a flexible and modular way, while accommodating all possible 
disturbances (e.g., a consumer demand variation or unexpected product distribution). By using 
agent-based simulation to evaluate the planning strategies, it is expected that the FPSC will be 
able to properly synchronize the entire value creation network. 
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This platform is under development, but many functions have already been implemented. 
A general distributed architecture has been defined, and some structural components have been 
developed, such as the supply chain cockpit and supply chain modeler. The supply chain cockpit 
is a shared software component that enhances global visibility. It provides an integrated view of 
all the planning units of the supply chain concerning management questions (e.g., inventory 
levels to allow users to have an overview of the inventory for the entire supply chain). The 
supply chain modeler is a general software component that allows for system administration 
(e.g., user management and security). It is also used to manage the supply chain structures to 
provide a general view of the supply chain. In addition, some agent components of the platform 
have been created (e.g., the agents’ shell, which defines the basic agent’s functionalities that are 
common for the entire agent society and message management). The next section discusses the 
agent components in more detail. 
 
 
3.1  Multi-agent Planning System: Basic Components and Functioning 
 

The first agent-based components of the platform are those that compose what is called 
the Multi-Agent Planning System, which is responsible for all planning activities at a planning 
unit level. Table 1 explains these components. Figure 1 depicts an integrated view of the 
components of the platform related to agents and communications. In Figure 1, a simple model 
of a basic supply chain composed of a forest unit, a sawmill unit, and a paper mill unit is 
illustrated. 
 
 
TABLE 1  Main components of the Multi-agent Planning System  

 
Components 

 
Role 

 
Description 

   
Planning unit 
manager 

Management of 
the planning 
unit’s community 
of specialized 
agents 

The planning unit manager is the basic element of the planning unit. It is 
from that component that we install and manage all the specialized agents 
that are part of the planning unit. It is the single face to all external agents; 
all external messages are sent to it, and it dispatches messages to the 
relevant agent. 

   
Operational 
planning 
agent 

Operational 
planning 
responsibilities 

Inside every planning unit, all planning responsibilities are distributed on 
the basis of functional specialization, defining a community of specialized 
agents. Such distribution is based on the SCOR (from Supply Chain 
Council; see Stephens, 2000), defining the following agents: deliver, 
source, and make. Each agent receives requests from other agents, analyzes 
available capacities and capabilities, and establishes commitments to satisfy 
the requests. 

   
Tactical 
planning 
agent 

Tactical planning 
of the planning 
unit 

The tactical planning agent provides a global view of the planning unit and 
global synchronization and integration of its agents by defining the 
responsibilities of each specialized agent (e.g., it decides which agent will 
supply another for a specified product or period inside the planning unit). 

   
Conversation 
protocols 

Communication 
framework 

Conversation protocols define a workflow of potential states in a 
conversation, guiding all communication among agents by means of a 
communication protocol. 

 
Source: adapted from Van Horne et al. (2004). 
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FIGURE 1  Generic integrated view of the main components (based on Rousseau, 2003) 
 
 

It is important to highlight the basic mechanisms that manage agent responsibilities. The 
main responsibilities of an agent are to make requests (send requests and ask for commitments 
for new or modified requirements for product or processor capacity or receive updates on 
commitment status); establish commitments (receive requests, provide commitments for new or 
modified requirements, and update commitment status); and develop a plan (generate a plan to 
respect commitment, generate requirements for this plan, and maintain the status of the 
commitment). The agent communication protocol is based on the FIPA (foundation for 
intelligent physical agents) agent communication language, which has the advantages of being 
quite rich and well documented and being a standard that is widely employed. 
 

Using these components, a first planning unit was created. It is a sawmill unit composed 
of specialized agents for planning sawing, drying, and finishing operations. 
 
 
3.2  Preliminary Definitions of the Multi-agent-based Simulation Elements 
 

This discussion was inspired by the progress made by Lyonnais and Montreuil (2001) 
and Lyonnais et al. (1999) in simulations related to the NetMan (Networked Manufacturing) 
project and in proposing a general conceptual simulation architecture to model, implement, and 
simulate distributed manufacturing (see Montreuil et al., 2000; Cloutier et al., 2001; Frayret 
et al., 2001; and Frayret, 2002). It was also inspired by the research of Labarthe et al. (2003a,b) 
related to behavioral studies of active entities constituting the logistic organization. We provide a 
preliminary discussion about agents to address MABS in the Experimental Planning Platform. 
 
 First, Labarthe et al. (2003a,b) propose an agent-based modeling approach that motivated 
some important macro initial definitions used in this research. Their approach is based on actor 
behavior modeling for complex systems, in which company business units are modeled as actors 
realizing activities in a logistic network. From an actor model (which is a social entity, as an 
individual or a group), Labarthe et al. created the concept of actor agent (a simplified model of 
reality permitting behavioral study). They split actor behavior into two classes (deliberative 
behavior and operational behavior), which creates a dissociation between decision making and  
 



723 

operational activities. Therefore, it is possible to 
represent the dynamic characteristic of a system. 
Deliberative behavior represents the decision-
making process performed by actors, which 
transmits decisions to simulation agents. These 
decision agents allow the representation of rules 
and knowledge in order to produce decisions 
(plans) through their reasoning capacities. 
Operational behavior relates to how decisions are 
put into operation by reactive agents, reproducing 
the behavior of an operational activity and 
transmitting signals to the decision agent to report 
the results of activities. Actions performed by reactive agents influence decisions of deliberative 
agents, and vice versa. Figure 2 gives a general schema proposed by the authors. 
 

The elaboration of the simulation model requires identification of entities in a real system 
and associated activities. When dealing with a community of agents (as a supply chain), it 
involves specifying the actions, events, and interactions among different actors in the community 
as well as defining responsibility decomposition and distribution. In their architecture of 
multi-agent systems for supply chain modeling, Labarthe et al. (2003b) propose a separation into 
three structural levels: deliberative agent society (implements decision processes), reactive agent 
society (assumes the behavior of physical resources), and real system (the supply chain of the 
real world). This influenced the macro structure of our framework. 
 

By using the proposals of Lyonnais and Montreuil (2001) and Lyonnais et al. (1999), we 
envision an approach that uses discrete-event-based simulation of physical components or 
resources (representing real ones) that are able to operate in a simulation environment. The 
authors propose an architecture for distributed simulation in networked manufacturing composed 
of software agents, physical objects (e.g., machines and workers), and organizational 
constituents. In this architecture, a set of NetMan units (that perform the planning decision) and a 
set of simulation agents (that simulate the real objects in a NetMan center, encapsulating the 
objects’ behavior) are used. In addition, the authors propose a global simulator controller 
responsible for the simulation clock and for synchronizing all events among the simulation 
agents. 
 

By using all these research advances in MABS and modeling, we propose some essential 
elements of the simulation platform. Our proposal consists of three layers: deliberative (acts as 
decision maker), simulation (acts as the reactive agent, simulating the comportment of the 
physical layer), and physical (encapsulates the supply chain element description). Figure 3 gives 
a general schema, and Table 2 provides a detailed explanation. 
 

The basic simulation functioning is provided by the simulation layer, a set of specialized 
simulation agents connected with a simulation manager, which is influenced by the simulation 
clock administrator and the designer of experiments (see Table 2 for a definition of each 
component). There is a specialized simulation agent for each operation unit (e.g., a sawing 
machine), each of which is connected to the simulation manager. As proposed by Lyonnais et al. 
(1999), the simulation layer does not directly manipulate the deliberative layer. It only sends 
information that can be used to make new plans or revise the existing ones. By using this  
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FIGURE 2  From actor model to actor 
agent (adapted from Labarthe et al., 
2003b) 
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FIGURE 3  A general schema about the simulation platform 
 
 
approach, a deliberative community of agents can learn by means of previous real experience 
about the actual behavior of the supply chain (learning from past experience), as well as by 
means of experimental behaviors occurring at the simulation layer. 
 

Such approaches allow for a synchronous, deterministic, and stochastic discrete-event 
simulation, as well as qualitative and quantitative analysis of the experiments. By using these 
concepts, it is expected that global and local performance of the FPSC can be observed and 
studied. 
 
 
3.3  Future Challenge: Simulation Hub 
 

The earlier advances of the Experimental Planning Platform already discussed are the 
nucleus of a larger concept: a novel approach being envisioned to integrate a set of traditional 
simulation and related systems by means of the FOR@C Experimental Planning Platform. This 
approach is called the Simulation Hub and is one of the important future challenges of the 
Consortium. 
 

The Simulation Hub is a new way of understanding the FOR@C Experimental Planning 
Platform. New aspects include integration among ordinary distributed simulation and related 
systems, transactional systems, decision support systems, operational systems, and management 
information systems. It was inspired by the simulation cloud of Wilson et al. (2000) and is 
presented in Figure 4. 
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TABLE 2  Basic elements of the Experimental Planning Platform 

 
 

Layer 

 
Structural 

Organization 

 
 

Responsibilities Description 
   
1. Deliberative:  
It represents the decision- 
making layer. At this 
level, the plans and 
schedules are generated. 

1.1 Planning unit 
manager (PUM) 

See Table 1 for details. 

   
 1.1.2 Tactical planning 

agent (TPA) 
See Table 1 for details. 

   
 1.2 Operational 

planning agent (OPA) 
See Table 1 for details. 

   
2.1 Simulation team The simulation team is composed of a set of SSAs (see 2.1.1), a 

simulation version of a given operation unit (see 3.2). 
  
2.1.1 Specialized 
simulation agents 
(SSAs) 

An SSA is responsible for generating events that may happen in 
a resource represented by an operation unit (see 3.2), 
reproducing its basic behavior. It also calculates the behavioral 
statistics. Events generated at the SSA level are scheduled in the 
SSA event list, and messages are sent to the simulation manager 
(see 2.2) to obtain global synchronization. 

  
2.2 Simulation 
manager 

The simulation manager (1) synchronizes each SSA when a 
given event is triggered at the SSA level; (2) generates global 
events; (3) gathers global statistics; and (4) synchronizes the 
supply clock administrator (SCA) (see 2.2.2) with all local 
operation unit status, updating its event list and the event list of 
all SSAs. 

  
2.2.1 Designer of 
experiments  

A designer of experiments is an organization structure 
responsible for parameterizing experiments, such as supply 
chain configuration scenarios and supply chain operation 
scenarios. In addition, data collected by the SM are handled and 
compared here; this includes sensibility and statistical validity 
analysis based on a pool of statistical methods available at the 
DE level. 

  

2. Simulation: 
It is the layer where the 
reality (production, 
supplier, customer, …) is 
simulated. 

2.2.2 Simulation clock 
administrator (SCA) 

The SCA controls how time advances during a simulation. 
When the simulation clock advances in the SCA, it sends 
messages to the simulation manager informing it that its clock 
and the simulation team local clock must be advanced to a 
particular time. The simulation manager thus informs the 
simulation team and the SSAs to update the time. 

   
3.1 Operation group 
(OG) 

The operation group is composed of a set of operation units 
(see 3.2) of an entire PUA. The operation group does not 
behave autonomously, but it supports the other two layers. 

  

3. Physical: 
It represents the physical 
resources that compose 
the supply chain. 

3.2 Operation unit The operation unit represents real resources (e.g., sawmills) and 
it contains information about operations (e.g., capacity, lead-
time distribution). Information can be deterministic or 
stochastic. 
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FIGURE 4  General schema of the simulation platform 

 
 

As suggested by the work of Lendermann et al. (2003), input data may originate from a 
set of individual systems, which motivate the evolution of the experimental platform. The 
Simulation Hub can be defined as a general neutral structure that is capable of integrating many 
independent simulations and distinct datasets that can supply information needed for simulated 
experiments. The integration is accomplished by means of software agents that coordinate 
distributed operational simulations and efficiently communicate data between simulations and 
other data sources. 
 

Basically, the Simulation Hub is an environment in which it will be possible to 
incorporate the planning tools currently being developed by the Consortium (the tube in the 
center) with a MABS layer (the dotted tube that encloses the planning tools). This layer acts as 
an architecture that supports simulation according to the design of experiment system, which 
defines the simulation guidelines initially set by the end users. The simulation execution can be 
visualized by means of the visualization system, and the results of the simulations can be sent to 
a data warehouse system. The MABS layer is an evolution of the simulation platform presented 
in Figure 4. 
 

It is important to emphasize that, in our approach, a set of external, dispersed, and 
independent simulations is encapsulated as agents (by means of a simulator adaptor). These 
agents — together with a set of connections with input data systems, such as advanced planning 
and scheduling systems, enterprise resources planning systems, forecasting systems, supervisory 
control and data acquisition (SCADA) systems, product data management systems, and legacy 
systems — form the Simulation Hub, a new way of using the FOR@C Experimental Planning 
Platform. The simulation adaptor was inspired by the work of McLean and Riddick (2000), 
which proposes an integration approach for independent simulations based on the concept of a 
simulation adapter mechanism, which is an evolution of the high-level architecture (HLA). This 
adaptor provides a method for integrating legacy simulations into distributed simulations while 
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also providing as many of the capabilities of the HLA as possible. We go further, by allowing the 
simulation to be encapsulated as agents (using the concept of agentification), so that they can be 
used directly by the Simulation Hub. This approach is expected to provide the FOR@C 
Experimental Planning Platform with real, updated, accurate, and, sometimes, on-line and 
real-time information, as well as the use of external simulations that can act as part of the 
platform (e.g., a specialized simulation agent). 
 

The Simulation Hub is the final motivation behind this project and the desired end result 
of this project. To make it possible and real, it is necessary to develop what we call the 
Simulation Framework, which provides the structure, methods, and organization for the 
Simulation Hub. This is briefly discussed in the following section. 
 
 
3.4  Simulation Framework 
 
 To make the Simulation Hub possible, a Simulation Framework is envisioned. This 
framework is composed of a set of building blocks that encapsulate several abstract and concrete 
classes, features, functionalities, methods, mechanisms, and interfaces for the Simulation Hub. 
The Simulation Framework is a simplified representation of an intricate process and can be 
adapted as necessary and is easily implemented. 
 

Following the suggestion of Lendermann et al. (2001), McLean and Riddick (2000), and 
Wilson et al. (2000), some elements of the Simulation Framework may include (1) distributed 
computing systems (hardware computing platforms, operating systems, communication systems, 
database management systems, computer security); (2) simulation components (the process of 
building, initializing, running, observing, interacting with, and analyzing simulations); 
(3) modeling requirements (how to model the behavior and data of specific manufacturing 
organizations and systems, as well as model the entire integration among agents and 
heterogeneous systems); and (4) agent model requirements (coordination and cooperation, 
internal agent architecture, general agent behavior, the simulation engine, properties of the 
environment, and communication protocols). 
 
 

4  FINAL REMARKS 
 

This paper describes the initial advances made by the FOR@C Research Consortium 
toward an Experimental Planning Platform that addresses the distributed and agent-based 
discrete-event simulated behavior of an FPSC in order to analyze different supply chain planning 
and control strategies and different configurations. Our study led us to some advances in the 
architecture of the Experimental Planning Platform. An agent-based structure is proposed and is 
being analyzed and tested by the Consortium. 
 

Nevertheless, the final result of our project, the Simulation Hub, is still a research 
proposition and requires further discussion. In addition to the advantages cited in the body of the 
paper, perhaps one of the most relevant advantages of the Simulation Hub concept is that 
member enterprises of a supply chain do not have to replace their current information systems 
with a totally new and ambitious technology in order to have a sophisticated, distributed,  
agent-based, and discrete-event simulation tool across their supply chains. Rather, they can use 
their current technology and merge it with a flexible and pioneering agent-based integration 
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approach — the Simulation Hub. The accomplishment of the Simulation Hub approach will 
provide the FOR@C Experimental Planning Platform with more complete, broad, and refined 
capabilities. 
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ABSTRACT 
 
A transition to a personal transportation system based on hydrogen rather than on 
petroleum will entail major changes in the supporting infrastructure and in consumers’ 
driving habits. Consumers who adapt such a system early on will incur some 
inconvenience in making trips because they will likely have to plan ahead to determine if 
hydrogen stations are available when and where they need to refuel. While this and other 
potential drawbacks to an individual’s decision to purchase and drive a hydrogen vehicle 
operate on a personal level, the benefits of doing so are almost exclusively societal in 
nature (i.e., reduction in both the worldwide demand for petroleum and the emission of 
carbon dioxide). It will be critical to build up the hydrogen support infrastructure in a 
way that minimizes the hardship to the consumer and creates as strong an incentive as 
possible for robust early growth of the system. In this paper, we examine the growth of a 
hydrogen infrastructure by means of a simple agent-based model consisting of a city 
center, a metropolitan region, suburbs, and a surrounding rural area. Previous studies 
have shown that a successful transition to a self-sustaining system depends on cost of 
ownership, community member influence, and vehicle and station densities, and that the 
growth and ultimate penetration of the hydrogen system may depend significantly on the 
initial distribution of stations and drivers. We extend the investigation to consider other 
factors, such as effects of driver preference for refueling near home and effects of 
changing subsidies. 
 
Keywords: Drivers, hydrogen, infrastructure, transportation 
 
 

INTRODUCTION 
 

Energy security and carbon emission concerns have stimulated renewed interest in 
shifting world energy consumption away from fossil fuels and replacing them with alternative 
energy resources. One approach envisions a transition to hydrogen as a fuel, in particular for use 
in the transportation sector. A number of researchers have addressed this transition, some from a 
strategic point of view and others from an infrastructure- or vehicle-centered point of view. All 
cost-related studies conclude that the development of a hydrogen vehicle and fuel infrastructure 
(i.e., a hydrogen transportation system) will be very expensive. Ogden et al. (2004) found that 
most advanced vehicle/fuel options, including hydrogen fuel cell vehicles, would not be 
cost-competitive with conventional vehicles without internalizing externalities associated  
with air pollution, climate change, and energy security. They also said that even if such 
fuel/vehicle systems were available, it would take decades before a meaningful impact on the 
above-cited issues could be made and that this technology should not be pursued to the exclusion 
of work on advanced conventional technologies (hybrids, diesel, advanced spark-ignited).  
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Mintz et al. (2002) have estimated the cost of hydrogen generated from natural gas by using 
three different production systems  resource-centered, market-centered, and decentralized 
hydrogen production. Hydrogen unit costs range between $18 and $23 per gigajoule (GJ), much 
higher than today’s gasoline cost, which is about $7/GJ and not likely to ever exceed $10/GJ 
(Mintz et al., 2002). This cost differential is formidable, but perhaps developing a hydrogen fuel 
infrastructure in some other way could help reduce the differential. For example, Farrell et al. 
(2003) have argued that selecting a transportation mode like shipping, which represents a few 
large operating units that move along comparatively few routes, might reduce the cost of 
introducing and developing a hydrogen infrastructure.  

 

As useful as they are, the above-cited studies and others in the literature base their 
analyses on some combination of exogenous economic factors about conventional and hydrogen 
transportation system costs with the inclusion of hitherto unaccounted-for externalities 
(e.g., climate change). Unfortunately, these studies neither attempt to account for the evolution of 
a market for such a system nor to elucidate the factors that could emerge to either impede or spur 
its growth. Agent-based modeling (ABM) can be used for such a purpose and  if done 
successfully  could provide valuable insight into this important question. Because market 
supply and demand behaviors (including cost) emerge endogenously in such models, ABM 
results potentially offer a realistic representation of the evolution of the hydrogen infrastructure.  
 

ABM has been extensively used in traffic modeling simulations. For a sampling of that 
work, the reader is directed to a recent journal issue (Transportation Research, 2002) devoted to 
applications of ABM in transportation. With the exception of our previous paper (Stephan and 
Sullivan, 2004), to the authors’ knowledge ABM has not been applied to the evolution of any 
alternative fuel market, let alone hydrogen. It would be misleading to suggest that all one needs 
to address such an important economic and societal question is to build an ABM. We recognize 
that ABM is a nascent field. Nevertheless, insights into human and social behavior have already 
been gleaned from ABM results (Axelrod and Cohen, 1999; Carley, 2000), including 
interpretation of organizational behavior. It is even being applied to long-term policy analysis 
(Lempert et al., 2003). Indeed, Ford’s interest in ABM is broader than the question of hydrogen 
transportation system evolution addressed here. For example, the climatic and supply issues cited 
above concerning fossil fuel use portend changes in world energy use patterns. What form they 
will take is not known, but they are likely to cause a shift in market preferences, including those 
for transportation. Anticipating potential shifts in both magnitude and timing has obvious 
business implications, but it requires more than a casual acquaintance with understanding causes 
and magnitudes of social trends. Again, ABM could help illuminate discussions around such 
questions.  
 
 

MODEL 
 

The transition from a petroleum- to a hydrogen-based personal transportation system 
promises to be a difficult and complex one. The technical problems of building hydrogen-fueled 
vehicles and the infrastructure to support them are formidable in and of themselves. However, a 
further challenge that must be faced is how such a system can grow from what must,  
of economic necessity, be a small beginning to one comparable in extent to the present 
petroleum-based one. It is a classic “chicken-and-egg” problem in that fuel suppliers will be 
reluctant to invest in hydrogen production, distribution, and fueling facilities until they are 
assured of a sufficient customer base, and drivers will not purchase vehicles unless the number of 
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hydrogen stations in existence is sufficient to ensure that they need not worry about refueling. To 
maximize the chances of a successful transition, it will be vital to have a good understanding of 
how the various agents involved in a hydrogen-based transportation system  vehicle owners, 
vehicle manufacturers, hydrogen producers, distributors, retailers, and government bodies  will 
interact as the system grows.  
 

We have taken a first step toward that understanding by considering a simple system 
involving just two types of agents, vehicle owners and hydrogen retailers. They interact on a grid 
representing a central metropolitan area, suburbs, and a rural area. This region is shown in 
Figure 1, a screen capture of the display from the Repast/Java ABM modeling framework in 
which the simulation was developed.1  The grid, which consists of a 100 × 100 array of cells, is 
considered to represent an area about 100 miles on a side. A number of expressways, shown as 
light grey lines, crisscross the grid and form a ring around the boundary. Local roads are 
considered to be ubiquitous and are not shown explicitly on the display. The population of 
drivers (blue circles) is distributed randomly, but weighted so that density is highest in the 
metropolitan and suburban areas and zero in the central city district. In the simulations, a driver 
population of 800 was used; thus, agents can be considered “markers” for a much larger 
population living in the 10,000-square-mile area. At the beginning of a simulation, most drivers 
drive conventionally powered vehicles (open circles), but a small percentage have hydrogen-
powered ones (solid circles). The grid contains a number of locations (representing jobs, schools, 
etc., shown as black squares) to which the drivers commute on a daily basis. Each driver is 
associated with a single such location. The drivers also make less frequent (“weekend”) trips to 
other locations on the grid. The destination for each such trip is picked randomly, but certain 
cells on the grid representing “attractions” (sports stadiums, parks, etc., shown as one or more 
large magenta squares) are weighted to be favored destinations. In driving to a given destination, 
a driver agent follows a protocol of driving on local roads to the nearest entrance of the first 
north-south expressway in the direction of his or her destination, following that expressway to 
the east-west expressway closest to (but not past) the destination, then following that expressway 
to the appropriate exit, and finally once more taking local roads to the destination. A typical 
route is shown in the figure. (Entrances and exits to expressways are located at intersections and 
on each expressway at the midpoint between two intersecting expressways.) 
 

Fuel retailers are the second type of agent in the simulation. Conventional fuel stations 
are considered to be ubiquitous and are not shown explicitly on the display. At the beginning of 
the simulation, a small number of cells (open red squares) are chosen to contain hydrogen fueling 
facilities. These locations can either be chosen randomly (though always at expressway 
intersections) or placed as desired. As the simulation proceeds, these stations monitor their 
hydrogen fuel sales; if sales are insufficient, they close their facilities. Every cell on the grid is a 
candidate location for a new hydrogen fuel station, and if the expected sales volume is high 
enough, a new station opens. Once opened, a hydrogen station will remain open for at least  
six months, but then it may close again if the actual sales volume is less than a second, lower 
threshold. Depending upon its location, a station can have one or two types of sales. Studies of 
consumer behavior have found that drivers prefer to fuel their cars at stations near their home or 
work (Kitamura and Sperling, 1987). Reflecting this, our driver agents purchase all their fuel for 
local trips (commuting and the portions of random trips that are within 50 miles of home) from 
stations within a specified radius of either home or work, distributing their purchases equally 
 
                                                 
1 For information regarding Repast, see http://repast.sourceforge.net/. 
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FIGURE 1  Screen capture of the model region, showing a central city, surrounding metropolitan 
region, three suburbs, and a rural area. (Hydrogen fueling stations have been placed randomly 
at expressway intersections. A small fraction of the driver agents have hydrogen vehicles. The 
green line traces the route of one hydrogen vehicle driver making a trip to the attraction.) 
 
 
among all such stations. A station located in a cell containing an expressway (i.e., a station that is 
within one-half mile of the expressway) sells fuel both to local drivers and to nonlocal drivers 
using the expressway. It is expected that two stations located in close proximity to each other on 
an expressway (e.g., on adjacent cells) will compete for business from such drivers, while one 
that is relatively isolated will service all passing drivers who need fuel.2 To account for this, we 
incorporate a local “proximity factor” that reflects the competition that an expressway station 
faces from nearby stations. For example, a station with a competitor on an adjacent cell has its 
sales reduced by one-third compared to what they would be otherwise, and the two stations 
together sum to 4/3 “effective” stations. When an agent makes a nonlocal trip, fuel purchases are 
apportioned among all hydrogen stations passed on the trip on the basis of their effective ratings. 
(Obviously, an individual driver would not divide purchases this way, but the procedure reflects 
the marker nature of the agents.) 

 
During each time step of the simulation (one step representing a time period of 

approximately 1 month), the actual or potential fuel sales for each cell on the grid during that 
period are calculated. The sum of sales from all preceding months is multiplied by a factor 
chosen to exponentially decay and normalize the historical record to reflect a characteristic time 
period of about 1 year, weighted toward more recent months. For off-expressway locations, sales 
are local only, whereas expressway locations add the local and expressway sales. If the sum for 
an empty cell exceeds a threshold, the cell will add a hydrogen station. If the sum for a cell with 

                                                 
2 A cell is considered to have either 0 or 1 hydrogen fuel station. In reality, there could be more than one station in 

the cell’s 1-square-mile area, but we assume that drivers will treat all such stations equivalently in terms of their 
location, so that their sales can be combined to represent one “superstation.” 

Central City = Small Red Square at Center 
Metropolitan Area = Larger Red Square 
Expressways = Gray Lines 
Hydrogen Fueling Stations = Open Red Squares 
Driver Agents = Blue Circles 
Hydrogen Vehicles = Solid Circles 
“Jobs” = Black Squares 
“Attraction” = Magenta Square 
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an existing hydrogen station (which has been in operation for a minimum of 6 months) falls 
below a lower threshold, the station will close. 
 

Drivers buy new cars on a regular basis, keeping them for a randomly assigned length of 
time. When the next purchase time arrives, a driver chooses either a conventional or a hydrogen 
vehicle on the basis of a “utility function” that takes into account a number of factors. The first is 
the difference in fixed costs of a hydrogen vehicle compared with a conventional one. This factor 
includes not only the purchase price of the vehicle but such intangibles as a desire to be 
“environmentally friendly” or “high tech.” The hydrogen vehicle is assumed to have a lower 
fixed cost, yielding a positive “fixed benefit” in the utility function. Likewise, there is assumed 
to be a positive “variable benefit,” proportional to the distance driven, for a hydrogen vehicle. 
This also includes benefits that are both tangible (fuel and other operating costs) and intangible 
(e.g., dispensation for unrestricted travel in HOV lanes). In addition, the agent’s purchase 
decision may be influenced by the purchase decisions of friends and neighbors and the public at 
large. Also, we expect that the cost of hydrogen vehicles will drop as volume grows. 
Counteracting this, there may be a purchase-price government subsidy (such as is presently the 
case for hybrid vehicles), which could decrease as sales of hydrogen vehicles increased. In the 
present simulation, we incorporate these three factors into a single volume-dependent term, the 
percentage of all drivers who own hydrogen vehicles. Depending upon its sign, this term can add 
an element of either positive or negative feedback. 
 

Offsetting these assumed benefits are the two drawbacks of (1) possible lack of 
convenient hydrogen stations near home or work and (2) worries about running out of fuel on 
nonlocal trips. The first factor is expressed mathematically as follows: 

 
 ( )( )[ ] ,5.025.08 1−++= WorkHome NNnceInconvenie  (1) 
 
where NHome and NWork are the number of hydrogen stations within a three-cell distance of the 
agent’s home and job, respectively. Values for different numbers of home and work stations are 
shown in Table 1. The term is 1 for no stations at either location and rapidly approaches 0 as the 
number of stations increases. The different additive terms for home and work reflect most 
people’s preference to refuel near home rather than work. (In this expression and the one to 
follow, both the form of the equation and the numerical values of the parameters are arbitrary. 
We have chosen them only as approximations reflecting our limited understanding of consumer 
behavior.) 
 
 

TABLE 1  Inconvenience vs. number of local hydrogen 
stations  

 
No. of Stations 

near Home (NHome) 

 
No. of Stations 

near Work (NWork) 

 
 

Inconvenience 
0 0 1 
0 1 0.33 
1 0 0.20 
1 1 0.07 
2 2 0.02 
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 We include a “worry factor” to account for possibly uncomfortably or prohibitively long 
distances between successive hydrogen stations on extended trips. Drivers (both hydrogen and 
conventional) monitor the locations of hydrogen facilities that they pass along their random trips. 
If the stations are spaced close enough together, a driver’s worries about running out of fuel are 
diminished. The worry factor is calculated as the square of the distances between successive fuel 
stations passed when the distances exceed a threshold: 
 
 ( ) .zonecomfort stationshydrogen  successivebetween  distance 2∑ −=

tripsAll

rWorryFacto  (2) 

 
(The power of 2 reflects the simple observation that one’s worry about being stranded increases 
in a more than linear fashion as the fuel gauge approaches empty.)  Note that for drivers of 
hydrogen vehicles, inconvenience and worry are actual; for conventional vehicle drivers, they 
are potential. All these factors are summarized in the statement of the driver utility function U: 
 
 orVolumeFactaveledDistanceTrrnefitFactoVariableBeitFactorFixedBenef +−+=U  (3) 
 rWorryFactonceFactorInconvenie −− . 
 
Each term can be weighted as appropriate. For example, the weights of coefficients multiplying 
InconvenienceFactor and WorryFactor would reflect the relative weights of inconvenience and 
worry in a driver’s purchase decision. The utility function differs from driver to driver, 
depending upon location and travel distance from month to month. If the utility function is 
positive at the time when a driver is ready to purchase a new car, he buys a hydrogen vehicle; 
otherwise, he purchases a conventional one. 
 

The model used in this study differs in some significant ways from the one used for 
results reported in our earlier paper (Stephan and Sullivan, 2004). We have extended the 
previous model to include suburban regions of high population and job density, and we have 
been more precise in specifying to what fuel stations a hydrogen vehicle driver’s fuel budget is 
distributed. In the earlier model, hydrogen fuel stations were restricted to expressway cell 
locations (i.e., within 0.5 mile of an expressway), and no distinction was made between sales to 
vehicles being used for commuting and sales to those being used for “random” trips. A hydrogen 
fuel station, or potential hydrogen fuel station, was credited with a fuel purchase every time 
drivers of hydrogen vehicles passed their station. These purchases were discounted based on the 
proximity of competitor stations in the same way they are here. The actual amount of fuel sold 
by a given hydrogen station in one time step (1 month) was calculated as follows: 

 

,
 StationsFuel H2 All of  Drivers H2 allby  Passes Total

 MilesVehicle H2 Total
Passes Eff.VehicleH2TotalSoldFuel =  (4) 

 
where Eff. (effective) denotes that passes were discounted for local competition. 
 

In this model, in contrast, a hydrogen fuel station can be located anywhere on the grid, 
although to participate in sales to vehicles on “random” trips the station must be located within 
0.5 mile of an expressway. Commuting drivers buy their fuel only at fuel stations near their 
home or work, not en route. Purchases of fuel in a “random” trip are distributed equally among  
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all stations (outside the home neighborhood) passed en route. The expressway fuel sold by a 
given station is: 

 

 ∑ ∑




















=
DriversAllH

 Stationpast
Driver H2 given

a of trips All 2 Trip on Passed  StationsFuel H# Eff.

Trip of Distance Total
 SoldFuel

2

. (5) 

 
The result is to take into account more precisely the effect of nonlocal competition. A driver 
following a route with many hydrogen fuel stations (even if spaced far enough apart that there is 
no local competition) will purchase less fuel at each station than if the route were sparsely 
populated with hydrogen stations. 
 
 

RESULTS 
 

Figures 2 and 3 show a display akin to that of Figure 1, but after 1 month (one step), 
3 years, and 15 years of a transition where the net benefits of driving a hydrogen vehicle are 
substantially positive. Although hydrogen fuel stations can be located anywhere, in this case they 
have all chosen to locate on expressways to take advantage of noncommuter traffic. There is a 
particular concentration along the approach roads to the attraction, which is the destination for 
5% of random trips. Figure 4 shows the time dependence of the percentage of drivers who have 
switched to hydrogen vehicles, the number of hydrogen fueling stations, and the fuel sales per 
station. The transition is substantially complete after about 10 years, with about 70% of drivers 
having switched to hydrogen and the number of hydrogen stations having grown from a starting 
value of 11 to 60. There is still slight growth for another 10 years. Note that the sales volume per 
station remains relatively steady, because in most cases when the sales volume of a station in a 
given cell (indicated by the size of the square) rises much above average, competitor stations 
spring up in nearby cells to share the business. The station at the intersection due east of the 
attraction provides an example of an exception. (A competitor locating north of that station 
would not get any business from the majority of drivers coming from the south.) 
 

Figure 5 shows the average fixed and variable benefits, worry, and inconvenience for all 
drivers and for hydrogen vehicle drivers. As expected, the negative factors decrease over the 
years as more hydrogen stations are built, and they are smaller for hydrogen vehicle drivers than 
for overall drivers. The latter is particularly true in the case of inconvenience, which has been 
weighted in this example to be the dominant consideration for drivers. 
 

Figure 6 contrasts the growth of hydrogen vehicles indicated in Figure 4 with that 
resulting when conditions are changed in two ways. In the “Lower Benefits” case, the benefits to 
the hydrogen vehicle driver are cut by about 40% (e.g., through lower subsidy of vehicle and fuel 
purchase costs). Not surprisingly, the ultimate penetration of hydrogen vehicles is lower (60% 
vs. 74% after 20 years). In addition, the growth rate is much slower at the beginning: after 
10 years, penetration in the Lower Benefits case is less than half that in the original case. In the 
“Judicious Placement” case, we again cut the benefits, but this time we attempted to place the 
initial stock of 11 hydrogen fuel stations in a “judicious” (though probably not optimal) fashion, 
on the basis of observing their placement at the end of the previous runs. With this procedure, the  
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FIGURE 2  Changes in the distribution shown 
in Figure 1 after the first step of the simulation 
(The areas where there is a potential for 
hydrogen fuel sales are shown in green, with 
darker shades indicating higher potential.) 

 
 

  

FIGURE 3  Changes in the distribution shown in Figure 1 after 3 and 15 years 
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FIGURE 4  Transition as a function of time3 FIGURE 5  Worry and inconvenience factors 
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FIGURE 6  Effect of lower benefits  
combined with “judicious placement”  
of initial hydrogen fuel stations 

 
 
ultimate penetration recovers to 70% and the initial growth rate is much higher than before. 
Indeed, under some circumstances the initial growth rate can surpass that for a system with 
ultimately higher penetration. Correct initial placement of hydrogen fuel stations thus appears to 
be key to a successful hydrogen transition. 
 

Figures 7 and 8 show a simulation run identical to that used to generate Figures 4 and 5, 
but with the worry weighting coefficient increased and the inconvenience coefficient decreased 
to make worry the dominant consideration. In contrast to the original case, the transition is 
complete; virtually all drivers have hydrogen vehicles at the end of 15 years. However, the  
 

                                                 
3 In this and all following figures (except Figures 5 and 8), the same ordinate scale represents percentage of 

hydrogen drivers, absolute number of hydrogen stations, and arbitrary units for fuel sales/station. 
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FIGURE 7  Transition as a function of time,  FIGURE 8  Worry and inconvenience  
with different weighting coefficients factors, with different weighting coefficients 

 
 
results are very sensitive to the positive benefit factors. Previously, a 40% cut in benefits slowed 
the transition and reduced penetration by 74% to 60%; here, a 5% cut reduces penetration from 
100% to 20% (Figure 9). Why should this be?  In the former case, the decision to switch to 
hydrogen depended markedly on the driver’s location. If there happened to be a hydrogen station 
nearby, then inconvenience was low; otherwise it was high. In the present case, a driver’s 
decision is more heavily weighted in terms of the worry generated in making random trips. Thus, 
all drivers are in more similar circumstances, and if one driver finds it beneficial to switch, the 
rest are more likely to reach the same conclusion. Although in reality drivers will have individual 
situations and preferences that we have so far not taken into account, nevertheless there appears 
to be a lesson that can be drawn. Hydrogen vehicles marketed to commuters (for whom 
inconvenience is presumably a prime consideration) may face less risk of an utter failure, but 
also have less chance of a complete conversion to hydrogen, than those that are marketed to 
consumers for use in longer trips. 
 

While reducing the benefits at the outset can “kill” a transition (see Figures 7 and 9), 
gradually reducing a subsidy as the transition gains momentum may be quite tolerable. This 
effect is illustrated in Figure 10, which is similar to Figure 7 except that the subsidy has been 
reduced as a function of penetration, reaching zero at roughly 60% penetration. This results in an 
ultimate penetration of just over 50%. (Had the subsidy been reduced even slightly at the 
beginning, the transition would have failed, with all the initial seed stock of vehicles and stations 
quickly disappearing.) 

 
The presence or absence of suburbs does not appear to have a large effect. Figure 11 

shows the outcome for a simulation like that of Figure 4, but with no concentrations of drivers in 
suburban regions. Under these conditions, the same ultimate penetration is achieved, but the 
transition takes longer. This effect will be explored more fully in future work. 
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FIGURE 9  Transition as a function of time    FIGURE 10  Effect of a gradually decreased 
with benefit factors reduced by 5%   vehicle purchase subsidy 
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FIGURE 11  Transition as a function 
of time for a layout with no suburbs 

 
 

CONCLUSIONS 
 

Our work so far cannot be considered a complete picture of reality. The model contains 
only two types of agents, and the driver agents in particular do not embody the many variations 
characteristic of real drivers. Also, our model does not approach the level of true economics in 
describing agent behavior. Nevertheless, we believe that the responses of the model to variations 
in parameters are of interest and may be helpful in guiding the development of more 
sophisticated models. We find that the initial growth period of the transition is critical; the 
ultimate success or failure of the transition is determined in the first few years. Appropriate 
initial placement of hydrogen fueling stations is important and may make the difference between 
success and failure. Interestingly, the relative importance that consumers place on being able to 
fuel their vehicles near home or work, as opposed to concerns about finding fuel on longer trips, 
greatly influences the sensitivity of the transition to vehicle and/or fuel subsidies. 
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ABSTRACT 
 
This paper describes an agent-based model of supply chains in which trust relationships 
between agents emerge as a result of successful and mutually beneficial agent 
interactions. Repeated, successful social interactions between supply chain agents are 
self-reinforcing and lead to trust and sustainable cooperative relationships. Various social 
interaction mechanisms for modeling the establishment of trust are proposed on the basis 
of reciprocity relationships, such as “tit-for-tat.” The simulation is used to study aspects 
of trust relationships and how their establishment can be effectively modeled. Agent-
based simulation is used as an electronic laboratory to explore the establishment of trust 
relationships and their impacts on the structure of the supply chain. 

 
 

1  INTRODUCTION 
 

Supply chains touch all aspects of production, distribution, and retailing, linking together 
networks of suppliers, manufacturers, distributors, wholesalers, retailers, and consumers. Agent-
based simulation is a modeling approach that is well-suited to represent supply chains for what 
they are: collections of heterogeneous, autonomous decision-making agents operating at multiple 
levels of organization. Agent interaction occurs along several dimensions as business units, 
companies, and individual decision makers all add to decision-making complexity.  
 

Supply chain agents are necessarily social agents. Issues associated with social 
interaction and the formation of sustainable relationships are essential aspects of supply chains. 
Supply chain agents seek sources of supply and seek outlets for their products from among other 
supply chain agents. Agents negotiate on pricing and delivery. Agents decide to share 
information when it is mutually beneficial. Trust between agents, negotiations that result in 
transactions that are acceptable to all parties, and incentives offered to affect agent behaviors are 
all examples of social interactions relevant to modeling real-world supply chains.  
 

Previous models (including agent-based models) used to understand the evolution and 
dynamics of supply chains have only considered economic variables. This paper describes an 
agent-based approach to modeling the dynamic evolution of supply chains in which trust 
between agents is an endogenous property of the system. Trust emerges on the basis of 
individual agent interactions. Repeated, mutually beneficial and self-reinforcing social 
interactions among supply chain agents lead to trust and sustainable cooperative relationships. 
Trust relationships evolve according to the ongoing dynamic interactions between and among 
agents. Various interaction mechanisms for modeling the establishment of trust are posited and 
explored on the basis of reciprocity relationships, such as “tit-for-tat.” The simulation is used to 
study aspects of trust relationships and how they can be effectively modeled. Agent-based 

                                                 
* Corresponding author address: Charles Macal, Decision and Information Sciences Division, Argonne National 

Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439; email: macal@anl.gov. 
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simulation is used as an electronic laboratory to explore the impacts of trust relationships on 
overall supply chain dynamics. 
 

This paper is organized as follows. Section 2 proposes a general model for the calculation 
of trust on the basis of reciprocity in agent interactions. Section 3 describes the implementation 
of the trust model into the supply chain model. Section 4 presents an experimental design for the 
simulation to understand the implications of the trust relationship. Section 5 presents results and 
draws conclusions.  
 
 

2  MODEL FOR THE ENDOGENOUS GENERATION OF TRUST 
 

Trust between two agents is a measure that changes according to the nature of the 
interaction between the agents. An interaction between two agents consists of an action by one of 
the agents and a reaction by the other agent. Associated with each action and reaction is a scalar 
number. For example, in the case of two supply chain agents, the action could be the amount a 
retailer agent orders from a supplier agent, and the reaction could be the number of items 
received from the supplier in response to the order. An interaction between two agents is either 
positive or negative. Positive interactions boost trust. Negative interactions cause trust to decline. 
A positive interaction is defined as one in which a reaction to an agent’s action is greater than or 
equal to an action the agent previously took (i.e., reaction ≥ action, where action and reaction are 
real numbers assigned to the action response to the action, respectively). A negative interaction 
is one in which reaction < action. Following the supply chain example, if the shipment received 
meets or exceeds the order, the retailer agent’s trust in the supplier increases, and if the shipment 
falls short of the order, the ordering agent’s trust in the supplier is diminished.  
 
 
Reciprocal Nature of Trust 
 

We assign a trust measure to the result of an interaction between two agents at any time t. 
The trust value of the interchange for an action that is successfully reciprocated (reaction 
≥ action) is set equal to the value of the initiating action. For an action that is not successfully 
reciprocated (reaction < action), the trust value of the interchange is set to the value of reaction. 
If an agent reciprocates by providing more than was requested (reaction > action), the excess 
provided above the action (request) is not considered in the trust value for the interaction. In 
effect, credit is given only for what was requested. Each pair of agents that has a relationship has 
two trust functions, one for each agent, regarding the trust that an agent has for the other agent in 
the relationship. This allows for the possibility that trust relationships may be asymmetric. 
Agent a may trust agent b at a different level than agent b trusts agent a.  
 

Formally, we define the indicated trust for an agent a relative to agent b at time t as: 
 

Indicated Trustab,t = actionat, if reactionbt ≥ actionat (positive interaction)  
 
 = reactionbt, if reactionbt < actionat (negative interaction),  

 
where actionat is the action taken by agent a at time t, and reactionbt is the reaction by agent b at 
time t in response to the action taken by agent a. Generally, the notion of trust considered here 
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(with reciprocity building a more sustainable relationship) is similar to the “tit-for-tat” strategies 
that have been employed in evolutionary game theory (Axelrod, 1997).  
 

Similarly, we define a trust measure for agent b relative to agent a at time t. We may also 
introduce a delay time between an action and the associated reaction into the above formulation. 
For example, in the supply chain, the action may be the order placed at t, and the reaction may be 
the shipment that arrives later at (t + orderDelay + shipmentTime).  
 
 
Trust Decay 
 

Trust between two agents persists over time. However, if two agents do not interact over 
an extended period of time, trust between them decreases. Trust must occasionally be reinforced 
with positive interactions to be maintained. Trust decreases over time according to the trust 
decay parameter τ (0 < τ ≤ 1) that represents the fraction of trust that decreases over each period. 
The trust decay parameter is a fixed value for the duration of a simulation and is set as part of the 
scenario parameters. A value of zero for τ indicates that trust does not decay and is constant 
between interactions. A value of one for τ indicates that trust decays immediately and completely 
after each interaction; for τ = 1, trust does not carry over from one interaction to the next, and, in 
effect, trust is ephemeral. The effective trust at time t is the decayed value of trust from the 
previous time period: 
 

Effective Trustabt = (1 – τ) Trustab,t−1, 
 
where Trustab,t−1 is the trust of agent a for agent b at time t−1, and τ is the trust decay parameter. 
 
 
Trust Adjustment 
 

We introduce a trust adjustment parameter D to account for the stickiness in how quickly 
trust is updated in light of recent interactions between agents. Even if an agent’s reaction in 
response to an action is not satisfactory, all trust is not completely lost. Some trust may remain as 
a result of previously established goodwill. Similarly, if a positive interaction occurs, we allow 
for updating trust only partially to the new implied trust level by using the parameter ρ. A value 
of ρ = 0 indicates that trust is not lost (bolstered) in light of a negative (positive) interaction.  
A value of ρ = 1 indicates that trust is adjusted fully and immediately in light of an interaction. 
This corresponds to a kind of total reinforcement. Values between zero and one indicate partial 
reinforcement and caution or hesitancy in adjusting trust levels in light of recent experience.  
 
 
Trust Heuristic  
 

The trust heuristic generates trust values over time between two agents in a relationship. 
We can summarize the trust heuristic as follows. Trust increases if and only if the reaction is at 
least as great as the action (reactionb,t ≥ actiona,t–*) and the action is greater than the effective 
trust level (actiona,t–* > Effective Trustab,t), where * is a possible time delay factor. Trust 
decreases as a result of two factors: (1) the assumed decay of the trust measure over time 
(assuming τ > 0, because if τ = 0, there is no decay) and (2) if the reaction is less than the action 
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(reactionb,t < actiona,t–*), (assuming ρ > 0, because if ρ = 0, there is no impact of the action-
reaction interaction on the trust measure).  

 
The trust heuristic combines the indicated trust and the effective trust by weighting the 

two components. Finally, we define trust for an agent a relative to agent b at time t as follows:  
 
Trust Heuristic: 
 

If reactionb,t ≥ actiona,t–*, then: 
 

Trustab,t = Max[Effective Trustab,t, ρ actiona,t–* + (1 – ρ) Effective Trustab,t.  
 

If reactionb,t < actiona,t–*, then: 
 

Trustab,t = Min[Effective Trustab,t, ρ reactiona,t + (1 – ρ) Effective Trustab,t. 
 

Six cases can result at time t depending on the relative values of the three variables: 
action, reaction, and effective trust (Table 1, illustrated in Figure 1).  
 
 

3  SUPPLY CHAIN MODEL 
 

The supply chain model used in this study is based on Sterman’s “beer game” simulation 
(BGS) (Sterman, 1987, 1989, 2000, 2001; Mosekilde et al., 1991). The original BGS considered 
a linear supply chain consisting of a single customer, retailer, distributor, wholesaler, and 
factory, programmed as a systems dynamics model (Forrester, 1961). The BGS is a classic case 
of a multi-tiered supply chain model, well-known and well-studied. Although highly idealized 
when compared to the complexities of real-world supply chains, it nevertheless exhibits 
important properties of real-world supply chains, such as the “bullwhip effect,” in which 
inventories are typically amplified at each stage of the chain as a result of the effect of 
uncertainties in supply and demand on ordering decisions (Lee et al., 1997).  
 
 

Table 1  Distinct cases for the inference of trust 

 
Positive Interaction: 
Case 1: reactionb ≥ actiona ≥ Effective Trustab,t, implies Trust = actiona  
Case 2: reactionb ≥ Effective Trustab,t ≥ actiona, implies Effective Trustab,t  
Case 3: Effective Trustab,t ≥ reactionb ≥ actiona, implies Effective Trustab,t  
 
Negative Interaction: 
Case 4: reactionb < actiona < Effective Trustab,t, implies Trust = reactionb  
Case 5: reactionb < Effective Trustab,t < actiona, implies Trust = reactionb  
Case 6: Effective Trustab,t < reactionb < actiona, implies Trust = Effective Trustab,t 
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FIGURE 1  Trust function, assuming that trust adjustment parameter ρ > 0 and 
trust decay parameter τ > 0 

 
 

To add the richness of agent decision-making situations and behavior as well as realism 
in supply chain dynamics, we extend the standard linear supply chain BGS to a full supply chain 
network simulation (Figure 2). Each stage of the supply chain consists of an arbitrary number of 
agents. Agents are the decision-making members of the supply chain. We term our model the 
Network Agent Supply Chain (NASC) model.  

 
The goal of the supply chain process is to meet consumer demands for goods. The 

process begins with the manufacturing stage or factory stage and extends through distribution, 
wholesaling, and retailing. Customers place orders with retailers. A retailer fills the orders if 
on-hand inventory (stock) allows. Otherwise, the order is placed on backorder, and the retailer 
places an order with the next upstream stage, the wholesalers. Wholesalers fill retailer orders if 
their inventories allow. Wholesalers are faced with the same ongoing problem of filling 
incoming orders from downstream and maintaining adequate stocks. To do so, they order 
additional items from the upstream stage, distributors. In response to an order, agents receive 
shipments from the upstream stage after a delay to account for order processing and shipment. 
The same process is repeated by the warehouse and factory stages further upstream. If the factory 
cannot fill an order with stock on hand, it places the order into production.  
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FIGURE 2  Network Agent Supply Chain (NASC) model 
 
 

The sequence of stages from manufacturing to consumption is termed downstream, and 
the sequence of stages from consumption to manufacturing is termed upstream. Manufactured 
goods flow downstream, and information in the form of orders (demand) flows upstream. In the 
original BGS, it is assumed there is a one-period delay in the time between placing the order and 
the time the order is received by an upstream agent, a two-period delay in items shipped and 
reaching their destinations downstream, and a three-period production delay. These same 
assumptions are adopted here for the NASC model.  
 
 
Supply Chain Agents 
 

Each supply chain agent decides how many items to order and ship in each time period 
on the basis of its inventory, outstanding orders in the pipeline, and the orders and shipments it 
has received. An agent’s decision framework consists of five rules: 
 

• Demand Forecast Rule: Forecast expected demand. 
 

• Supply Rule: Determine total supply to downstream agents. 
 

• Ordering Rule: Determine total orders to upstream agents. 
 

• Supply Allocation Rule: Allocate supplies to downstream agents. 
 

• Order Allocation Rule: Allocate orders to upstream agents. 
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Together these rules constitute a business process. There are many possible ways that 
agents could combine these rules to arrive at the requisite decisions, and many reasonable forms 
of specific rules that an agent could follow. The supply chain agent rules used in the NASC 
model follow the rules used in the original BGS, with the exception of the allocation rules, and 
are described elsewhere (contact author for details). The allocation rules for allocating shipments 
to downstream agents and for allocating orders to upstream agents are unique to the supply 
network, as opposed to the linear supply chain that was addressed in the original BGS model 
(Figure 3). The allocation rules are the basis for modeling the emergence of trust in the supply 
chain and the subject of the remainder of this paper.  
 
 
Allocation Decisions 
 
 
Allocate Supplies to Downstream Agents 
 

In the supply chain, an upstream agent has shipment decisions to make. The upstream 
agent has to decide (1) how much to supply in total to all downstream agents, and (2) the share of 
the supply (shipment) that should be made to the various downstream agents. Consider an agent 
that would like to allocate a total supply, Supply, to a downstream agent, d: 
 

New Supplyd = allocateShipmentToDownstream[Supply]. 
 

There are many reasonable heuristics for allocating supplies. For example, one approach 
is to prioritize the downstream agents on the basis of the largest backorder. The goal would be to 
supply the downstream agents in order of the largest backorder first (LBF) until all backorders 
are filled or the supply runs out, whichever comes first. A reasonable alternative approach is to 
prioritize the downstream agents on the basis of smallest backorder, and supply the downstream  
 
 

 

 

• Supply Allocation Rule: Determine who among the downstream agents to supply 
 
• Order Allocation Rule: Determine from whom among the upstream agents to order 

FIGURE 3  Allocation decisions of supply chain agents  

Who?   
How much? 

…to supply? 

…to order? 
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agents in order of the smallest backorder first (SBF); this scheme would seek to supply as many 
downstream agents as possible. The LBF rule could be implemented as follows: 
 

allocateShipmentToDownstream[Supply] = Supplyut x (Backorderud,t / ∑d Backorderud,t), 
 
where (Backorderud,t / ∑d Backorderud,t) is the relative backorder share for agent d. 
 
 
Allocate Orders to Upstream Agents  

 
In the supply chain model, a downstream agent has ordering decisions to make. The 

downstream agent has to decide (1) how much to order in total from all upstream agents, and 
(2) the share of the order that should be placed with the various upstream agents. Each agent 
decides how much of its order to allocate to each of the upstream agents. Consider an agent that 
would like to allocate a total order, Order, to an upstream agent, u: 
 

New Orderu = allocateorderToUpstream[Order]. 
 

There are several reasonable alternatives for allocating orders. For example, one heuristic 
is to allocate a relatively larger share of orders to upstream agents having fewer previous orders 
that have not been filled (backorders, if any) as of the current time. Agents with larger 
backorders are allocated a relatively smaller share of the order made by the downstream agent d, 
as follows: 
 
 allocateOrderToUpstream = New Order x (1/Backorderd,ut / ∑u 1/Backorderd,ut), 
 
where (1/Backorderud,t / ∑d 1/Backorderud,t) is the relative backorder share for agent u and is the 
inverse of the LBF rule used above for supply. If there are no backorders outstanding, then 
agents receive an equal share of the order.  
 
 
Application of the Trust Heuristic to the Supply Chain 
 

We next extend the supply and ordering allocation rules to include trust considerations. 
Downstream supply chain agents have relationships with upstream agents according to the 
structure of the supply network. Each agent in the relationship has a trust measure for the other 
agent in the relationship. 
 
 
Trust Calculation for Downstream Agent 
 

Calculating trust on the part of the downstream agent for the upstream agent is based on 
the following notion:  
 

“We trust them if they deliver on our order, and we don’t trust them if they don’t 
deliver.” 
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For a downstream agent who places an order to an upstream agent hoping to receive a 
shipment in response some time later,  
 

Actionat = Order Placeda,t−F−*, 
 
and 
 

Reactionb,t = Shipment Madeb,t–F = Shipment Receivedat, 
 
where * is the ordering delay (* is one period in the supply chain example), F is the shipping 
delay (F is two periods in the supply chain example), Ordera,t−F−* is the order by the 
downstream agent a at time (t−F−*), Shipmentb,t−F is the shipment made by the upstream agent b 
at time t − F, and Receiveat is the shipment received by the downstream agent a at time t. 
 
 
Trust Calculation for Upstream Agent 
 

Calculating trust on the part of the upstream agent for the downstream agent is based on 
considerations of reciprocity:  
 

“We trust them if they continue to order as much as we have shipped, and we 
don’t trust them if they don’t demand that much.”  

 
This notion is as close to the reciprocal of the considerations for the upstream agent in specifying 
trust for the downstream agent as it is for the downstream agent in specifying trust for the 
upstream agent.  
 

For an upstream agent a who makes a shipment to a downstream agent b hoping to 
receive an order in response some time later,  
 

Actiona,t = Shipmenta,t−F−*, 
 
and 
 

Reactionb,t = Orderb,t–* = Demanda,t, 
 
where * is the ordering delay, F is the shipping delay, Shipmenta,t−F−* is the shipment by 
upstream agent a at time (t−F−*), Orderb,t−* is the order made by downstream agent b at time  
(t–*), and Demanda,t is the demand (order) received by upstream agent a at time t. 
 

Trust on the part of the downstream agent for the upstream agent need not be the same as 
trust on the part of the upstream agent for the downstream agent. It is often observed in the 
supply chain simulation that if the model is set up to allow this, these two trust measures diverge 
considerably. Since there is a delay between the time a downstream agent places an order and the 
time an upstream agent receives the order, and there is a delay between the time the upstream 
agent makes a shipment and the downstream agent receives the shipment, the trust the agents 
have for each other can be out of phase, especially for highly dynamic situations in which 
demand is fluctuating rapidly.  
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Order Share Allocation by Downstream Agents 
 

In the supply network model, a downstream agent has a trust measure for each upstream 
agent. The trust measures are used to allocate orders among upstream suppliers in a manner 
similar to the way backorders were used to allocate orders above. Agents that are trusted more 
(have relatively higher trust values) are allocated a relatively larger share of the order made by 
the downstream agent d, as follows: 
 

Orderdu,t = Orderdt (Trustdu,t / ∑u Trustdu,t), 
 
where Orderdu,t is the order by agent downstream agent d placed to upstream agent u at time t, 
Orderdt is the order by agent d at time t, and (Trustud,t / ∑d Trustud,t) is the relative trust share for 
agent u. 
 
 
Supply Share Allocation by Upstream Agents 
 

In the supply network model, an upstream agent has a trust measure for each downstream 
agent. The trust measures are used to allocate supply in the form of shipments to individual 
downstream agents. Agents that are trusted more (have relatively higher trust values) are 
allocated a relatively larger share of the supply and shipments made by the upstream agent u, as 
follows: 
 
 Shipmentud,t = Supplyut (Trustud,t / ∑d Trustud,t), 
 
where Shipmentud,t is the shipment by upstream agent u placed to downstream agent d at t, 
Supplyu,t is the supply by agent u at time t, and (Trustud,t / ∑d Trustud,t) is the relative trust share 
for agent d. 
 

These heuristics for using the trust measures imply that greater trust between agents 
ensures that a larger share of an order will be placed to the trusted agents and a larger share of 
supplies will be shipped to trusted agents. Agents that are not trusted as much still receive a 
portion of orders and supplies, but it is relatively smaller. 
 
 

5  EXPERIMENTAL DESIGN 
 

We run three simulation experiments designed to establish a baseline set of simulation 
results and explore the effects of adding trust to the supply chain model. In effect, the question to 
address through the simulation is how the consideration of trust as a factor in allocating orders 
and supplies influences the structure of the supply network. The modeling strategy is to develop 
a base case having predictable results, then add other cases individually for comparison, as 
occurs in a controlled experimental framework. All simulation are deterministic and do not 
consider stochastic elements. There are five agents at each stage of the supply network. 
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Base Case 
 

In the first simulation, all agents at each level of the supply chain are identical in terms of 
their decision rules, attributes, and resources. Since all agents are identical and face identical 
conditions, we would expect the results for each agent at each level in the supply chain in terms 
of the decisions made, inventories, orders, shipments, etc., to be exactly the same too. This 
symmetry in the agent simulation results would be true for whichever criteria were used for 
allocating orders (whether on the basis of backorder prioritization without trust considerations or 
with trust considerations) or for allocating shipments (again, whether on the basis of backorder 
prioritization without trust considerations or with trust considerations) because in the event of 
ties, both procedures allocate shares equally among all of the upstream or downstream agents.  
 

The original BGS model includes a number of parameters regarding how agents behave 
in making supply chain decisions (e.g., adjustment to inventory at each step, the weight put on 
the demand forecast relative to actual demand), and these parameters are carried over into the 
network supply chain model. The full definition of these parameters is given in Macal (2003). 
The overall dynamic behavior of the supply chain is driven by these parameters, which can be 
varied on a scenario basis. The parameter settings for the runs reported on here are assumed to be 
in the mid-ranges for all parameters and all experiments. The assumed parameter values are 
shown in Table 2. 
 
 
Backorder Case 
 

In this experiment, we introduce a degree of asymmetry in the agents but only in terms of 
the amount of inventory with which they begin in the simulation. Allocation decisions are based 
on backorder levels. Parameter values for the Backorder Case are shown in Table 3. 
 
 

TABLE 2  Parameter settings for symmetric Base Case 

 
Parameter/Option Symbol Value 

   
Adjustment to Inventory Discrepancy αS 0.5 
Adjustment to Pipeline Discrepancy αSL 0.5 
Demand Forecast Weighting β 0.5 
Upstream Agent Supply Rule  Backorder/backorder proportional or trusta 
Downstream Agent Order Rule − Backorder or trusta 
Agent Inventory−Factory 1 through Factory 5 InvFAC {12, 12, 12, 12, 12} 
Agent Inventory−Distributor 1 through Distributor 5 InvDIS {12, 12, 12, 12, 12} 
Agent Inventory−Wholesaler 1 through Wholesaler 5 InvWHO {12, 12, 12, 12, 12} 
Agent Inventory−Retailer 1 through Retailer 5 InvRET {12, 12, 12, 12, 12} 
 
a Backorder or trust allocation rules produce the same results because of the symmetry of the agents. 
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TABLE 3  Parameter settings for Backorder Case 

 
Parameter/Option Symbol Value 

   
Adjustment to Inventory Discrepancy αS 0.5 
Adjustment to Pipeline Discrepancy αSL 0.5 
Demand Forecast Weighting β 0.5 
Upstream Agent Supply Rule  Backorder/backorder proportional 
Downstream Agent Order Rule − Backorder 
Agent Inventory−Factory 1 through Factory 5 InvFAC {14, 13, 12, 11, 10} 
Agent Inventory−Distributor 1 through Distributor 5 InvDIS {14, 13, 12, 11, 10} 
Agent Inventory−Wholesaler 1 through Wholesaler 5 InvWHO {14, 13, 12, 11, 10} 
Agent Inventory−Retailer 1 through Retailer 5 InvRET {14, 13, 12, 11, 10} 

 
 
Trust Case 
 

In the Trust Case, we also introduce a degree of asymmetry in the agents (viz. the 
symmetric Base Case) but only in terms of the amount of inventory with which they begin in the 
simulation. Allocation decisions are based on trust levels. Parameter values are shown in 
Table 4. 
 

6  RESULTS 
 

The main results for the three simulation cases are presented in Figures 4 through 6. In 
the figures, blue solid lines indicate maximum trust levels between both agents on a link in the 
network. Dashed lines indicate a moderate amount of trust between the agents. The underlying 
yellow lines indicate the relative amounts of material (shipments) flowing on a link from 
upstream to downstream agents.  
 
 
Symmetric Base Case 
 

The Base Case simulation was run for 600 time periods. The results are depicted in 
Figure 4 in terms of the average trust and shipment levels over the time horizon. As expected, the 
results indicate that all the agents in a stage trust all of the agents in adjacent stages (upstream 
and downstream) by an equal, moderate, amount. That is, since all the agents within a stage are 
identical, all trust relationships are symmetric and equal among agents in adjacent stages. 
Shipments are also symmetric and distributed across all agents.  
 
 
Backorder Case 
 

The Backorder Case simulation was run for 600 time periods. In this case, an agent’s 
allocations of orders and supplies are based on backorder levels. The trust levels each pair of 
agents have for each other are recorded but not used in the allocation process. The results are 
depicted in Figure 5. The results indicate that the slight variation in the initial agent inventories 
(all agents are otherwise identical) leads to slight variations in trust and shipment levels between  
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TABLE 4  Parameter settings for Trust Case 

 
Parameter/Option Symbol Value 

   
Adjustment to Inventory Discrepancy αS 0.5 
Adjustment to Pipeline Discrepancy αSL 0.5 
Demand Forecast Weighting β 0.5 
Upstream Agent Supply Rule  Trust 
Downstream Agent Order Rule − Trust 
Trust Decay Parameter τ 0.025 
Trust Reinforcement Parameter ρ 0.5 
Agent Inventory−Factory 1 through Factory 5 InvFAC {14, 13, 12, 11, 10} 
Agent Inventory−Distributor 1 through Distributor 5 InvDIS {14, 13, 12, 11, 10} 
Agent Inventory−Wholesaler 1 through Wholesaler 5 InvWHO {14, 13, 12, 11, 10} 
Agent Inventory−Retailer 1 through Retailer 5 InvRET {14, 13, 12, 11, 10} 

 
 

 

FIGURE 4  Symmetric Base Case results 
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FIGURE 5  Backorder Case results 
 
 
agents across adjacent stages. However, there is a significant difference in trust levels observed 
from stage to stage. For example, only moderate trust levels are observed between consumers 
and retailers and between distributors and factories. On the other hand, high trust levels are 
observed between retailers and wholesalers and between wholesalers and factories. This 
difference is due to the fact that the supply chain inventory levels are continually fluctuating, and 
the middle stages are better able to smooth out the effects of these fluctuations than are the stages 
on the end of the chain. 
 
 
Trust Case 
 

The Trust Case simulation was run for 600 time periods. In this case, an agent’s 
allocations of orders and supplies are based on trust levels. The trust levels each pair of agents 
have for each other are used in the allocation process. The results are depicted in Figure 6. 
Figure 6 indicates that allocating orders and supplies on the basis of trust rather than backorders 
results in a much different pattern of trust and shipments. Trust relationships develop and sustain  
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FIGURE 6  Trust Case results 
 
 
themselves in a stable way. The effect of trust is the formation of almost exclusive trading 
relationships between pairs of agents in adjacent stages. Within each stage, three or four 
dominant agents emerge to the exclusion of the other agents in the stage.  

 
Figure 7 shows the history of one trust agent relationship (between Factory 4 and 

Distributor 3) over the simulation history. Trust fluctuates over time for each agent in the 
relationship (Factory 4 trusts Distributor 3, Distributor 3 trusts Factory 4), tracking the supply 
chain dynamics overall, but the average trust levels over time are maintained at high levels. 
Figure 7 also indicates that the trust relationships between the agents are symmetric but lag in 
time, which accounts for the delay between placing an ordering to an agent and receiving a 
shipment from the agent.  
 

Figure 8 shows the history of one agent’s (Distributor 3) trust relationships with all the 
other agents in an adjacent (upstream) stage (factories) over the simulation history. Trust 
fluctuates over time for each agent in the relationship, but average trust levels over time are 
sustained at high levels for a subset of the factories (Factories 4 and 5). The distributor’s trust of 
the other factories (and vice versa) quickly dissipates to zero and remains there.  
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FIGURE 7  History of trust relationship for Factory Agent 4 and Distributor 
Agent 3  

 
 

7  SUMMARY AND CONCLUSIONS 
 

We have developed a conceptual framework for modeling the endogenous emergence of 
trust relationships. We have applied the trust framework to modeling the dynamic relationships 
between producer (upstream) and consumer (downstream) agents in a supply chain network 
model. The results indicate that considerations of trust relationships as exemplified in the 
reciprocation of actions, in the form of order and shipment fulfillment, can build sustainable 
relationships within the supply chain that significantly alter the structure of the supply chain 
when compared with standard allocation heuristics used in the industry that do not consider 
social factors. Furthermore, these trust relationships may alter the dynamic behavior 
(performance) of the supply chain in ways that improve its stability. This paper has shown how 
social factors, such as trust, could be considered in modeling supply chains, in addition to the 
economic and structural factors that are commonly considered in such modeling. In future work, 
we will expand the limited number of test cases studied here to the full range of parameter 
values, agent heuristics, and possible network topologies to determine whether this conclusion 
can be generalized more broadly.  
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FIGURE 8  Upstream trust relationships for Distributor Agent 3 
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DISCUSSION: 
 

SUPPLY NETWORKS 
 

(Saturday, October 9, 2004, 3:45 to 5:45 p.m.) 
 

Chair and Discussant:  Richard Cirillo, Argonne National Laboratory 
 
 
Learning to Order in Supply Networks: An Agent Modeling Study 
 

Richard Cirillo:  We have the somewhat dubious distinction of trying to return the group 
from the brink of war to a more peaceful environment, both internationally and locally. We have 
a number of papers now that are going to focus on the application of agent-based modeling to 
supply chains and some economic situations associated with them. Our first paper is by Yifeng 
Zhang from the University of Illinois at Chicago; he’s going to be talking about learning to order 
in supply networks. 

 
Yifeng Zhang:  I’m a doctoral student at the University of Illinois at Chicago, and this is 

a joint work with my adviser, Sit Bhattacharyya. I’m working on determining the performance of 
machine learning algorithms when applied to modeled agent supply networks. 

 
[Presentation] 

 
Cirillo:  We’ll now open the floor for discussion. 
 
Unidentified Speaker:  I really like your paper, and I think it’s very important because 

I think we desperately need to find a good learning algorithm that we can incorporate into 
models, one that works well enough that we can say that people must be using something like 
this in the real world. I have one question. I see that these Q learning algorithms and experiments 
require 50,000, 100,000, or 1 million repetitions to get the thing to converge. Would it be fair to 
say that it would take 1 million years to converge a supply chain system in the real-world 
analogy? 

 
Zhang:  I think that depends on the complexity of your supply chain or supply network. 

Also, it depends on the efficiency of your program. But, yes, for a very complex supply chain, 
the learning would take a lot of time. That’s one of the challenges from a computer science 
perspective. 

 
Unidentified Speaker:  I have a follow-up question. Could it be that real systems out in 

the world have prelearned elements that operate close to an optimal learning situation, so that the 
challenge then would be to respond to deviations, which would not involve a learning process 
that was so onerous? Would that be a possibility? 

 
Zhang:  I guess, yes. In the real world, supply chains are run by human beings, who after 

many years of experience have learned how to operate them close to the optimal situation. But I 
think this model gives you a tool for examining some new situations. You can do experiments 
with this model. 
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Cirillo:  We have time for one more question. 
 
Brian Pijanowski:  Brian Pijanowski, from Purdue. Very interesting work. I’ve worked 

with artificial neural networks that do similar things, and I’ve found that they learn fairly 
quickly. We’re talking about, say, less than 10 to 20 training cycles. You presented it with rather 
complex data, and it exhibited some learning. Have you thought about using or comparing your 
technique against some other tools, such as neural networks? 

 
Zhang:  No, we did not make comparisons with neural networks. But I think this one’s 

learning process is not as quick as you describe — I mean tens of cycles — because the system 
itself is very dynamic. That’s why, for example, even if you keep the SSC value constant, the 
profit fluctuates a lot. That partly explains why the learning takes so long. It’s not as if there’s a 
corresponding profit for every SSC value. That’s not case for this model. 

 
Cirillo:  We’ll see if we have time for some more questions at the end of the session. 

Let’s press on with our next presentation. 
 
 

Agent-based Distributed Simulation Platform for Evaluating Production Planning 
Strategies in Forest Product Supply Chains 
 

Cirillo:  Luis de Santa-Eulalia is going to talk about, “An Agent-based Simulation 
Platform for Production Planning Strategies Evaluation in Forest-Product Supply Chains.” So 
we’re moving into the woods now. 

 
Luis de Santa-Eulalia:  I’m a Ph.D. student at Laval University, in Quebec, and these 

are my co-authors, my adviser and co-adviser. Actually, I am not a social scientist. I’m a 
computer scientist. My background is in industrial engineering. First, I will briefly introduce my 
work, and after that I will present our problem, a supply chain problem. Next, I will briefly 
discuss our experimental planning platform and a future challenge that we have called the 
simulation hub. Finally, I’ll end with some concluding remarks. 

 
[Presentation] 

 
Cirillo:  We can take a few questions while our next speaker is getting set up. 
 
William Lawless:  Bill Lawless. Have you gotten any results on what are you doing in 

the last slide that you showed — on the simulation? Are you looking at predicting and 
forecasting? How does that match up with the sensory data that you have? 

 
de Santa-Eulalia:  This is a very important question. It’s very important to compare the 

simulated data against real data, but we haven’t done that yet. We will start the simulation at a 
later time.  

 
Lawless:  When do you think you might have that?  
 
de Santa-Eulalia:  I think in two years. Yes, in two years.  
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Elenna Dugundji:  Elenna Dugundji, University of Amsterdam. I was wondering how 
far along you were on the second-to-last slide where you talked about the simulation hub. 
I realize that you said this is one of your future challenges, but I was wondering if you could add 
a few more words about how far along you are and what are the main challenges that you expect 
to face to be able to do this.  

 
de Santa-Eulalia:  To answer your question, the layer that has a set of agents that 

incorporate a lot of algorithms for operations research to produce production plans using 
mathematical methods is ready now. Our next challenge is to implement and validate the 
simulation layer. After that, we will consider how to integrate a lot of systems together and show 
how to integrate the different simulations in this system by using the ideas discussed in the last 
presentation of the high-level architecture, for example. 

 
Steve Upton:  Steve Upton, Referentia. Have you thought about simulating the whole 

thing with the simulation embedded in the system before you start building all of the other stuff? 
You’ve got the legacy systems; those actually can be simulations in your simulation. 

 
de Santa-Eulalia:  That’s a very interesting idea. I haven’t thought about that, perhaps 

because I think it’s hard to simulate a real supply chain using the traditional approach. We’re 
talking about a lot of information, and a company often doesn’t want to share its model. 
 
 
Growth of a Hydrogen Transportation Infrastructure 
 

Cirillo:  Next we move out of the forest and off into the wild blue yonder of the future. 
Craig Stephan is going to talk to us about, “Growth of a Hydrogen Transportation 
Infrastructure.” 

 
Craig Stephan:  I’m sure you’re all aware of the work that’s been stimulated recently by 

federal government funding on developing hydrogen-powered vehicles. These are either vehicles 
that use fuel cells or simply internal combustion engines that operate on hydrogen. There are 
benefits and drawbacks to going to hydrogen-powered vehicles. One benefit is that they don’t 
emit CO2, which is an important greenhouse gas, and, as a result, will not contribute to global 
warming. They also reduce our nation’s dependence on petroleum. 

 
[Presentation] 

 
Unidentified Speaker:  It was a very nice presentation about focusing on and modeling a 

policy issue. I just wondered if you were contemplating building models in which hydrogen-
powered vehicles were given away free to a small set of teenagers, who would automatically 
drive enough miles to create the fueling stations in vast supply. 

 
Stephan:  Well, that’s an interesting idea. I would suggest that you go try to sell it to our 

upper management and see how far you get. 
 
Unidentified Speaker:  Definitely a social dynamics question. 
 
William Lawless:  Bill Lawless. I enjoyed the presentation, too. I do a lot of work with 

the Department of Energy’s Savannah River Site, and people there are experts in tritium. They 
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also have been working on the hydrogen economy for some time, and they’ve got some cars 
running. One of the things that I was struck by in a presentation recently was the great caution 
with which they approach these vehicles when refueling. I think that there’s an unexplored 
component of this meaning the hazards associated with hydrogen, in addition to the storage 
problem. 

 
I think would be interesting to look at these hazards because if there are explosions, or 

what have you, and loss of life early on, that might change the outcome substantially, particularly 
because we don’t have the history that we have with petroleum and gasoline. Also, I think it 
would be interesting to look at a trade-off study with hybrids, which I think are much safer and 
have a much more immediate payoff. 

 
Stephan:  I completely agree with all of the remarks you made. We’ve been working 

internally on a study comparing hybrid, diesel, hydrogen, and fuel cell vehicles with respect to 
the amount of savings there would be in CO2 generation and the like. My personal feeling is that 
auto companies and fuel cell manufacturers should continue working on hydrogen because it 
ultimately might be the fuel of the future. But I don’t think we should do that at the expense of 
looking at more conventional approaches like diesels and conventional hybrid vehicles. 

 
Just a quick remark on safety. I also agree with you there. Ford had an unfortunate 

experience with the batteries for electric vehicles, and we had some fires with the batteries. As 
you know, some solvable problems could kill the whole affair if they occurred early. Again, my 
personal feeling is that hydrogen is not more dangerous than gasoline; its dangers are simply 
different than those of gasoline. 

 
Cirillo:  We have time for one more question. 
 
Unidentified Speaker:  I have a minor technical question. I didn’t understand the 

distinction between worry and inconvenience in general and worry and inconvenience 
specifically for hydrogen vehicle drivers. 

 
Stephan:  Let’s talk about worry. For every driver agent, I looked at what his worry was 

at each time step. Remember, worry was the accumulated worry that he generated in making his 
various random trips. I simply took the average of all the drivers, whether they drove 
conventional vehicles or hydrogen vehicles. I’m sorry, I probably didn’t make one thing clear. 
When we calculate worry, it’s not just the hydrogen drivers that are contributing to that value; 
it’s everybody. I’m driving a conventional vehicle, and I want to know whether I should buy a 
hydrogen vehicle, so I’m going to watch out for hydrogen stations. So worry is both actual worry 
for hydrogen-fueled drivers and the potential worry for those who would consider switching to 
hydrogen. 

 
Cirillo:  Very good. Thank you very much, Craig. 

 
 
Emergent Structures from Trust Relationships in Supply Networks 
 

Cirillo:  Our last speaker is Chick Macal, who is going to talk about emergent structures 
from trust relationships in supply chains. 
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Chick Macal:  Well, Dick, since you recited the title, I will point out a couple of things. 
First, this is a conference on emergence. We are in a supply chain session, and I ask for your 
trust on this. 

 
[Presentation] 

 
Dugundji:  Elenna Dugundji, University of Amsterdam. I thought this was a wonderful 

presentation. I had a question about your last demonstration. I wonder if you had developed any 
intuition about why you get such a pattern under the conditions of your model. 

 
Macal:  The short answer has to do with the fact that slight differences in inventory 

create situations in which agents run out of inventory to meet the orders that are coming 
upstream. Then there’s the fact that the running out occurs at slightly different times and places 
because of the initial variation. That causes the trust relationships along the immediate links to be 
degraded, and that, in turn, causes the trust relationships to have a cascading effect that 
permeates through the network. 

 
There is also the effect of certain effects cascading down the network and then cascading 

back up the network again. By the time the process stabilizes, there’s no real intuition that I’ve 
yet been able to find as to calling out the winners in advance. You’ll notice it’s not necessarily 
the ones who had that extra unit of resource because of the dynamics of the situation. But I 
would say this, the really exciting part is the trust relationship. You have essentially positive 
feedbacks such that when trust starts to decay, it really collapses at the individual-link or 
relationship level. Many of these links that are just getting a boost for trust are just as likely to be 
destroyed. The other links, by comparison, have trust building themselves up. As a result, you’ve 
got these positive feedback loops destroying trust and building it up. They are occurring at 
different places in the network, staged through different time space. At this point, that’s about the 
best answer I can give.  

 
Cirillo:  Very good. Thank you very much. 
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CLOSING PANEL 
 

BRIAN PIJANOWSKI, Purdue University 
FABIO ROJAS, Indiana University, Bloomington 

NOSHIR CONTRACTOR, University of Illinois at Urbana-Champaign 
 
 

Charles Macal:  We’re going to have the closing panel now. We have Brian Pijanowski, 
Fabio Rojas, and Nosh Contractor on the panel. Brian Pijanowski, who is from Purdue 
University, has been here for the whole conference. Nosh Contractor, from the University of 
Illinois, specializes in communication. Fabio Rojas is from Indiana University, and his specialty 
is sociology. With that, I’m turning things over to Brian. 

 
Brian Pijanowski:  Thanks. I put together some general observations. I took a lot of 

notes, and I thought that the presentations throughout the three days were outstanding. Every 
presentation was of high quality, had lots of information, and I learned a lot. I’m an ecologist; 
I think about spatial systems, so some of the perspectives I’m going to bring to this conference 
relate to that background. 
 

The first observation, of course, is that I’ve always thought that this has been a first-rate 
conference. And the price was right. So thanks to the sponsors for doing a fabulous job of 
organizing this and doing it at no cost to us, other than a hotel bill. I wish more conferences were 
like this. 
 

I was really excited on the first day when I started seeing and hearing about Repast and 
GIS. Talk about that integration really excited me when we were here last year. Seeing how far 
this group has come is truly, truly amazing, and to have these tools tightly coupled excites me as 
a spatial ecologist.  
 

The discovery of space is one of the final frontiers with many sciences. When you look at 
some of the ecological literature, in particular, you realize that looking at biophysical systems 
across space is one of the more complex dimensions of the science. I’m hopeful that the 
integration of these tools will start to enrich our thinking about agent-based systems and how 
they actually behave in space. 
 

The third observation I have is that we can begin to potentially integrate what I would 
call the social theory and the theories of the spatial sciences with these tools. You really don’t 
have to go too far to look at some of the major components of the spatial sciences because they 
are encapsulated, for the most part, within GIS, within the structure of the systems, to the point 
that many people are speaking not in terms of graphic information systems, but in terms of 
geographic information science — that captures both the tools and the idea of space. 
 

I also think that location could be one of the integrating themes tying together the social 
and natural systems because you can now bring in the dynamics of those systems, with space 
acting as an integrating force. I’m excited about that potential. However, I think we need more 
dialogue between social scientists and the ecologists who are thinking about agent-based spatial 
systems. 
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Another caveat is that we’re opening up the potential for spatial tools to bring more data 
into our models. There is a massive amount of spatial data out there. It’s overwhelming, but 
what’s exciting is that we can now think through some models that have some reality, at least in 
a spatial context. There are going to be some challenges along the way, technical ones that all of 
us have gone through, as with the learning curves of GIS, such as getting the databases together 
in the same projection. That’s kind of like GIS 101. You get students to sit down behind GIS, 
give them two shaped files, and, lo and behold, they don’t overlay, which is because they’re in 
different projections. So there are going to be some challenges along the way, and some learning 
curves. 
 

We got Repast a couple of hours ago, and Kostas fired up one of the GIS layers that we 
work with here. This involves land use; we have a national database. The whole thing is about 
three-quarters of a terabyte in size, so it’s a significant database, and this is showing Chicago, 
southern Lake Michigan — very, very complicated, very, very detailed land use down to about 
300 different categories of land use. We can now start thinking about dispersing our agents 
across this spatial simulation environment. 
 

The fourth observation I had is that when I compare this conference against some others, 
I find it is well balanced in the way in which we talk about tools, theory, and applications. I don’t 
see that in other conferences, and it’s really exciting to see people communicate about tools, 
theory, and applications all at the same time. I think that means that we’re going to see rapid 
advancements in the science, because we’re all thinking about these ideas simultaneously. 
 

The fifth observation involves this notion that we talked about earlier today and yesterday 
— the idea of simplicity and complexity — which seems to me to not be cut and dried. It may be 
an eye-of-the-beholder perception, but I wonder whether we can refer to our models as both 
simple and complex at the same time. They are, I think, in many cases. There are some complex 
dimensions to many of our models. However, at the same time, they are simple.  
 

And then, observation six, I can’t wait for next year. 
 

Fabio Rojas:  My name is Fabio Rojas. I teach in the Sociology Department at Indiana 
University, and it’s a great pleasure for me to be here again. I participated as a commentator or as 
a chair of a panel about two or three years ago and had the pleasure of seeing multiple versions 
of the same projects and seeing them grow in richness and in their appeal to a wide range of 
audiences. 
 

I personally find this an interesting conference for the same reasons that our previous 
speaker mentioned. There are many people from many different fields — from engineering, 
management, forestry, urban studies, sociology, and psychology. It’s a pleasure to see that kind 
of interdisciplinary work in one place. 
 

I’m just going to mention a few thoughts that I’ve had regarding the place of 
computational sociology. I’m a sociologist. I know very little about engineering. I know very 
little about these other fields. So let me talk about something that I do know about and how some 
of the research today might fit into that larger perspective. 
 

One piece of good news is that there’s been a great growth in computational sociology 
since the last time I offered comments at the concluding panel. It would be a lot easier for the 
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presenters today to communicate their ideas and findings to sociologists than it would have been 
two or three years ago. Even four or five years ago, most people in sociology didn’t even 
understand what a simulation was, but that’s really changed. 
 

For example, the Annual Review of Sociology has published a review article on 
computational methods and another review article on mathematical sociology that often touches 
on computational methods. One of the flagship journals, the American Journal of Sociology, will 
dedicate an entire issue to computational issues. Other top publications in sociology have also 
published simulations or papers that include simulations in them at least once or twice a year. 
 

One of our speakers this afternoon talked about computational experimentation. There are 
many more articles today that present an empirical result and then ask how typical the result is 
by considering a different specific model. Many more papers are appearing with that kind of 
reasoning in them than, say, only two or three years ago. Of course, there are a number of 
specialty journals, which I think are great places for people to find out about different kinds of 
computational work from all perspectives. 
 

My big interdisciplinary ax to grind, which I’ll subject my captive audience to for the 
next minute or so, is that I find a lot of computational work is not systematic. I don’t mean that in 
the sense of going through a parameter space or estimating the effects of one parameter on 
another, but essentially in terms of what mathematicians might call axiomitization. 
 

For example, in social psychology and sociology, and there were some papers at this 
conference concerning social psychology, there are 8 million diffusion models, even more 
influence models, and they’re all over the place. One question I have is, what do they have in 
common? Why do we rebuild the same model over and over again? I don’t know. That’s the first 
question that I wish we’d think about at a more abstract level. You could you come up with a set 
of axioms that characterize or influence your diffusion processes. Then you could say, “Well, 
perhaps the influence that people have on other people in adopting certain forms of 
transportation is an example of a such-and-such style system.” We have no idea how to do that. 
It would be great if we did. 
 

The second big concern is similar, a basic question about social psychology and social 
structure, where once again we have many different models of how, for example, the very last 
paper in the last panel (Chick’s paper on supply chain dynamics); there’s a bit of trust in there, 
and some social structure emerges from that. I’d like to encourage all of the political scientists 
and anthropologists and other social scientists in this room to think about different kinds of 
social structure, not just stable networks, but organizations and states and family structures and 
kinship structures. I invite you to try to come up with common themes. You could do that in 
terms of certain psychological mechanisms leading to certain other kinds of social structures. 
That kind of reasoning is, once again, not present in contemporary sociology or in many of the 
other social sciences. 
 

Another topic that I think deserves a lot more attention in sociology is a big topic with 
one of our organizers, David Sallach. It involves the construction of meaning. If you look at a lot 
of agents in many of the papers, they have very straightforward rules for doing things. Maybe 
there are many parameters that go into the rules, but basically the kinds of things that these 
agents think about are essentially high school algebra problem-solvers. Maybe we need 
something a little bit bigger. 
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For example, during the question-and-answer session, somebody talked about neural 
networks. In sociology and the social sciences, we don’t see very complicated actors who learn 
things and process lots of information. They may have a lot of parameters, but the parameters 
often have some sort of linear rule or some sort of threshold rule. We have very, very simple 
agents. 
 

My fourth ax to grind involves my colleagues. I hope I can inspire them to think more 
carefully about rationality. One paper addressed rationality this weekend, but we don’t have a 
systematic inventory of when people are rational. They’re bound to be rational; they’re following 
rules; they’re following heuristics. How do the social structures, the outcomes, and the aggregate 
outcomes really change? Of course, we have this great technology in which we can build models 
in which you can provide answers for a specific case, but we don’t have a systematic approach. 
 

Once again, thanks very much to our organizers, Chick, Dave, and Mike. Thank you to 
The University of Chicago and Argonne National Laboratory for putting this on for many years, 
and thanks to all for presenting your great papers. I hope that these kinds of axes to grind, this 
pushing people to think more systematically about the underlying logic of all these different 
models, so they come up with comprehensive ways of looking at them — I hope that’ll inspire 
some good thinking and an interesting dialogue. Please e-mail me if you have cool ideas to share. 
 

Thank you very much. 
 

Noshir Contractor:  And now it’s just me between you and the end of this conference 
and hopefully a relaxed evening. I’ll try to keep this as brief as possible. My name is Nosh 
Contractor. I’m from the University of Illinois in Urbana-Champaign. Like Fabio, I’ve had an 
association with this meeting for several years. I also want to thank Michael and Chick and 
David for drawing me in and welcoming me into this particular community over the last several 
years as a discussant and a respondent, and mostly as just a very active student, learning a great 
deal about a certain diversity and selection, based on the same points that you mentioned. It’s not 
just diversity, but it’s also high quality across these different sectors that makes this a very, very 
interesting event, and one that I look forward to every year. I think it’s one of those events that 
runs the risk of becoming the victim of its own success. If the quality and the size are not 
managed, then it could go the way of many other events that get too large for their own good. So 
I would urge the organizers to continue to maintain the size of this event and not invite too many 
people other than those who are already here and a few other bright young scholars who want to 
be part of this, to keep that critical mass, but not make it too large. 
 

In terms of the presentations, as I said, I think there has been an incredible evolution of 
ideas over the last few years — I would say a co-evolution of ideas, in keeping with some of the 
terminology that we use here. I didn’t think of it as an ax to grind because that seemed a little too 
violent, but I do have a point that I have been pondering because of my own biases, as I’ve heard 
the presentations over the years, including right up to the very last one that Chick made. I may 
use that particular presentation to illustrate some of the issues just because of the recency effect 
for those of us here. 
 

The issue that I want to talk about can be reduced to one word — network. In the interest 
of full disclosure, I should say that this is my own area of work. I just finished a book last year 
entitled, Theories of Communication Networks; it was published by Oxford. In that book, 
I looked at a lot of different theories of why we create, maintain, dissolve, and reconstitute 
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network links as individuals, agents, and aggregates. I have a whole chapter on why agent-based 
modeling is an important part of theory construction and theory testing within the context of 
networks. 
 

With that as disclosure, not all agent-based models are modeling networks. However, 
I would suggest that almost any network model ought to be an agent-based model. I’d like to see 
even more agent-based models that specifically focus on the relationships among agents — what 
links come about; how they are created; how they are maintained; how they are dissolved; and 
how they may influence the creation, maintenance, and dissolution of new network links. I’d like 
to see more time spent on the implications of that. I think that lends itself very well to the sort of 
bottom-up approach that has been at the forefront of the defining features of a lot of agent-based 
models and has helped in understanding some of these emergent properties. As I said, I’ve seen a 
lot more this year than I did last year and in preceding years, but I still see incredible room for 
growth. I would suggest that we go beyond looking at the network properties of some of these 
situations, like the scale-free networks that we saw today. 
 

A huge amount of literature in the social sciences — sociology, political science, 
communication, and other areas —focuses on the theoretical mechanisms that determine how 
these links get created, maintained, and dissolved. Chick, to go back to an example, used 
reciprocity as an important mechanism for how trust may be engendered or in some cases 
undermined. There are other examples. We’ve talked about friends of friends having an impact 
on trust. Balance theories are well-established, well-tested theories of how you look at different 
social science mechanisms that explain why that trust may be enforced. 
 

There are also more macro-level issues, such as why trust may be greater between two 
agents if they are embedded within a highly connected network, as opposed to trust between two 
agents that may not be so high or trust that may not be preserved if those two networks are not 
embedded within a dense social network. 
 

So there are sets of theories that focus on self-interest, on social exchange, on collective 
action, on proximity, on homophile, and on co-evolutionary mechanisms. I think that agent-
based modeling researchers would do well to look at the catalogue of different mechanisms and 
see the extent to which they may be multiple theories that are simultaneously imposing on how 
these networks emerge and evolve within an agent-based system. I think there’s a tremendous 
potential for growth here, and understanding new insights would be a good way of doing what 
we already do, combining social sciences with computational sciences, and so on. I think that 
ecology is one important area — looking at multiple theoretical mechanisms very systematically, 
while drawing upon what has already been done in the social sciences. 
 

Now, this is not easy work, and I don’t want to send mixed messages about it. One of the 
reasons it’s hard work is an issue that I don’t think has been well addressed by the agent-based 
community, but it’s very germane to people who do social network analysis, and that is the 
special statistical challenges that arise when handling network data. Network data are not 
independent data, so many of the statistical techniques that we use in handling other kinds of 
data are not appropriate when you’re looking at network data. 
 

We saw today, and know from our past experience, that some of the best calibration and 
empirical validation rely on going out and collecting some data, getting some coefficients, and 
then using those estimates as a way of running different kinds of models. You do a regression, 
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get coefficients from there, get estimates from there, and do something in a dynamic context. As 
we saw this morning with Hedstrom’s presentation, we looked at panel data, were able to get the 
coefficients, and then put them into a model to see what happens. I think that’s exactly the right 
thing to do. But we have to be mindful that when we’re looking at dynamic network data, 
traditional statistical techniques that we would use for non-network data do not always apply. 
 

That’s the bad news. The good news is that there has been a lot of very exciting work 
within social networks recently that looks at new statistical techniques that are based in some 
ways on MCMC techniques that try to develop robust statistical parameters for an understanding 
of the dynamics of networks. For example, there is a whole line of work that my former 
colleague and Fabio’s new colleague, Stanley Wasserman, has developed over the years — the 
p* techniques for looking at random graph models. Philippa Pattison and Gary Robins at the 
University of Melbourne have done some very important work in this area. There are software 
tools that have been developed by Thomas Snijders and his group at the University of 
Groningen. They have a program called SIENA, which, given some of what I’ve heard in this 
room, may be of interest to you. It’s S-I-E-N-A, Simulated Investigation of Empirical Network 
Analysis. SIENA allows you to estimate parameters for how different mechanisms and networks 
may change from one time period to the next. 
 

I think that using those kinds of parameters — those kinds of techniques — and then 
dovetailing that back into the type of computational models we’re talking about here provide a 
very promising new area, and I would strongly encourage some of you to either get your students 
or colleagues to see if there are presentations and research that you could do that would build on 
those kinds of models, so perhaps at Agent 2005 we may even have some papers that are able to 
combine those kinds of approaches. 
 

Those are the theoretical and statistical moves in the network context that I think would 
be good ways of advancing agent-based research. Frankly, if I was talking to social network 
friends, I’d also say it advances social networks research in ways that would really benefit them. 
 

In closing, there are a couple of comments we’ve heard today about complexity and 
simplicity. At the risk of repeating myself, as it turns out from a couple of years ago when we 
had a similar discussion — you know that we are in the Windy City. We can argue that there’s 
been hot air in this room for some of the last two or three days, but there is another model, and 
this discussion about simplicity and generalizability and complexity goes back to empirical 
construction. For several decades there has been the GAS model that some of you may be 
familiar with, hence the allusion to hot air and Windy City. Familiar with the GAS model? Think 
of a clock. On the 12:00 is generalizability, at 4:00 is accuracy, and at 8:00 is simplicity. The 
argument here is that you can never have a model that does all of those things. If you try to put 
something at 2:00, between generalizability and accuracy, that model is not going to be simple. If 
you put something at 6:00, between accuracy and simplicity, it’s not going to be generalizable. 
So, I think that debate that we’ve heard today goes on, but it’s not germane just to computational 
or agent-based modeling; it’s been there for all of theory construction, well before the term 
“agent-based modeling” was even coined. 
 

Finally, I’d say for those of you who were here yesterday that I did not expect to learn 
some things. I didn’t expect to spend as much time reflecting on whether two socks would make 
an entity or not. I’m also glad that I had the opportunity to share that discussion with many of 
you in this room. So thanks again for staying on this late. I appreciate it. 
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Chick Macal:  Well, there’s room for a question or two, just in case anyone wants to get 
something off their chest, so to speak. But, if not — and while you’re considering that — I just 
want to say a few thank you’s. I would like to thank very much my co-organizers. David Sallach 
— you ought to get a special hand — and Michael North, but also Michael North for doing the 
Repast training course. I’d especially I’d like to thank our closing panel: Brian Pijanowski, Fabio 
Rojas, and, again, Noshir Contractor. Thank you very much. 
 

I’d like to thank our invited speakers, especially Roger Burkhart and Michael Macy and 
Peter Hedstrom. I’d like to thank the persons who prepared our conference materials, designed 
and implemented the Agent Web site, and eventually will prepare the proceedings: Margaret 
Clemmons and Michele Nelson. 
 

I’d especially like to thank Kathy Ruffato for the enormous amount of administrative 
work. There are no limits to how much energy she puts into making this conference successful. 
I usually try to make myself scarce the week before because by then I can’t handle it anymore. 
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I’m sorry if I forgot anyone to thank. Also, the proceedings will be on a CD. It turns out 
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see you at Agent 2005. Thank you very much. 
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organizing, chairing, and so forth. 
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